New infinite families of almost-planar crossing-critical graphs

Petr Hliněný*
Faculty of Informatics, Masaryk University
Botanická 68a, 60200 Brno, Czech Republic
hlineny@fi.muni.cz

Submitted: Aug 6, 2007; Accepted: Jul 30, 2008; Published: Aug 4, 2008
Mathematics Subject Classification: 05C10, 05C62

Abstract

We show that, for all choices of integers $k>2$ and m, there are simple 3connected k-crossing-critical graphs containing more than m vertices of each even degree $\leq 2 k-2$. This construction answers one half of a question raised by Bokal, while the other half asking analogously about vertices of odd degrees at least 7 in crossing-critical graphs remains open. Furthermore, our newly constructed graphs have several other interesting properties; for instance, they are almost planar and their average degree can attain any rational value in the interval $\left[3+\frac{1}{5}, 6-\frac{8}{k+1}\right)$.

Keywords: crossing number, graph drawing, crossing-critical graph.

1 Introduction

We assume that the reader is familiar with basic terms of graph theory. In a drawing of a graph G the vertices of G are points and the edges are simple curves joining their endvertices. Moreover, it is required that no edge passes through a vertex (except at its ends), and no three edges cross in a common point. The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of crossing points of edges in a drawing of G in the plane.

For $k \geq 1$, we say that a graph G is k-crossing-critical if $\operatorname{cr}(G) \geq k$ but $\operatorname{cr}(G-e)<k$ for each edge $e \in E(G)$. It is important to study crossing-critical graphs in order to understand structural properties of the crossing number problem. The only 1-crossingcritical graphs are, by the Kuratowski theorem, subdivisions of K_{5} and $K_{3,3}$. The first construction of an infinite family of 2-crossing-critical simple 3-connected graphs was by

[^0]Kochol [8] (Figure 8), improving previous construction by Širáň [12]. Many more crossingcritical constructions have appeared since.

It has been noted by D. Bokal (personal communication and preprint of [2]) that typical constructions of infinite families of simple 3-connected k-crossing-critical graphs create bounded numbers (wrt. k) of vertices of degrees other than $3,4,5$, or 6 . Actually, the existence of such 2-crossing-critical families with many degree-5 vertices has been established by Bokal only recently. Bokal's natural question thus was, what about occurrence of other vertex degree values in infinite families of k-crossing-critical graphs? We positively answer one half of his question in Theorem 3.1 and Proposition 2.1;

- namely we construct, for all $k>2$, infinite families of simple 3-connected almostplanar k-crossing-critical graphs which contain arbitrary numbers of vertices of each even degree $4,6,8, \ldots, 2 k-2$.

The analogous question about occurrence of vertices of odd degrees ≥ 7 in k-crossingcritical graphs remains open, and it appears to be significantly harder than the even case. One should also note that a (still open) question about the existence of an infinite family of simple 5 -regular crossing-critical graphs was raised long before by Richter and Thomassen [9].

Usual constructions of crossing-critical graphs use an approach that can be described as a "Möbius twist" - they create graphs embeddable on a Möbius band which thus have to be twisted for drawing in the plane. We offer a quite different approach in Section 2, which extends our older construction [4], resulting in graphs that are almost-planar (sometimes called "near planar"), i.e. they can be made planar by deleting just one edge. As an easy corollary of this new and very flexible construction;

- we also produce almost-planar crossing-critical families with any prescribed average degree from $\left[3+\frac{1}{5}, 6-\frac{8}{k+1}\right)$,
see in Theorem 4.1 and Corollaries 4.2, 4.3.

2 "Belt" constructions

An illustrating example of crossing-critical graphs constructed in our older work [4] is shown in Figure 1. The construction in [4] used vertices of degrees 4 or 3, and now we generalize it to allow more flexible structure and, particularly, vertices of arbitrary even degrees.

For easier notation, we (in the coming definitions) consider embeddings in the plane \mathcal{P} with removed open disc \mathcal{X}. We say that a closed curve (loop) γ is of type- \mathcal{X} if the homotopy type of γ in $\mathcal{P} \backslash \mathcal{X}$ is to "wind once around \mathcal{X} ". Having two loops γ, δ of type- \mathcal{X}, we write $\gamma \preceq \delta$ if γ separates \mathcal{X} from $\delta \backslash \gamma$ (meaning γ is "nested" inside δ).

Crossed belt graphs. A plane graph F_{0} is a plane k-belt graph if it can be constructed as a connected edge-disjoint union of k embedded "belt" cycles $C_{1} \cup C_{2} \cup \cdots \cup C_{k}=F_{0}$, where all C_{1}, \ldots, C_{k} are of type- \mathcal{X} nested as $C_{1} \preceq C_{2} \preceq \cdots \preceq C_{k}$.

Figure 1: A simple 3-connected almost-planar 8-crossing-critical graph [4]. (The "gridbelt" is wraps around a cylinder without twist.)

A path $R \subseteq F_{0}$ connecting a vertex p of C_{1} to a vertex q of C_{k} is radial if, for each $1<i \leq k, \quad R$ intersects $C_{i} \cup \cdots \cup C_{k}$ in a subpath (with one end q). Informally, a radial path of F_{0} has to "proceed straight across F_{0} " from C_{1} to C_{k}. A vertex of F_{0} is accumulation if its degree is at least 6 in F_{0}, i.e. if it is contained in at least three of the cycles C_{1}, \ldots, C_{k}.

Furthermore, a planar k-belt graph is proper if there are four distinct vertices $s_{1}, t_{1} \in$ $V\left(C_{1}\right) \backslash V\left(C_{2}\right)$ and $s_{2}, t_{2} \in V\left(C_{k}\right) \backslash V\left(C_{k-1}\right)$, and the following is true:
(B1) No radial path of F_{0} starting in s_{1} or t_{1} contains an accumulation vertex. In particular, no accumulation vertex exists on the cycle C_{k}.
(B2) Let $P_{2}, P_{2}^{\prime} \subseteq C_{k}$ be the two paths with the ends s_{2}, t_{2} on C_{k}. Then every radial path of F_{0} strating in s_{1} (in t_{1}) hits C_{k} first in an internal vertex of P_{2} (of P_{2}^{\prime}, respectively).
(B3) Let $P_{1}, P_{1}^{\prime} \subseteq C_{1}$ be analogously the two paths with the ends s_{1}, t_{1} on C_{1}. There exist collections of k pairwise disjoint radial paths in F_{0}, all disjoint from s_{1}, t_{1} and all starting on P_{1} (on P_{1}^{\prime}, respectively).

A graph F is a crossed k-belt if it is $F=F_{0} \cup S_{0} \cup S_{1} \cup S_{2}$, where

- F_{0} is a proper planar k-belt graph as above;
- S_{1} is a path with the ends s_{1}, t_{1} internally disjoint from F_{0} and S_{2} is a path with the ends s_{2}, t_{2} internally disjoint from $F_{0} \cup S_{1}$; and
- S_{0} is a path disjoint from F_{0}, connecting a vertex of S_{1} to one of S_{2}.

This lengthy definition is illustrated in Figure 2. Notice that a crossed 1-belt graph is always a subdivision of $K_{3,3}$, and that removing an edge of S_{0} from a crossed k-belt graph leaves it planar. Particularly, the graph in Figure 1 is a crossed 8-belt graph without accumulation vertices, and we call this special case a "square-grid" 8-belt graph. We aim to show that crossed k-belt graphs are k-crossing-critical with the exception of $k=2$. (This exception is remarkable in view of successful research progress into the structure of 2-crossing-critical graphs.)

For better understanding we first discuss the conditions (B1), (B2) and (B3) imposed on our graphs. (B1) is generally unavoidable, as a nontrivial (counter)example violating

Figure 2: An illustration of the definition of a crossed k-belt graph. (The "zig-zag" lines are examples of radial paths as discussed in the definition.)
(B1) in Figure 3 shows. The other two conditions are, on the other hand, necessary mainly due to our inductive proof in the next section. (B2) establishes the base cases $k=1,3$ of the induction-violating (B2), one could easily construct planar graphs for $k=1$ or graphs of crossing number 2 for $k=3$. Perhaps, (B2) might not be necessary for higher values of k, but without Lemma 3.3 we could hardly start our induction. Finally, (B3) gives a sort of "sufficient interconnection" between the cycles C_{1}, \ldots, C_{k} (we obviously cannot allow those to be disjoint), and then (B3) is the key ingredience in the inductive step in Theorem 3.1.

Figure 3: A sketch of a graph similar to crossed k-belt (with four "bad" accumulation vertices) which has crossing number 13 for large values of k.

The cruical property which motivated our construction, and which (in half) answers the aforementioned question of Bokal, is stated now:

Proposition 2.1 Let $k>3$ be an integer. For every integer m there is a crossed k-belt graph which is simple 3-connected and which contains more than m vertices of each of degrees $\ell=4,6,8, \ldots, 2 k-2$.

Proof. In this case a picture is worth more than thousand words. Figure 4 shows local modifications of the square-grid 8 -belt graph which produce accumulation vertices of degrees 14 and 12 while preserving its simplicity and connectivity. It is straightforward to generalize this picture to any $k>3$ and all degrees $\ell=6,8, \ldots, 2 k-2$. Starting from a sufficiently large square-grid k-belt graph F, we can produce in this way F^{\prime} with

Figure 4: Examples of accumulation vertices.
arbitrarily many accumulation vertices of each degree $\ell=6,8, \ldots, 2 k-2$, all of which are "sufficiently far" from the vertices s_{1}, t_{1} as in the condition (B1).

3 Crossing-criticality

We continue to use the notation from the definition of k-belt graphs also in this section. Now we come to the main result of our paper.

Theorem 3.1 For $k \geq 3$, every crossed k-belt graph is k-crossing-critical.
Proof. Let F be our k-belt graph, considered with notation as in the definition above. In one direction, by a straightforward induction we argue that any crossed k-belt graph, $k \geq 1$, can be drawn such that the only crossings occur between the path S_{0} and each of the belt cycles C_{1}, \ldots, C_{k} once. This is trivial for $k=1$. For $k>1$, we draw a ($k-1$)-belt subgraph $F^{\prime} \subset F$ from Lemma 3.2 with $k-1$ crossings between S_{0} and each of the belt cycles C_{2}, \ldots, C_{k}, in a way that one end of S_{0} is inside the set \mathcal{X} (see the definition of type- \mathcal{X} in Section 2) and the other end of S_{0} is in the face of C_{k} not with \mathcal{X}. By definition the remaining cycle C_{1} is nested inside each cycle $C_{i}, i>1$, and so to obtain an analogous drawing of (whole) F it is enough to add one more crossing of S_{0} with C_{1} since C_{1} is also of type- \mathcal{X}. Furthermore, using analogous arguments, it is easy to verify that deleting any edge e of F allows us to draw $F-e$ with fewer than k crossings.

Conversely, we assume an arbitrary drawing \mathcal{F} of F, and we want to prove that \mathcal{F} has at least k edge crossings. There are two possibilities - either C_{1} is drawn uncrossed in \mathcal{F}, or some edge of C_{1} is crossed in \mathcal{F}. In the first case, assuming $k \geq 4$, we will argue that $\operatorname{cr}(\mathcal{F}) \geq k$ straight away.

Let Q_{1}, \ldots, Q_{k} and R_{1}, \ldots, R_{k} be the collections of disjoint radial paths established in (B3), ordered such that Q_{1} and R_{1} are the closest ones to s_{1}. Also using (B3), there exist Q_{0} a radial path starting in s_{1} and R_{0} a radial path starting in t_{1}, none of Q_{0}, R_{0} intersecting more than one of Q_{1}, \ldots, Q_{k} and R_{1}, \ldots, R_{k}. Then there exist $k-2$ pairwise edge-disjoint paths $T_{i} \subseteq\left(Q_{i} \cup C_{i+2} \cup R_{i}\right)-V\left(R_{0}\right)$ for $i=1,2, \ldots, k-2$ in F, such that each T_{i} intersects C_{1} in two single vertices (T_{i}-ends) which separate s_{1} from t_{1} on C_{1}. Notice that these T_{i} need not actually use sections of Q_{i} or R_{i} if closer accumulation vertices between C_{1} and C_{i+2} exist (still respecting (B1)), but in this particular setting such paths T_{i} always exist. Their key properties are that T_{1}, \ldots, T_{k-2} are internally disjoint from C_{1}, and that all of them intersect $Q_{0}-V\left(C_{1}\right)$.

Analogously, we obtain two more such edge-disjoint paths $T_{k-1} \subseteq\left(Q_{k-1} \cup C_{k} \cup R_{k-1}\right)$ $V\left(Q_{0}\right)$ and $T_{k} \subseteq\left(Q_{k} \cup C_{k-1} \cup R_{k}\right)-V\left(Q_{0}\right)$, both intersected by $R_{0}-V\left(C_{1}\right)$. Thus all T_{1}, \ldots, T_{k} belong to the same connected component of $F-V\left(C_{1}\right)$ as $C_{k} \cup Q_{0} \cup R_{0}$ does, where C_{k} is disjoint from C_{1} by (B1). Furthermore, $S_{1}-s_{1}-t_{1}$ also belongs to the component with C_{k}. So, if C_{1} is drawn uncrossed in \mathcal{F}, then all S_{1} and T_{1}, \ldots, T_{k} are drawn in the same face of C_{1}, and hence S_{1} has to cross each of the edge-disjoint paths T_{1}, \ldots, T_{k} by Jordan's curve theorem, witnessing $\operatorname{cr}(\mathcal{F}) \geq k$.

Otherwise, there is an edge f of C_{1} which is crossed in \mathcal{F}. We apply Lemma 3.2 to F and f, so obtaining a crossed $(k-1)$-belt subgraph F^{\prime} of $F-f$, and conclude by induction that $\operatorname{cr}(\mathcal{F}) \geq 1+\operatorname{cr}\left(F^{\prime}\right)=1+(k-1)=k$ if the claim holds true in the base case $k=3$. Hence we can finish the proof of the theorem with further Lemma 3.3 which takes care of $k=3$.

Lemma 3.2 Let F be a crossed k-belt graph as above, and choose any $f \in E\left(C_{1}\right)$. Then $F-f$ contains a crossed $(k-1)$-belt subgraph F^{\prime} having C_{2}, \ldots, C_{k} as its collection of belt cycles.

Proof. We refer to the notation in the definition of belt graphs. Let $s_{1}^{\prime}, t_{1}^{\prime}$ denote vertices of $C_{1} \cap C_{2}$ connected across $C_{1}-V\left(C_{2}\right)-f$ to s_{1}, t_{1}, respectively. Then $s_{1}^{\prime}, t_{1}^{\prime} \notin C_{3}$ thanks to (B1). Notice that for at least one of $s_{1}^{\prime}, t_{1}^{\prime}$ we have a choice of two possibilities at each "side" of s_{1} or t_{1}, and so we can ensure that not both $s_{1}^{\prime}, t_{1}^{\prime}$ intersect the same one collection of radial paths from (B3).

Let F_{0}^{\prime} denote the subgraph of F induced on $V\left(C_{2}\right) \cup \cdots \cup V\left(C_{k}\right)$, and let path S_{1}^{\prime} be the prolongation of S_{1} on $C_{1}-f$ with the ends s_{1}^{\prime}, t_{1}^{\prime}. We claim that $F^{\prime}=F_{0}^{\prime} \cup S_{1}^{\prime} \cup S_{2} \cup S_{0}$ is a crossed $(k-1)$-belt graph: The properties (B1) and (B2) are easily inherited by F^{\prime} since radial paths starting in s_{1}^{\prime} or t_{1}^{\prime} form a subset of those starting in s_{1} or t_{1}. (B3) is then satisfied thanks to our choice of s_{1}^{\prime} or t_{1}^{\prime} above.

Lemma 3.3 Any crossed 3-belt graph is 3-crossing-critical.

Proof. We adapt some of the ideas of Theorem 3.1 to this special case of $k=3$. Let \mathcal{F} be again a drawing of F. Say, if both cycle C_{1} and C_{3} are crossed in \mathcal{F}, then this case accounts for two distinct crossings - even if C_{1} crossed C_{3}, these two disjoint cycles would have to cross twice. So let $f \in E\left(C_{1}\right)$ and $f^{\prime} \in E\left(C_{3}\right)$ be edges of distinct crossings in \mathcal{F}. We can now successively apply Lemma 3.2 to F and f, then f^{\prime}. The result is a 1 -belt graph $F^{\prime \prime} \supset C_{2}$ (avoiding the crossings on f, f^{\prime}) which is a subdivision of nonplanar $K_{3,3}$ thanks to (B2), and hence we conclude $\operatorname{cr}(\mathcal{F}) \geq 2+1=3$ in this case.

The other possible case is that C_{1} or C_{3} is uncrossed in \mathcal{F}. Considering uncrossed C_{1}, we turn the definition of a 3-belt graph F into a symmetric one by establishing the following properties:
(B1+) There is clearly no accumulation vertex at all in F.

Figure 5: The "core" scheme of a crossed 3-belt graph, cf. (B2+).
(B2+) Let $P_{1}, P_{1}^{\prime} \subseteq C_{1}$ and $P_{2}, P_{2}^{\prime} \subseteq C_{3}$ be the paths as in (B2) and (B3) above. There are pairwise disjoint paths $R_{1}, R_{2}, R_{3}, R_{4} \subseteq C_{2}$ connecting internal vertices, in order, of P_{1} to P_{2}, of P_{1}^{\prime} to P_{2}, of P_{1}^{\prime} to P_{2}^{\prime}, and of P_{1} to P_{2}^{\prime}. This fact follows rather easily from previous (B2) and (B3) when $k=3$. See in Figure 5.

Analogously to Theorem 3.1, there are paths $T_{1} \subseteq R_{1} \cup C_{3} \cup R_{2}$ and $T_{2} \subseteq R_{3} \cup C_{3} \cup R_{4}$ such that the ends of each one T_{1} or T_{2} separate s_{1} from t_{1} on C_{1}. Again, the paths T_{1}, T_{2} must be drawn in the same face of the uncrossed cycle C_{1} in \mathcal{F} as the path S_{1} is, and hence they account for two crossings on S_{1}. If, moreover, the cycle C_{3} is uncrossed in \mathcal{F}, then we get by symmetry another two crossings on S_{2}, and conclude $\operatorname{cr}(\mathcal{F}) \geq 2+2=4$. Hence C_{3} has got some crossings, and if such a crossing is not with S_{1}, we are done again as $\operatorname{cr}(\mathcal{F}) \geq 2+1=3$. So it remains to consider that the only two crossings on C_{3} are those with S_{1}, and then another crossing with S_{2} or C_{2} must exist on S_{1} as well. Thus $\operatorname{cr}(\mathcal{F}) \geq 3$.

4 Average degrees

Although the main motivation for our k-belt construction of crossing-critical graphs was to answer a part of Bokal's [2, Section 6, preprint] question, the critical graph families we obtain are so rich and flexible that they deserve further consideration and applications.

We look here at one particular question studied in a series of papers [11, 10, 2]: Salazar constructed infinite families of k-crossing-critical graphs with average degree equal to any rational in the interval $[4,6)$. Then Pinontoan and Richter [10] extended this to the interval $(3.5,4)$, and finally Bokal [2] has found k-crossing-critical families for any rational average degree in the interval $(3,6)$. (Average degrees ≤ 3 or >6 cannot occur for infinite families, and the average degree 6 remains an open case.)

Using our construction and Theorem 3.1, we duplicate Salazar's result in Theorem 4.1 within the restricted subclass of almost-planar crossing-critical graphs, and further extend this in the subsequent corollaries.

Theorem 4.1 For every odd $k>3$ there are infinitely many simple 3-connected crossed k-belt graphs with the average degree equal to any given rational value in the interval $\left[4,6-\frac{8}{k+1}\right)$.

Figure 6: An approach to a plane 13-belt graph with accumulation vertices of degree 6.
Proof. Figure 6 illustrates a construction of a plane graph F_{1} that fulfills all conditions of the definition of a plane 13-belt graph except (B1). Splitting of a vertex is a simple-graph inverse (not necessarily unique) of the edge-contraction operation. Figure 7 shows details of two "splitting" operations which can be applied to any accumulation vertex of F_{1}. These both preserve simplicity and 3-connectivity of F_{1}, and can be used to eventually construct a proper 13-belt graph from F_{1}.

Figure 7: Details of single-split (top) and double-split (bottom) operations in the graph from Figure 6.

The construction of F_{1} from Figure 6 can easily be generalized for any odd $k>3$. Let ℓ be the length of the C_{1}-cycle in F_{1}, and let the number of accumulation vertices from F_{1} that are single-split during the construction of F_{0} be m and the number of double-split accumulation vertices be m^{\prime}. Admissible values of m and m^{\prime} in our construction are at most the total number of accumulation vertices $m+m^{\prime} \leq \ell(k-3) / 2$, and at least $m \geq 4 k^{2}$ since it is enough to single-split $2 k^{2}$ accumulation vertices from F_{1} near each of s_{1}, t_{1} to satisfy (B1) of a proper k-belt graph.

An easy calculation shows that F_{0} has $\ell(k+1) / 2+m+2 m^{\prime}$ vertices, and so F has $\ell(k+1) / 2+m+2 m^{\prime}+6$ vertices. The average degree of F is

$$
\begin{equation*}
d_{\text {avg }}(F)=\frac{6 k \ell-2 \ell+4 m+12 m^{\prime}+36}{k \ell+\ell+2 m+4 m^{\prime}+12}=6-\frac{8 \ell+8 m+12 m^{\prime}+36}{k \ell+\ell+2 m+4 m^{\prime}+12} . \tag{1}
\end{equation*}
$$

Now choose any rational $d_{\text {avg }} \in\left[4,6-\frac{8}{k+1}\right)$. Then setting $d_{\text {avg }}=6-\frac{p}{q}=6-\frac{c p}{c q}$ in (1) gives a system of two linear equations in two unknowns ℓ, m and parameters k, c, m^{\prime},
which is nonsingular for each $k \neq 1$. Its solution is

$$
\ell=\frac{c}{4 k-4}(4 q-p)-\frac{m^{\prime}+3}{k-1}, \quad m=\frac{c p}{8}-\frac{12\left(m^{\prime}+3\right)}{8}-\ell .
$$

The expressions show that choosing our parameters as $m^{\prime}+3=2(k-1)$ and $c=c^{\prime} \cdot 8(k-1)$ leads always to integer values of ℓ and m as

$$
\begin{equation*}
\ell=c^{\prime}(8 q-2 p)-2, \quad m=c^{\prime}((k+1) p-8 q)-3 k+5 . \tag{2}
\end{equation*}
$$

By the choice $6-\frac{p}{q} \in\left[4,6-\frac{8}{k+1}\right)$ it is easy to show in (2) that always $m+m^{\prime} \leq$ $\ell(k-3) / 2-3$, and since $(k+1) p-8 q>0$ it follows that for sufficiently large choices of c^{\prime} we get also $m \geq 4 k^{2}$. Thus we get from (2) an infinite sequence of admissible pairs ℓ, m (note fixed k and $m^{\prime}=2 k-5$), defining each one a crossed k-belt graph F with average degree exactly $6-\frac{p}{q}$ as needed. This holds for any fixed odd $k>3$.

Our restriction to odd values of k was just for our comfort. We can easily overcome it using a powerful "zip-product" construction of Bokal [1, 2]. In our restricted case; having two simple graphs G_{1}, G_{2} with cubic vertices $u_{i} \in V\left(G_{i}\right)$ and their neighbors denoted by r_{i}, s_{i}, t_{i}, the zip product G of G_{1} and G_{2}, according to the chosen vertices u_{1}, u_{2} and their neighbors, is the disjoint union of $G_{1}-u_{1}$ and $G_{2}-u_{2}$ with added three edges $r_{1} r_{2}, s_{1} s_{2}$, $t_{1} t_{2}$. A cubic vertex u_{1} in G_{1} with the neighbors r_{1}, s_{1}, t_{1} has two coherent bundles if there are two vertices $v, w \in V\left(G_{1}-u_{1}\right)$ such that there exist six pairwise edge-disjoint paths, three of them from v and the other three from w to each of r_{1}, s_{1}, t_{1}. We shall use Bokal's [2, Theorem 21];

- if the above graphs $G_{i}, i=1,2$ are k_{i}-crossing-critical where $\operatorname{cr}\left(G_{i}\right)=k_{i}$, and u_{i} have two coherent bundles in G_{i}, then their zip product G is $\left(k_{1}+k_{2}\right)$-crossing-critical.

Corollary 4.2 For every $k \geq 5$ there are infinitely many simple 3-connected almostplanar $2 k$-crossing-critical graphs with the average degree equal to any given rational value in the interval $\left[4,6-\frac{8}{k+1}\right)$.

Proof. We take two disjoint copies G_{1}, G_{2} of a graph resulting from Theorem 4.1. It is easy to check that the (unique) cubic vertex v_{1} of G_{1}, which is a neighbor of s_{1}, t_{1} as in Figure 2, has two coherent bundles. (This fact is implicitly contained already in [2, Section 6].) Let f_{1} denote the edge of v_{1} not incident with s_{1}, t_{1}, and let v_{2}, f_{2} be the corresponding elements in G_{2}. Recall that $G_{i}-f_{i}$ is planar. Then the zip product G of G_{1} and G_{2} at v_{1}, v_{2}, matching edges f_{1}, f_{2} into f of G, is $2 k$-crossing-critical by [2], and $G-f$ is planar. To achieve the same average degree of the product as that of G_{1}, we finally double-split one more accumulation vertex in G_{1}.

Furthermore, we can lower the average degree of almost-planar crossing-critical graphs down to 3.2. For that we recall an old construction of Kochol [8]: His 3-connected 2-crossing-critical graphs consist of $2 m+1$ copies of a pentagon joined together as in Figure 8. Notice that also these graphs are almost-planar - just delete the marked edge f, and their average degree equals $3+\frac{1}{5}$. They can be nicely combined with our construction in Theorem 4.1 using zip product, too.

Figure 8: The 2-crossing-critical family of Kochol [8]; with "twisted" winding around a Möbius band.

Corollary 4.3 For every $k \geq 12$ (odd $k \geq 7$) there are infinitely many simple 3-connected almost-planar k-crossing-critical graphs with the average degree equal to any given rational value in the interval $\left(3+\frac{1}{5}, 4\right)$.

Proof. We consider first odd $k \geq 7$, and denote by F_{1} the graph sketched in Figure 6, made as a union of $k-2$ cycles with the first cycle of length ℓ. Then we construct a simple 3 -connected crossed $(k-2)$-belt graph F from F_{1} after double-splitting $\ell+1$ accumulation vertices of F_{1} and single-splitting remaining accumulation vertices. Hence F has $n=(k-1) \ell+(\ell+1)+6=k \ell+7$ vertices and degree sum $4 n-6$ (note that all vertices of F are of degree 4 except six of degree 3). We again denote by v_{1} the cubic vertex of F, which is a neighbor of s_{1}, t_{1} as in Figure 2.

We also denote by G Kochol's graph (Figure 8) on $10 m-5$ vertices, and by w one end the edge f in G. It is again easy to check that w has two coherent bundles in G, and so we may apply zip product here: Let H be the result of the zip product of F and G at v_{1}, w, such that H is almost-planar and $(k-2+2)$-crossing-critical by [2]. A direct calculation shows that H has $k \ell+7+10 m-5-2=k \ell+10 m$ vertices and its degree sum is $4(k \ell+7)-6+32 m-16-6=4 k \ell+32 m$. Hence expressing its average degree as

$$
\frac{4 k \ell+32 m}{k \ell+10 m}=4-\frac{p}{q}
$$

leads to an equation

$$
m \cdot(8 q-10 p)=\ell \cdot k p
$$

which clearly has infinitely many admissible integral solutions ℓ, m for all choices of $4-\frac{p}{q} \in$ $\left(3+\frac{1}{5}, 4\right)$.

On the other hand, for even $k \geq 12$ we may apply an analogous construction starting from the graphs of Corollary 4.2.

5 Additional remarks

First, we remind readers that our Theorem 3.1 gives an answer only to a half of the question originally asked by Bokal, and so we repeat the other part which remains open:

Question 5.1 (Bokal) For which odd values of $d \geq 7$ are there infinite families of simple 3 -connected k-crossing-critical graphs having arbitrarily many vertices of degree d ?

Second, although our subsequent results in Section 4 are not quite new, they bring some interesting advantages over previous [2, 10, 11]. Prominently, we are constructing such crossing-critical graphs as almost-planar which was not the case of previous constructions. Our construction works with all (not too small) values of k, and not only with sporadic large k 's as, say [11], and we approach the upper-boundary value of 6 with much smaller values of k than [2]. Though, in connection with Corollary 4.3 it is interesting to ask the next.

Question 5.2 Do there exist infinite families of almost-planar k-crossing-critical graphs with average degree below $3+\frac{1}{5}$?

Third, we have shown [5] that all k-crossing-critical graphs have path-width bounded in k. This result has been followed by a conjecture of Richter and Salazar; that k-crossingcritical graphs have bandwidth bounded in k. The close relation of this conjecture to our topic appears clear when one notices a positive answer would imply that maximal degree of k-crossing-critical graphs is bounded in k. We, however, are not strong supporters of it (particularly since an analogous claim for the projective plane is false [6]), and so we ask:

Question 5.3 Do k-crossing-critical graphs have maximal degree bounded by a function of k ?

One may, as well, ask whether can all k-crossing-critical graphs be "nicely characterized"? Recent signals suggest that such a characterization is not far in the case of $k=2$, but values of $k>3$ appear hopeless. At least one could hope an asymptotic characterization of almost-planar crossing-critical is feasible. In this relation the following question occurs naturally. (We note that for non-critical graphs, the questioned claim is false [3, 7].)

Question 5.4 Is it true that for every almost-planar k-crossing-critical graph G there is an optimal drawing of G with all the crossings concentrated on one edge of G ?

Acknowledgments

The author would like to express his thanks to Banff International Research Station in Canada and the organizers of workshop $\# 06 w 5067$ for a very nice meeting where the idea of this papers has been born. Furthermore, the author thanks to an anonymous referee whose questions helped to uncover a hidden bug in the original version of this paper.

References

[1] D. Bokal, On the crossing number of Cartesian products with paths, J. of Combinatorial Theory ser. B 97 (2007), 381-384.
[2] D. Bokal, Infinite families of crossing-critical graphs with prescribed average degree and crossing number, preprint, 2006.
[3] C. Gutwenger, P. Mutzel, R. Weiskircher, Inserting an edge into a planar graph, Algorithmica 41 (2005), 289-308.
[4] P. Hliněný, Crossing-critical graphs and path-width, In: Graph Drawing, 9th Symposium GD 2001, Vienna Austria, September 2001; Lecture Notes in Computer Science 2265, Springer Verlag 2002, 102-114.
[5] P. Hliněný, Crossing-critical graphs have bounded path-width, J. of Combinatorial Theory ser. B 88 (2003), 347-367.
[6] P. Hliněný and G. Salazar, Stars and Bonds in Crossing-Critical Graphs, submitted.
[7] P. Hliněný and G. Salazar, On the Crossing Number of Almost Planar Graphs, In Graph Drawing 2006; Lecture Notes in Computer Science 4372, Springer 2007, 162173.
[8] M. Kochol, Construction of crossing-critical graphs, Discrete Math. 66 (1987), 311313.
[9] R.B. Richter, C. Thomassen, Minimal graphs with crossing number at least k, J. of Combinatorial Theory ser. B 58 (1993), 217-224.
[10] R.B. Richter, B. Pinontoan, Crossing Numbers of Sequences of Graphs II: Planar Tiles, Journal of Graph Theory 42 (2003), 332-341.
[11] G. Salazar, Infinite families of crossing-critical graphs with given average degree, Discrete Math. 271 (2003), 343-350.
[12] J. Širáň, Infinite families of crossing-critical graphs with a given crossing number, Discrete Math. 48 (1984), 129-132.

[^0]: *Supported by the Institute for Theoretical Computer Science, project 1M0545.

