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Abstract

We show that, for all choices of integers k > 2 and m, there are simple 3-

connected k-crossing-critical graphs containing more than m vertices of each even

degree ≤ 2k − 2. This construction answers one half of a question raised by Bokal,

while the other half asking analogously about vertices of odd degrees at least 7 in

crossing-critical graphs remains open. Furthermore, our newly constructed graphs

have several other interesting properties; for instance, they are almost planar and

their average degree can attain any rational value in the interval
[

3 + 1

5
, 6 − 8

k+1

)

.
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1 Introduction

We assume that the reader is familiar with basic terms of graph theory. In a drawing
of a graph G the vertices of G are points and the edges are simple curves joining their
endvertices. Moreover, it is required that no edge passes through a vertex (except at its
ends), and no three edges cross in a common point. The crossing number cr(G) of a graph
G is the minimum number of crossing points of edges in a drawing of G in the plane.

For k ≥ 1, we say that a graph G is k-crossing-critical if cr(G) ≥ k but cr(G− e) < k
for each edge e ∈ E(G). It is important to study crossing-critical graphs in order to
understand structural properties of the crossing number problem. The only 1-crossing-
critical graphs are, by the Kuratowski theorem, subdivisions of K5 and K3,3. The first
construction of an infinite family of 2-crossing-critical simple 3-connected graphs was by
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Kochol [8] (Figure 8), improving previous construction by Širáň [12]. Many more crossing-
critical constructions have appeared since.

It has been noted by D. Bokal (personal communication and preprint of [2]) that typi-
cal constructions of infinite families of simple 3-connected k-crossing-critical graphs create
bounded numbers (wrt. k) of vertices of degrees other than 3, 4, 5, or 6. Actually, the exis-
tence of such 2-crossing-critical families with many degree-5 vertices has been established
by Bokal only recently. Bokal’s natural question thus was, what about occurrence of other
vertex degree values in infinite families of k-crossing-critical graphs? We positively answer
one half of his question in Theorem 3.1 and Proposition 2.1;

• namely we construct, for all k > 2, infinite families of simple 3-connected almost-
planar k-crossing-critical graphs which contain arbitrary numbers of vertices of each
even degree 4, 6, 8, . . . , 2k − 2.

The analogous question about occurrence of vertices of odd degrees ≥ 7 in k-crossing-
critical graphs remains open, and it appears to be significantly harder than the even
case. One should also note that a (still open) question about the existence of an infinite
family of simple 5-regular crossing-critical graphs was raised long before by Richter and
Thomassen [9].

Usual constructions of crossing-critical graphs use an approach that can be described
as a “Möbius twist”—they create graphs embeddable on a Möbius band which thus have to
be twisted for drawing in the plane. We offer a quite different approach in Section 2, which
extends our older construction [4], resulting in graphs that are almost-planar (sometimes
called “near planar”), i.e. they can be made planar by deleting just one edge. As an easy
corollary of this new and very flexible construction;

• we also produce almost-planar crossing-critical families with any prescribed average
degree from

[

3 + 1

5
, 6 − 8

k+1

)

,

see in Theorem 4.1 and Corollaries 4.2, 4.3.

2 “Belt” constructions

An illustrating example of crossing-critical graphs constructed in our older work [4] is
shown in Figure 1. The construction in [4] used vertices of degrees 4 or 3, and now we
generalize it to allow more flexible structure and, particularly, vertices of arbitrary even
degrees.

For easier notation, we (in the coming definitions) consider embeddings in the plane
P with removed open disc X . We say that a closed curve (loop) γ is of type-X if the
homotopy type of γ in P \ X is to “wind once around X ”. Having two loops γ, δ of
type-X , we write γ � δ if γ separates X from δ \ γ (meaning γ is “nested” inside δ).

Crossed belt graphs. A plane graph F0 is a plane k-belt graph if it can be constructed
as a connected edge-disjoint union of k embedded “belt” cycles C1 ∪ C2 ∪ · · · ∪ Ck = F0,
where all C1, . . . , Ck are of type-X nested as C1 � C2 � · · · � Ck.
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Figure 1: A simple 3-connected almost-planar 8-crossing-critical graph [4]. (The “grid-
belt” is wraps around a cylinder without twist.)

A path R ⊆ F0 connecting a vertex p of C1 to a vertex q of Ck is radial if, for each
1 < i ≤ k, R intersects Ci ∪ · · · ∪ Ck in a subpath (with one end q). Informally, a
radial path of F0 has to “proceed straight across F0” from C1 to Ck. A vertex of F0 is
accumulation if its degree is at least 6 in F0, i.e. if it is contained in at least three of the
cycles C1, . . . , Ck.

Furthermore, a planar k-belt graph is proper if there are four distinct vertices s1, t1 ∈
V (C1) \ V (C2) and s2, t2 ∈ V (Ck) \ V (Ck−1), and the following is true:

(B1) No radial path of F0 starting in s1 or t1 contains an accumulation vertex. In par-
ticular, no accumulation vertex exists on the cycle Ck.

(B2) Let P2, P
′

2 ⊆ Ck be the two paths with the ends s2, t2 on Ck. Then every radial
path of F0 strating in s1 (in t1) hits Ck first in an internal vertex of P2 (of P ′

2,
respectively).

(B3) Let P1, P
′

1 ⊆ C1 be analogously the two paths with the ends s1, t1 on C1. There
exist collections of k pairwise disjoint radial paths in F0, all disjoint from s1, t1 and
all starting on P1 (on P ′

1, respectively).

A graph F is a crossed k-belt if it is F = F0 ∪ S0 ∪ S1 ∪ S2, where

– F0 is a proper planar k-belt graph as above;

– S1 is a path with the ends s1, t1 internally disjoint from F0 and S2 is a path with
the ends s2, t2 internally disjoint from F0 ∪ S1; and

– S0 is a path disjoint from F0, connecting a vertex of S1 to one of S2.

This lengthy definition is illustrated in Figure 2. Notice that a crossed 1-belt graph is
always a subdivision of K3,3, and that removing an edge of S0 from a crossed k-belt graph
leaves it planar. Particularly, the graph in Figure 1 is a crossed 8-belt graph without
accumulation vertices, and we call this special case a “square-grid” 8-belt graph. We aim
to show that crossed k-belt graphs are k-crossing-critical with the exception of k = 2.
(This exception is remarkable in view of successful research progress into the structure of
2-crossing-critical graphs.)

For better understanding we first discuss the conditions (B1), (B2) and (B3) imposed
on our graphs. (B1) is generally unavoidable, as a nontrivial (counter)example violating
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Figure 2: An illustration of the definition of a crossed k-belt graph. (The “zig-zag” lines
are examples of radial paths as discussed in the definition.)

(B1) in Figure 3 shows. The other two conditions are, on the other hand, necessary mainly
due to our inductive proof in the next section. (B2) establishes the base cases k = 1, 3
of the induction—violating (B2), one could easily construct planar graphs for k = 1 or
graphs of crossing number 2 for k = 3. Perhaps, (B2) might not be necessary for higher
values of k, but without Lemma 3.3 we could hardly start our induction. Finally, (B3)
gives a sort of “sufficient interconnection” between the cycles C1, . . . , Ck (we obviously
cannot allow those to be disjoint), and then (B3) is the key ingredience in the inductive
step in Theorem 3.1.

t1

s1

Figure 3: A sketch of a graph similar to crossed k-belt (with four “bad” accumulation
vertices) which has crossing number 13 for large values of k.

The cruical property which motivated our construction, and which (in half) answers
the aforementioned question of Bokal, is stated now:

Proposition 2.1 Let k > 3 be an integer. For every integer m there is a crossed k-belt
graph which is simple 3-connected and which contains more than m vertices of each of
degrees ` = 4, 6, 8, . . . , 2k − 2.

Proof. In this case a picture is worth more than thousand words. Figure 4 shows
local modifications of the square-grid 8-belt graph which produce accumulation vertices
of degrees 14 and 12 while preserving its simplicity and connectivity. It is straightforward
to generalize this picture to any k > 3 and all degrees ` = 6, 8, . . . , 2k − 2. Starting
from a sufficiently large square-grid k-belt graph F , we can produce in this way F ′ with
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Figure 4: Examples of accumulation vertices.

arbitrarily many accumulation vertices of each degree ` = 6, 8, . . . , 2k−2, all of which are
“sufficiently far” from the vertices s1, t1 as in the condition (B1). 2

3 Crossing-criticality

We continue to use the notation from the definition of k-belt graphs also in this section.
Now we come to the main result of our paper.

Theorem 3.1 For k ≥ 3, every crossed k-belt graph is k-crossing-critical.

Proof. Let F be our k-belt graph, considered with notation as in the definition above.
In one direction, by a straightforward induction we argue that any crossed k-belt graph,
k ≥ 1, can be drawn such that the only crossings occur between the path S0 and each of
the belt cycles C1, . . . , Ck once. This is trivial for k = 1. For k > 1, we draw a (k−1)-belt
subgraph F ′ ⊂ F from Lemma 3.2 with k − 1 crossings between S0 and each of the belt
cycles C2, . . . , Ck, in a way that one end of S0 is inside the set X (see the definition of
type-X in Section 2) and the other end of S0 is in the face of Ck not with X . By definition
the remaining cycle C1 is nested inside each cycle Ci, i > 1, and so to obtain an analogous
drawing of (whole) F it is enough to add one more crossing of S0 with C1 since C1 is also
of type-X . Furthermore, using analogous arguments, it is easy to verify that deleting any
edge e of F allows us to draw F − e with fewer than k crossings.

Conversely, we assume an arbitrary drawing F of F , and we want to prove that F has
at least k edge crossings. There are two possibilities—either C1 is drawn uncrossed in F ,
or some edge of C1 is crossed in F . In the first case, assuming k ≥ 4, we will argue that
cr(F) ≥ k straight away.

Let Q1, . . . , Qk and R1, . . . , Rk be the collections of disjoint radial paths established
in (B3), ordered such that Q1 and R1 are the closest ones to s1. Also using (B3), there
exist Q0 a radial path starting in s1 and R0 a radial path starting in t1, none of Q0, R0

intersecting more than one of Q1, . . . , Qk and R1, . . . , Rk. Then there exist k− 2 pairwise
edge-disjoint paths Ti ⊆ (Qi∪Ci+2∪Ri)−V (R0) for i = 1, 2, . . . , k−2 in F , such that each
Ti intersects C1 in two single vertices (Ti-ends) which separate s1 from t1 on C1. Notice
that these Ti need not actually use sections of Qi or Ri if closer accumulation vertices
between C1 and Ci+2 exist (still respecting (B1) ), but in this particular setting such paths
Ti always exist. Their key properties are that T1, . . . , Tk−2 are internally disjoint from C1,
and that all of them intersect Q0 − V (C1).
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Analogously, we obtain two more such edge-disjoint paths Tk−1 ⊆ (Qk−1∪Ck∪Rk−1)−
V (Q0) and Tk ⊆ (Qk ∪ Ck−1 ∪ Rk) − V (Q0), both intersected by R0 − V (C1). Thus all
T1, . . . , Tk belong to the same connected component of F − V (C1) as Ck ∪ Q0 ∪ R0 does,
where Ck is disjoint from C1 by (B1). Furthermore, S1 − s1 − t1 also belongs to the
component with Ck. So, if C1 is drawn uncrossed in F , then all S1 and T1, . . . , Tk are
drawn in the same face of C1, and hence S1 has to cross each of the edge-disjoint paths
T1, . . . , Tk by Jordan’s curve theorem, witnessing cr(F) ≥ k.

Otherwise, there is an edge f of C1 which is crossed in F . We apply Lemma 3.2 to F
and f , so obtaining a crossed (k−1)-belt subgraph F ′ of F −f , and conclude by induction
that cr(F) ≥ 1 + cr(F ′) = 1 + (k − 1) = k if the claim holds true in the base case k = 3.
Hence we can finish the proof of the theorem with further Lemma 3.3 which takes care of
k = 3. 2

Lemma 3.2 Let F be a crossed k-belt graph as above, and choose any f ∈ E(C1). Then
F − f contains a crossed (k − 1)-belt subgraph F ′ having C2, . . . , Ck as its collection of
belt cycles.

Proof. We refer to the notation in the definition of belt graphs. Let s′1, t
′

1 denote
vertices of C1∩C2 connected across C1−V (C2)−f to s1, t1, respectively. Then s′1, t

′

1 6∈ C3

thanks to (B1). Notice that for at least one of s′1, t
′

1 we have a choice of two possibilities
at each “side” of s1 or t1, and so we can ensure that not both s′1, t

′

1 intersect the same
one collection of radial paths from (B3).

Let F ′

0 denote the subgraph of F induced on V (C2) ∪ · · · ∪ V (Ck), and let path S ′

1 be
the prolongation of S1 on C1−f with the ends s′1, t

′

1. We claim that F ′ = F ′

0∪S ′

1∪S2∪S0

is a crossed (k − 1)-belt graph: The properties (B1) and (B2) are easily inherited by F ′

since radial paths starting in s′1 or t′1 form a subset of those starting in s1 or t1. (B3) is
then satisfied thanks to our choice of s′1 or t′1 above. 2

Lemma 3.3 Any crossed 3-belt graph is 3-crossing-critical.

Proof. We adapt some of the ideas of Theorem 3.1 to this special case of k = 3. Let
F be again a drawing of F . Say, if both cycle C1 and C3 are crossed in F , then this case
accounts for two distinct crossings—even if C1 crossed C3, these two disjoint cycles would
have to cross twice. So let f ∈ E(C1) and f ′ ∈ E(C3) be edges of distinct crossings in F .
We can now successively apply Lemma 3.2 to F and f , then f ′. The result is a 1-belt
graph F ′′ ⊃ C2 (avoiding the crossings on f, f ′) which is a subdivision of nonplanar K3,3

thanks to (B2), and hence we conclude cr(F) ≥ 2 + 1 = 3 in this case.
The other possible case is that C1 or C3 is uncrossed in F . Considering uncrossed

C1, we turn the definition of a 3-belt graph F into a symmetric one by establishing the
following properties:

(B1+) There is clearly no accumulation vertex at all in F .
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R1 R2

R4 R3
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t1

C1

C3

S2

Figure 5: The “core” scheme of a crossed 3-belt graph, cf. (B2+).

(B2+) Let P1, P
′

1 ⊆ C1 and P2, P
′

2 ⊆ C3 be the paths as in (B2) and (B3) above. There
are pairwise disjoint paths R1, R2, R3, R4 ⊆ C2 connecting internal vertices, in order,
of P1 to P2, of P ′

1 to P2, of P ′

1 to P ′

2, and of P1 to P ′

2. This fact follows rather easily
from previous (B2) and (B3) when k = 3. See in Figure 5.

Analogously to Theorem 3.1, there are paths T1 ⊆ R1∪C3∪R2 and T2 ⊆ R3∪C3∪R4

such that the ends of each one T1 or T2 separate s1 from t1 on C1. Again, the paths T1, T2

must be drawn in the same face of the uncrossed cycle C1 in F as the path S1 is, and
hence they account for two crossings on S1. If, moreover, the cycle C3 is uncrossed in F ,
then we get by symmetry another two crossings on S2, and conclude cr(F) ≥ 2 + 2 = 4.
Hence C3 has got some crossings, and if such a crossing is not with S1, we are done again
as cr(F) ≥ 2 + 1 = 3. So it remains to consider that the only two crossings on C3 are
those with S1, and then another crossing with S2 or C2 must exist on S1 as well. Thus
cr(F) ≥ 3. 2

4 Average degrees

Although the main motivation for our k-belt construction of crossing-critical graphs was
to answer a part of Bokal’s [2, Section 6, preprint] question, the critical graph families we
obtain are so rich and flexible that they deserve further consideration and applications.

We look here at one particular question studied in a series of papers [11, 10, 2]: Salazar
constructed infinite families of k-crossing-critical graphs with average degree equal to any
rational in the interval [4, 6). Then Pinontoan and Richter [10] extended this to the
interval (3.5, 4), and finally Bokal [2] has found k-crossing-critical families for any rational
average degree in the interval (3, 6). (Average degrees ≤ 3 or > 6 cannot occur for infinite
families, and the average degree 6 remains an open case.)

Using our construction and Theorem 3.1, we duplicate Salazar’s result in Theorem 4.1
within the restricted subclass of almost-planar crossing-critical graphs, and further extend
this in the subsequent corollaries.
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Theorem 4.1 For every odd k > 3 there are infinitely many simple 3-connected crossed
k-belt graphs with the average degree equal to any given rational value in the interval
[

4, 6 − 8

k+1

)

.

Figure 6: An approach to a plane 13-belt graph with accumulation vertices of degree 6.

Proof. Figure 6 illustrates a construction of a plane graph F1 that fulfills all conditions
of the definition of a plane 13-belt graph except (B1). Splitting of a vertex is a simple-graph
inverse (not necessarily unique) of the edge-contraction operation. Figure 7 shows details
of two “splitting” operations which can be applied to any accumulation vertex of F1.
These both preserve simplicity and 3-connectivity of F1, and can be used to eventually
construct a proper 13-belt graph from F1.

↗

↘

Figure 7: Details of single-split (top) and double-split (bottom) operations in the graph
from Figure 6.

The construction of F1 from Figure 6 can easily be generalized for any odd k > 3. Let
` be the length of the C1-cycle in F1, and let the number of accumulation vertices from F1

that are single-split during the construction of F0 be m and the number of double-split
accumulation vertices be m′. Admissible values of m and m′ in our construction are at
most the total number of accumulation vertices m+m′ ≤ `(k−3)/2, and at least m ≥ 4k2

since it is enough to single-split 2k2 accumulation vertices from F1 near each of s1, t1 to
satisfy (B1) of a proper k-belt graph.

An easy calculation shows that F0 has `(k + 1)/2 + m + 2m′ vertices, and so F has
`(k + 1)/2 + m + 2m′ + 6 vertices. The average degree of F is

davg(F ) =
6k` − 2` + 4m + 12m′ + 36

k` + ` + 2m + 4m′ + 12
= 6 −

8` + 8m + 12m′ + 36

k` + ` + 2m + 4m′ + 12
. (1)

Now choose any rational davg ∈
[

4, 6 − 8

k+1

)

. Then setting davg = 6 − p

q
= 6 − cp

cq
in

(1) gives a system of two linear equations in two unknowns `, m and parameters k, c, m′,
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which is nonsingular for each k 6= 1. Its solution is

` =
c

4k − 4
(4q − p) −

m′ + 3

k − 1
, m =

cp

8
−

12(m′ + 3)

8
− ` .

The expressions show that choosing our parameters as m′+3 = 2(k−1) and c = c′ ·8(k−1)
leads always to integer values of ` and m as

` = c′(8q − 2p) − 2 , m = c′
(

(k + 1)p − 8q
)

− 3k + 5 . (2)

By the choice 6 − p

q
∈

[

4, 6 − 8

k+1

)

it is easy to show in (2) that always m + m′ ≤

`(k − 3)/2− 3, and since (k + 1)p − 8q > 0 it follows that for sufficiently large choices of
c′ we get also m ≥ 4k2. Thus we get from (2) an infinite sequence of admissible pairs `, m
(note fixed k and m′ = 2k − 5), defining each one a crossed k-belt graph F with average
degree exactly 6 − p

q
as needed. This holds for any fixed odd k > 3. 2

Our restriction to odd values of k was just for our comfort. We can easily overcome it
using a powerful “zip-product” construction of Bokal [1, 2]. In our restricted case; having
two simple graphs G1, G2 with cubic vertices ui ∈ V (Gi) and their neighbors denoted by
ri, si, ti, the zip product G of G1 and G2, according to the chosen vertices u1, u2 and their
neighbors, is the disjoint union of G1 − u1 and G2 − u2 with added three edges r1r2, s1s2,
t1t2. A cubic vertex u1 in G1 with the neighbors r1, s1, t1 has two coherent bundles if there
are two vertices v, w ∈ V (G1 − u1) such that there exist six pairwise edge-disjoint paths,
three of them from v and the other three from w to each of r1, s1, t1. We shall use Bokal’s
[2, Theorem 21];

• if the above graphs Gi, i = 1, 2 are ki-crossing-critical where cr(Gi) = ki, and ui have
two coherent bundles in Gi, then their zip product G is (k1 + k2)-crossing-critical.

Corollary 4.2 For every k ≥ 5 there are infinitely many simple 3-connected almost-
planar 2k-crossing-critical graphs with the average degree equal to any given rational value
in the interval

[

4, 6 − 8

k+1

)

.

Proof. We take two disjoint copies G1, G2 of a graph resulting from Theorem 4.1. It
is easy to check that the (unique) cubic vertex v1 of G1, which is a neighbor of s1, t1 as
in Figure 2, has two coherent bundles. (This fact is implicitly contained already in [2,
Section 6].) Let f1 denote the edge of v1 not incident with s1, t1, and let v2, f2 be the
corresponding elements in G2. Recall that Gi − fi is planar. Then the zip product G of
G1 and G2 at v1, v2, matching edges f1, f2 into f of G, is 2k-crossing-critical by [2], and
G − f is planar. To achieve the same average degree of the product as that of G1, we
finally double-split one more accumulation vertex in G1. 2

Furthermore, we can lower the average degree of almost-planar crossing-critical graphs
down to 3.2. For that we recall an old construction of Kochol [8]: His 3-connected
2-crossing-critical graphs consist of 2m + 1 copies of a pentagon joined together as in
Figure 8. Notice that also these graphs are almost-planar—just delete the marked edge f ,
and their average degree equals 3+ 1

5
. They can be nicely combined with our construction

in Theorem 4.1 using zip product, too.
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f

Figure 8: The 2-crossing-critical family of Kochol [8]; with “twisted” winding around a
Möbius band.

Corollary 4.3 For every k ≥ 12 (odd k ≥ 7) there are infinitely many simple 3-connected
almost-planar k-crossing-critical graphs with the average degree equal to any given rational
value in the interval

(

3 + 1

5
, 4

)

.

Proof. We consider first odd k ≥ 7, and denote by F1 the graph sketched in Figure 6,
made as a union of k − 2 cycles with the first cycle of length `. Then we construct
a simple 3-connected crossed (k − 2)-belt graph F from F1 after double-splitting ` + 1
accumulation vertices of F1 and single-splitting remaining accumulation vertices. Hence
F has n = (k − 1)` + (` + 1) + 6 = k` + 7 vertices and degree sum 4n − 6 (note that all
vertices of F are of degree 4 except six of degree 3). We again denote by v1 the cubic
vertex of F , which is a neighbor of s1, t1 as in Figure 2.

We also denote by G Kochol’s graph (Figure 8) on 10m − 5 vertices, and by w one
end the edge f in G. It is again easy to check that w has two coherent bundles in G, and
so we may apply zip product here: Let H be the result of the zip product of F and G
at v1, w, such that H is almost-planar and (k − 2 + 2)-crossing-critical by [2]. A direct
calculation shows that H has k` + 7 + 10m − 5 − 2 = k` + 10m vertices and its degree
sum is 4(k` + 7)− 6 + 32m− 16− 6 = 4k` + 32m. Hence expressing its average degree as

4k` + 32m

k` + 10m
= 4 −

p

q

leads to an equation
m · (8q − 10p) = ` · kp ,

which clearly has infinitely many admissible integral solutions `, m for all choices of 4− p

q
∈

(

3 + 1

5
, 4

)

.
On the other hand, for even k ≥ 12 we may apply an analogous construction starting

from the graphs of Corollary 4.2. 2

5 Additional remarks

First, we remind readers that our Theorem 3.1 gives an answer only to a half of the
question originally asked by Bokal, and so we repeat the other part which remains open:

Question 5.1 (Bokal) For which odd values of d ≥ 7 are there infinite families of simple
3-connected k-crossing-critical graphs having arbitrarily many vertices of degree d?
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Second, although our subsequent results in Section 4 are not quite new, they bring some
interesting advantages over previous [2, 10, 11]. Prominently, we are constructing such
crossing-critical graphs as almost-planar which was not the case of previous constructions.
Our construction works with all (not too small) values of k, and not only with sporadic
large k’s as, say [11], and we approach the upper–boundary value of 6 with much smaller
values of k than [2]. Though, in connection with Corollary 4.3 it is interesting to ask the
next.

Question 5.2 Do there exist infinite families of almost-planar k-crossing-critical graphs
with average degree below 3 + 1

5
?

Third, we have shown [5] that all k-crossing-critical graphs have path-width bounded
in k. This result has been followed by a conjecture of Richter and Salazar; that k-crossing-
critical graphs have bandwidth bounded in k. The close relation of this conjecture to our
topic appears clear when one notices a positive answer would imply that maximal degree
of k-crossing-critical graphs is bounded in k. We, however, are not strong supporters of it
(particularly since an analogous claim for the projective plane is false [6]), and so we ask:

Question 5.3 Do k-crossing-critical graphs have maximal degree bounded by a function
of k?

One may, as well, ask whether can all k-crossing-critical graphs be “nicely character-
ized”? Recent signals suggest that such a characterization is not far in the case of k = 2,
but values of k > 3 appear hopeless. At least one could hope an asymptotic characteri-
zation of almost-planar crossing-critical is feasible. In this relation the following question
occurs naturally. (We note that for non-critical graphs, the questioned claim is false [3, 7].)

Question 5.4 Is it true that for every almost-planar k-crossing-critical graph G there is
an optimal drawing of G with all the crossings concentrated on one edge of G?
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