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Abstract

A family A of sets is said to be intersecting if any two sets in A intersect. Families
Aj, ..., A, are said to be cross-intersecting if, for any i, j € {1, ..., p} such that i # j,
any set in A; intersects any set in A;.

For k = (k1,....,kn) € N", 2 < k1 < ... < ky, let Ly be the family of labeled n-sets
given by Ly = {{(1,11),....(n,ln)}: i € {1,..,ki},i = 1,...,n}. We point out a
relationship between intersecting families and cross-intersecting families of labeled
sets, and we show that, if A, ..., A, are cross-intersecting sub-families of Ly, then

Ep:|¢4| /<51/<52 kn it p < ky;
— - pko... if p> kq.
We also determine the cases of equality. We then obtain a more general inequality, a
special case of which is a sharp bound for cross-intersecting families of permutations.

1 Old and new intersection results for labeled sets

We start with some standard notation for sets. N is the set of positive integers {1, 2, ...}.
For m,n € N, m < n, the set {m,m+1,...,n} is denoted by [m,n], and if m = 1 then we
also write [n]. The power set {A: A C X} of a set X is denoted by 2%, and a uniform
sub-family {Y C X: |Y]| =r} of 2% is denoted by (7).

We denote the union of all sets in a family F by U(F). For u € U(F), the family of
sets in F that contain u is called a star of F with centre u.

A family A is said to be intersecting if any two sets in A intersect. Note that a star
of a family is trivially intersecting.

The classical Erdgs-Ko-Rado (EKR) Theorem [6] says that, for < n/2, an intersect-
ing sub-family A of ([Tﬂ) has size at most (:f:i), i.e. the size of a star of ([’ﬂ). By the
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Hilton-Milner Theorem [9], if » < n/2 then A attains the bound if and only if A is a star
of ([’Z]). Many results were inspired by the EKR Theorem; see [5].

Families A, ..., A, are said to be cross-intersecting if, for any i, j € [p| such that ¢ # j,
any set in 4; intersects any set in A;.

Hilton [8] determined the following nice EKR-type result for cross-intersecting sub-
families of ([2}) (r <n/2).

Theorem 1.1 (Hilton [8]) Let r < n/2 and p > 2. Let Ay, ..., A, be cross-intersecting
sub-families of ([Tﬂ). Then

SO s
2 Al { p(o) dp=

J=1

Unless p = 2 = n/r, the bound is attained if and only if one of the following holds:
(i) p < n/r and, for some q € [p], Ay = (") and A; =0 for all j € [p]\{q};

(i) p>n/r and |A| = ... = |A,)| = ("7));

(1)) p=n/r and Ay, ..., A, are as in (i) or (ii).

The EKR Theorem follows from this result: set p > n/r and A; = ... = A,. In |2] it is
shown that in case (ii) we must have 4, = ... =4, ={A € ([Z}) .1 € A} for some i € [n].
For k = (ki, ..., k), k1, ..., k, € N\{1}, we define the family Ly of labeled n-sets by

Lic o= {110, ooy (L)Y L € [K), i = 1, ...},

An equivalent formulation for Ly is [k1] X [k2] X ... X [k,], but it is more convenient to
work with n-sets than work with n-tuples (the alternative formulation demands that we
change the setting of families of sets to one of sets of n-tuples).

In this note we are concerned with the sizes of intersecting and cross-intersecting
families of labeled n-sets. Note that, if we allow k; = 1 for some i € [n], then the problem
becomes trivial because we get that all sets contain the point (i, 1).

The obvious EKR-type problem for labeled sets was treated by Berge [1].

Theorem 1.2 (Berge [1]) Let m € [n] such that k,, = min{k;: i € [n]}. If A is an
intersecting sub-family of Ly, then the size of A is at most |Lx|/ky = kiko...kp/km, i.e.

the size of a star of Ly with centre (m,1).

We shall reproduce the remarkably short proof of this result.
For an integer ¢, let 0] : L — Ly be the translation operation defined by

0L(A) :={(a,b+ gmod k,): (a,b) € A},
and define OF : 26« — 2L« hy

OL(F) :={0L(A): Ae F}.
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Now let m and A be as in Theorem 1.2. For any A € A and ¢ € [k,, — 1], we have
0. (A)N A = () and hence 04(A) ¢ A. Therefore A, OL(A),...,0"1(A) are k,, disjoint
sub-families of Ly. So k| A| < |Lx| = k1ks...k, and hence Theorem 1.2.

Livingston [10] determined which families A attain the bound in Theorem 1.2 for the
case when the k;’s are all the same.

Theorem 1.3 (Livingston [10]) If3 < k) = ky = ... = k,, and A is a largest intersect-
ing sub-family of Ly, then A is a star of Ly.

Using the shifting technique (see |7]) in an inductive argument, we can extend Theorem 1.3
to the following result.

Theorem 1.4 Let m € [n] such that k,, = min{k;: i € [n]}. Suppose k,, > 3 and
A is a largest intersecting sub-family of Li. Then A is a star of Ly with centre in

C:={(,):ien], ki=kn, 1 € kn]}

Proof. We use induction on )" | k;. The case k; = k,, for i = 1,...,n is Theorem 1.3,
so we assume there exists h € [n| such that k, > k,,,. We may assume m =1 and h = n.
Let §: A — Ly be the shift operation defined by

5(A) ::{ (A\{(n, kn)}) U{(n, 1)} if (n, kn) € 4;

A otherwise,

and let B:={§(A): Aec A, §(A) ¢ A} U{A € A: §(A) € A}. Clearly |B| = | A|.

We now show that, since A is intersecting, B is intersecting and, moreover, no two sets
in B intersect only on (n,k,). Let B; and B, be two arbitrary sets in B. If neither set
contains (n, k,,) then either they intersect on (n, 1) or at least one of them does not contain
(n,1) either and hence must intersect the other. Now suppose without loss of generality
(n,k,) € By. Then By,6(By) € A. If (n,k,) € By then Bj is also in A and hence
0 # 6(B1) N By = (B N B)\{(n,k,)}. Suppose (n,k,) ¢ By. If By € A then (n,k,) ¢
B1N By # 0 is obvious. If By ¢ A then (n,1) € By, the set Ay := (Bo\{(n, 1)})U{(n, k,)}
is in A, and hence we have (n,k,) ¢ By N By = 6(B1) N Ay # 0.

Defining B, := {B € B: (n,k,) ¢ B}, B :== {B € B: (n,k,) € B} and B}, :=
{B\{(n,k,)}: B € By}, it follows that By U B} is intersecting. Now B; C Ly, and
Bé C ‘Ckg; where kl = (kla-“akn—lakn — ].) and k2 = (k17"'akn—l)' Let S = {S S
Ly: (1,1) € S}, and define S;, S and S} similarly to By, By and B}, respectively. By the
inductive hypothesis, |B;| < |Si1| and |BS| < |S5]. So |A| < |S] as |A| = |B| = |B1| + | B
and |S| = |S1| + |S5]. Since A is a largest intersecting sub-family of Ly, we actually have
|A| = |S|, which implies |B;| = |S;| and |Bj| = |S|. By noting that C' C U(Ly,) (since
k., > k1) and applying the inductive hypothesis, we get By = {B € Ly,: (a,b) € B} for
some (a,b) € C. Thus, for any set in {A € Ly, : (a,b) ¢ A}, there clearly exists a set in
B!, that does not intersect with it. Since By U B, is intersecting, it follows that all sets in
B, U B), contain (a,b). So B C C :={A € Lx: (a,b) € A}. Since (a,b) ¢ {(n,1), (n,k,)},
we deduce that A C C. By maximality of A, A = C. Hence result. O
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We will now use Theorems 1.2 and 1.4 to obtain the following ‘labeled sets’ analogue
of Theorem 1.1.

Theorem 1.5 Let m € [n] such that k,, = min{k;: i € [n|}, and let C := {(i,1): i €
(n], ki =k, | € [kn]}. Let Ay, ..., A, be cross-intersecting sub-families of L. Then

zp: |A| < |£k| = kiky...kp if p < ks
T pHA € L (mo1) € AY| = pRite i p > Fo.

If k., > 3, then the bound is attained if and only if one of the following holds:
(i) p < kn, and, for some q € [p|, Ay = Ly and A; =0 for all j € [p]\{q};
(1)) p > ky and Ay = ... = A, = {A € Lx: (a,b) € A} for some (a,b) € C;
(11i) p = ky, and Ay, ..., A, are as in (i) or (ii).

Proof. Let k,y1 :=p and K := (ky, ..., kn, kpny1). For each j € [k,11], let
A ={Au{(n+1j)}: Aec A;}.

Now let A be the the disjoint union AjUA5U...UA;  , which is a sub-family of £,/. Take
two arbitrary sets A; and Ay in A. So A; € A} and Ay € Al for some ji, jo € [Knia].
Also By .= A)\{(n+1,71)}isin Aj, and B, := A2\{(n+ 1 jg)} is in Aj,. If j; = jo then
Ay and A, intersect on (n+ 1, j;). If j; # jo then A; and Aj, are cross-intersecting, and
this gives us By N By # () and hence A; N Ay # (. So A is an intersecting sub-family of
Lys. Since |A| = Z?fll |A;l, it follows by Theorem 1.2 (with k' instead of k) that

f |A | ‘,Ck/‘ _ kle...knJ,_l
“min{k;:i € n+ 1)} min{k,, k1)

which immediately yields the desired upper bound.

Now suppose k,, > 3. It is straightforward that the upper bound is attained in each
of the cases (i), (ii) and (iii). We now assume that the upper bound is attained and prove
the converse. We obviously divide the problem into the following cases.

Case 1: kpy1 < kp. So we have |A| = w‘jl

Suppose first that k,1 > 3. Since kpy1 < ki, < k; for all i € [n], it follows by
Theorem 1.4 that A={A € Ly: (n+1,q) € A} for some ¢ € [k,+1]. By construction of
A, we get A, = L and A; = 0 for all j € [k,11]\{q}

Now suppose k41 = 2. Let k]| := ky,,, and let k" := (k1, ..., kn, k), ;). Since k/,; >3
and |A| = |£k'1 = ‘,f,—k”ll, Theorem 1.2 tells us that A is a largest intersecting sub-family
of Lyr. Thus, by Theorem 14, A ={A € Lyr: (a,b) € A} for some (a,b) € U(Lxr).
Since A C Ly, we actually have (a,b) € U(Ly ). Suppose a # n+ 1; then |A| = ‘i—‘;" and

hence, since |A| = ‘E—‘:'l', we get k, = k41, which contradicts ko > k)| > 3 > kyqq. So

a =n+ 1. By construction of A, we get A, = Ly and A; = 0 for all j € [k,1]\{b}.
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Case 2: kypi1 > kp. So ky, = min{ky, ..., ky, kn1}. By Theorem 1.4, we must have
A={A¢€ Ly: (a,b) € A} for some (a,b) € D :={(i,1): i € [n+ 1], k; =k, | € [kn]}.
Since kp11 > ki, a #n+1and D = C. Thus, by construction of A, for each j € [k,41]
we have A = {AU{(n+1,7)}: (a,b) € A€ Ly} and hence A; = {A € Ly: (a,b) € A}.

Case 3: kny1 = ky,. By Theorem 14, A = {A € Ly (a,b) € A} for some (a,b) €
CU ({n+ 1} x [kn41]). Therefore, if (a,b) € {n + 1} x [k,41] then Ay, ..., Ay, , are as in
Case 1, and if (a,b) € C then A, ..., Ay, ., are as in Case 2. O

2 Translation invariant families of labeled sets

In this section, we generalize the sharp bounds in the above results.

Definition 2.1 We say that F is translation invariant with respect to Ly if F C Ly and
OL(F) = F.

When it is clear from the context that we are considering F C Ly, then, if OL(F) = F,
we simply say that F is translation invariant.
For any r, s € N with r < s, let

Pos ={{(1,0l),...,(r, 1) }: L, ..., I, are distinct elements of [s]}.

P,.s is an example of a translation invariant sub-family of £y with the n = r entries of k
being all s. The special family P, ,, describes permutations of [n].

One can find various other examples of translation invariant families. For example, if
ki=..=kn <kni1=..=ky, then clearly {{(1,11),...,(m,l1),(m+ 1,12), ..., (n,ls) }:
l1 € [k1], ls € [kmy1]} is a translation invariant sub-family of L.

The following is a straightforward result.

Proposition 2.2 Let F C Ly. F is translation invariant if and only if OL(F) = F for
any q € N.

Theorem 2.3 Let F be translation invariant with respect to Ly. Let m € [n] such that
km = min{k;: i € [n]}. Then the size of an intersecting sub-family of F is at most |F|/km,
which is the size of a star of F with centre (m,1).

Proof. For each j € [ky], let F; := {F € F: (m,j) € F} (i.e. the star of F with
centre (m,j)). So the families 7, ..., Fy,, partition F. Clearly, for any ¢ € N, 6 is an
injective function. Consider ji,jo € [kn), j1 < j2. 677" maps any set Fj, € F, to a
set [, € {A € Lx: (m,j2) € A}, and Fj, € Fj, by Proposition 2.2; so |Fj;,| < |Fj,l.
Similarly, by considering the mapping 0i™ %7 we obtain |Fj,| < |F;,|. So |Fj,| = |Fjl-
This implies |Fy| = ... = |Fy,,| and hence |F| = k| Fi|.

Now let A be an intersecting sub-family of 7. Let A € A and ¢ € [k,, — 1]. Since
0L (A)NA =0, 6](A) ¢ A. By Proposition 2.2, 0L(A) € F. Thus A, OL(A), ..., 001 (A)
are k,, disjoint sub-families of F. So we have k,,|A| < |F| = k,,|F1|. Hence result. O
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Remark. Deza and Frankl [4] proved the above result for the special case F = Py, .
Cameron and Ku |3]| proved that the extremal intersecting sub-families of P, , are the
stars of P, ,,. However, there are translation invariant families 7 whose largest intersect-
ing sub-families are not all stars of F. For example, suppose n > 3 and all the n entries
of k are n. Let &€ :=={FE € P,,: |[EN{(1,1),(2,2),(3,3)} > 2} and take F to be the
translation invariant sub-family of £y given by EUOL(E) U...U O (€). Clearly £ is an
intersecting sub-family of F that is not a star of F, and || = |F|/n. By Theorem 2.3, £
is a largest intersecting sub-family of F.

Theorem 2.3 enables us to generalize the first part of Theorem 1.5.

Theorem 2.4 Let F and m be as in Theorem 2.3. Let Ay, ..., A, be cross-intersecting
sub-families of F. Then

XP:IA‘I <{ | 7] if p < ks
TN p =p{F e Fr(m ) € FY ifp = k.
Proof. Similarly to the proof of Theorem 1.5, we set k.11 := p, K" := (k1,..., kn, knt1)
and A= J]_ {AU{(n+1,5)}: A€ A;}, and we have that A is an intersecting family
of size °F_ |Aj|. Let 7' := {FU{(n+1,j)}: F e F,jepl} SoAcCF CLp
and |F'| = p|F|. Now clearly F’ is translation invariant. Thus the result follows from
Theorem 2.3 (with k' instead of k). O

For the particularly interesting case when F in the above theorem is P, s (which has
size (—'T),), we suggest the following conjecture about the extremal structures.

S
s—

Conjecture 2.5 If Ay, ..., A, are cross-intersecting sub-families of Prs and Y 77_ |A;] is
a mazximum, then one of the following holds:

(i) p < s and, for some q € [p|, A; =P,s and A; =0 for all j € [p|\{q};

(it) p>sand Ay =...= A, ={A € P,s: (a,b) € A} for some (a,b) € [r] x [s];

(11i) p=s and Ay, ..., A, are as in (i) or (ii).

If this conjecture is true, then the largest intersecting sub-families of P, ; are the stars of
P.s. To see this, consider 4y = ... = A, (so the families A; must be intersecting) and
p > s in the above conjecture.

Acknowledgements. The author is indebted to an anonymous referee for careful check-
ing of the paper and suggestions that led to an improvement in the presentation.

References
[1] C. Berge, Nombres de coloration de I’hypergraphe h-parti complet, in: Hypergraph

Seminar (Columbus, Ohio 1972), Lecture Notes in Math., Vol. 411, Springer, Berlin,
1974, 13-20.

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #N9 6



|2] P. Borg, A short proof of a cross-intersection theorem of Hilton, submitted.

|3] P.J. Cameron and C.Y. Ku, Intersecting families of permutations, European J. Com-
bin. 24 (2003) 881-890.

[4] M. Deza and P. Frankl, On the maximum number of permutations with given maximal
or minimal distance, J. Combin. Theory Ser. A 22 (1977) 352-360.

|5] M. Deza and P. Frankl, The Erdgs-Ko-Rado theorem - 22 years later, SIAM J. Alge-
braic Discrete Methods 4 (1983) 419-431.

|6] P. Erdgs, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart.
J. Math. Oxford (2) 12 (1961) 313-320.

[7] P. Frankl, The shifting technique in extremal set theory, in: C. Whitehead (Ed.),
Combinatorial Surveys, Cambridge Univ. Press, London/New York, 1987, pp. 81-110.

|8] A.J.W. Hilton, An intersection theorem for a collection of families of subsets of a finite
set, J. London Math. Soc. (2) 15 (1977), 369-376.

[9] A.J.W. Hilton and E.C. Milner, Some intersection theorems for systems of finite sets,
Quart. J. Math. Oxford (2) 18 (1967), 369-384.

[10] M.L. Livingston, An ordered version of the Erdds-Ko-Rado Theorem, J. Combin.
Theory Ser. A 26 (1979), 162-165.

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #N9 7



