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Abstract

The study of gene orders for constructing phylogenetic trees was introduced by
Dobzhansky and Sturtevant in 1938. Different genomes may have homologous genes
arranged in different orders. In the early 1990s, Sankoff and colleagues modelled this
as ordinary (unsigned) permutations on a set of numbered genes 1, 2, . . . , n, with bio-
logical events such as inversions modelled as operations on the permutations. Signed
permutations may be used when the relative strands of the genes are known, and
“circular permutations” may be used for circular genomes. We use combinatorial
methods (generating functions, commutative and noncommutative formal power se-
ries, asymptotics, recursions, and enumeration formulas) to study the distributions
of the number and lengths of conserved segments of genes between two or more
unichromosomal genomes, including signed and unsigned genomes, and linear and
circular genomes. This generalizes classical work on permutations from the 1940s–
60s by Wolfowitz, Kaplansky, Riordan, Abramson, and Moser, who studied decom-
positions of permutations into strips of ascending or descending consecutive num-
bers. In our setting, their work corresponds to comparison of two unsigned genomes
(known gene orders, unknown gene orientations). Maple software implementing our
formulas is available at http://www.math.ucsd.edu/∼gptesler/strips .

1 Introduction

The study of gene orders in phylogenetics was introduced by Dobzhansky and Sturtevant,
1938 [11], in a study of inversions in Drosophila pseudoobscura. More recently, in the
late 1980s, Jeffrey Palmer and colleagues [21, 22] compared the mitochondiral genomes of
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cabbage and turnip, and found that the DNA sequences of many genes are more than 99%
identical. However, the order of the genes was quite different. These and similar studies
have shown that genome rearrangements are an important form of molecular evolution.

To study genome rearrangements, conserved segments between two genomes must be
identified. Traditionally, this has been done by identifying homologous genes between
the genomes, and determining runs of genes that are consecutive in both genomes. The
pre-sequencing era methods for identifying the locations (and hence order) of the genes
include inference from linkage maps and recombination rates [20] and radiation hybrid
maps [9, 19]. These methods do not identify on which of the two strands a gene is located.
Thus, these methods give the gene order in one genome as an unsigned permutation of the
gene order in the other genome (when both have one chromosome; the multichromosomal
situation is similar but involves partitioning the permutation). The relative orientation
of a singleton segment (a conserved segment containing one gene) cannot be determined.
When a segment with 2 or more genes has the same genes in the same order in both
genomes, it is inferred that the corresponding genes have the same orientations in both
genomes, while if they run in the exact opposite order, it is inferred that they have opposite
orientations. It is possible that individual genes have been flipped, but this cannot be
detected. Sampling the genes with the same methodology at a higher resolution might
resolve this partially but will ultimately just push the problem of misclassified orientations
to a finer level of resolution rather than solve it.

More recently, as the DNA sequences of various genomes have become available, de-
termination of homologous genes and of conserved segments has been done by comparison
of the DNA sequences. This allows a more precise determination of the coordinates of
each common feature, as well as its orientation (one of two strands). Thus, sequence
comparison gives the gene or segment order in one genome as a signed permutation of the
order in the other genome, when both have one chromosome (again, this can be extended
to multiple chromosomes). It is convenient to consecutively label the elements of the
“reference” genome 1, . . . , n in the linear order in which they appear, and to describe the
second genome as a permutation of those labels.

The numbers 1, . . . , n represent homologous markers, whether based on genes or
aligned sequences. If signed permutations are used, the signs represent their strand.

The simplest type of genome rearrangement, known as an inversion or reversal, takes a
segment of consecutive genes and reverses their order, and in the signed case, additionally
inverts their signs. See Figure 1. Reversals (and other genome rearrangements) disrupt
runs of consecutive elements, breaking them into multiple runs, which we call strips.

In this paper, we will consider the problem of decomposing unsigned permutations of
1, . . . , n into ascending strips i, i +1, . . . , j or descending strips j, j − 1, . . . , i, and decom-
posing signed permutations of 1, . . . , n into ascending strips i, i + 1, . . . , j or descending
strips −j,−(j−1), . . . ,−i; for descending unsigned strips, 0 < i < j < n, and for the oth-
ers, 0 < i ≤ j < n. The strips represent conserved segments. We will count the number of
signed or unsigned permutations of 1, . . . , n that decompose into k strips. More generally,
we will handle multiple genomes, circular genomes, and the lengths of the strips.

Further extensions of this, which we do not treat in this paper, could be to genomes
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(a) Unsigned rearrangements

1 2 3 4 5 6 7 8 9
1 7 6 5 4 3 2 8 9
1 7 6 8 2 3 4 5 9
1 7 6 8 2 3 4 5 9

(c) Unsigned arrangement

σ(1) : 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉
σ(2) : 〈1, 7, 6, 8, 2, 3, 4, 5, 9〉

(e) Unsigned strips

σ(1) : 1 , 2, 3, 4, 5 , 6, 7 , 8 , 9

σ(2) : 1 , 7, 6 , 8 , 2, 3, 4, 5 , 9

(b) Signed rearrangements

1 2 3 4 5 6 7 8 9
1 −7 −6 −5 −4 −3 −2 8 9
1 −7 −6 −8 2 3 4 5 9
1 −7 −6 −8 2 3 −4 5 9

(d) Signed arrangement

σ(1) : 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉
σ(2) : 〈1,−7,−6,−8, 2, 3,−4, 5, 9〉

(f) Signed strips

σ(1) : 1 , 2, 3 , 4 , 5 , 6, 7 , 8 , 9

σ(2) : 1 , −7,−6 , −8 , 2, 3 , −4 , 5 , 9

Figure 1: (a,b) A sequence of 3 reversals applied to the identity permutation. In the un-
signed case, the order of elements in the underlined segment is reversed. In the signed case,
the order is reversed and the signs are inverted. (c,d) Comparing just the first and last
permutation in each scenario gives (un)signed (9, 2)-arrangements (9 genes, 2 genomes).
(e,f) Strips (preserved intervals) in these arrangements have ordered types (1, 4, 2, 1, 1)
(unsigned) and (1, 2, 1, 1, 2, 1, 1) (signed), by listing the lengths of consecutive strips in
σ(1). The unordered types are (4, 2, 1, 1, 1) (unsigned) and (2, 2, 1, 1, 1, 1, 1) (signed).

with multiple chromosomes; genomes with equal content repeats (each value i = 1, . . . , n
appears the same number of times in all genomes, counting both ±i equivalently); and
genomes with unequal content (the multiplicity of a gene varies from genome to genome).

We have written Maple software that implements our formulas. In addition, for small
numbers of genes and genomes, we include a program to list all unsigned arrangements and
analyze the strip lengths, to compare with the counts and generating functions given by the
formulas. The software is available at http://www.math.ucsd.edu/∼gptesler/strips .

Counting strips in two unsigned permutations is equivalent to a problem treated in a
series of papers from the 1940s–60s, that consider the number of unsigned permutations on
1, . . . , n with exactly t pairs of adjacent positions of the form i, i+1 or i+1, i. In our setting,
this is the same as having exactly k = n− t unsigned strips. Wolfowitz, 1942 [33, Sections
6–7] initiated these studies. Wolfowitz, 1944 [34] gave an asymptotic formula; Kaplansky,
1945 [15] gave two additional subdominant terms of the asymptotic formula; Riordan,
1965 [28] gave a generating function and a recurrence equation. Abramson and Moser,
1967 [1] gave an explicit multiple summation formula for the number of permutations of
1, . . . , n with exactly k strips and various conditions on the lengths of the strips. This
paper generalizes all of these to signed permutations and to multiple genomes.

The model of conserved segments as strips is idealized. Recent papers that treat higher
resolution data use syntenic blocks in place of conserved segments. These blocks ignore
minor perturbations in gene order that occur below a specified resolution; this effectively
merges several strips into one block. Pevzner and Tesler, 2003 [25] introduced the first
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algorithm to construct syntenic blocks that explicitly took such small scale rearrangements
into account. This was for high resolution data from genome alignments, which may be
regarded as signed permutations. Murphy et al., 2005 [19] used a different algorithm
adapted to radiation hybrid maps, which may be regarded as unsigned permutations.

In Section 2, we introduce notation for multiple genome arrangements and give exam-
ples of breaking a three genome arrangement into strips, in several variations (signed or
unsigned genomes; ordered or unordered types and weights). We also give basic results
on compressing an arrangement by collapsing each strip into a single number.

In Section 3, we develop formulas to enumerate signed arrangements by ordered and
unordered types, and in Section 4, we develop generating functions for ordered types. We
also count arrangements by number of strips, count incompressible arrangements (all strip
lengths equal 1), and give asymptotic formulas. Then in Section 5, we use formal power
series to establish a relationship between the unsigned and signed cases, and use that
relationship to develop formulas for enumeration of unsigned arrangements by ordered
types. Section 6 gives generating functions (signed and unsigned cases) for unordered
types. Section 7 gives a worked out example of these computations. Section 9 extends all
this to circular genomes.

In Section 8, we also consider ramifications in genome studies: issues in signed vs.
unsigned data; quantifying an error in Sankoff and Trinh [29, 30]; imposing a minimum
or maximum length on strips; and issues in incompressible permutations;

In Section 10, we compute the mean and variance of the number of strips over all
arrangements. In Section 11, we develop recursions and mixed recursions / differential
equations that provide an alternate means to compute generating functions and counts.

Some proofs are delayed to Appendix A.

2 Introductory example and notation

Let Sn denote the set of permutations on 1, . . . , n and Bn denote the set of signed permu-
tations on 1, . . . , n. We use one-line form, e.g., 〈1, 3, 4, 2〉 ∈ S4 and 〈1,−3, 4,−2〉 ∈ B4.
In this notation, the identity permutation of length n is idn = 〈1, . . . , n〉.

We consider g ≥ 2 genomes at a time. An unsigned (n, g)-arrangement is a g-tuple
~σ = (σ(1), . . . , σ(g)) of permutations in Sn where σ(1) = idn. (We consecutively label the
elements of the first genome 1, . . . , n, and represent the other genomes as permutations of
that.) A

(g)
n is the set of all unsigned (n, g)-arrangements and A(g) = ∪∞

n=0A
(g)
n is unsigned

arrangements of all sizes on g genomes.
A signed (n, g)-arrangement is a g-tuple ~σ = (σ(1), . . . , σ(g)) of permutations in Bn

where σ(1) = idn. B
(g)
n is the set of all signed (n, g)-arrangements, and B(g) = ∪∞

n=0B
(g)
n is

signed arrangements of all sizes on g genomes. See Table 1 for a summary of notation.
In an unsigned (n, g)-arrangement, consecutive entries (i, j) of σ(1) form an adjacency

if i, j or j, i are consecutive in each of σ(2), σ(3), . . . ; otherwise, (i, j) (and (j, i)) is a
breakpoint of σ(1). In a signed (n, g)-arrangement, consecutive entries (i, j) of σ(1) form
an adjacency if i, j or −j,−i are consecutive in each of σ(2), σ(3), . . . ; otherwise, (i, j)
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Description Symbol
Identity permutation of size n idn = 〈1, . . . , n〉
Arrangement with g genomes ~σ = (σ(1), . . . , σ(g)), with σ(1) = idn

Also ~π (unsigned), ~τ (compressed)
Vector of g positive signs ~ε+ = (+1, . . . , +1) (len. g)

# sign vectors 6= ~ε+ G = 2g−1 − 1. Also define G̃ = 21−g − 1.
Length of permutation/composition `(µ)
# parts equal i mi(µ)
# permutations of partition µ M(µ) = `(µ)!/(m1(µ)! m2(µ)! . . .)
Map from signed to unsigned weights φ(f), has inverse φ−1

Description Ordered types Unordered types

Set of types for size n Compositions: Cn Partitions: Pn

with k nonzero parts Cn,k Pn,k

Description Unsigned arrangements Signed arrangements

Set of permutations of size n Sn Bn

Set of arr. on g genomes A(g) B(g)

with n elements A
(g)
n B

(g)
n

and k strips A
(g)
n,k B

(g)
n,k

# (n, g)-arrs. with k strips a
(g)
n,k = |A

(g)
n,k| b

(g)
n,k = |B

(g)
n,k|

ogf for fixed n, varying k a
(g)
n (z) =

∑n
k=0 a

(g)
n,kz

n b
(g)
n (z) =

∑n
k=0 b

(g)
n,kz

n

ogf for varying n, k a(g)(t, z) =
∑∞

n=0 tn a
(g)
n (z) b(g)(t, z) =

∑∞

n=0 tn b
(g)
n (z)

Unsigned Unsigned Signed Signed
Description ordered unordered ordered unordered

Type of an arr. α ∈ Cn λ ∈ Pn β ∈ Cn µ ∈ Pn

# arrs. by type A
(g)
α a

(g)
λ B

(g)
β b

(g)
µ

Wt. of length n strip Un un Vn vn

ogf U(t) =
∑∞

n=1 tnUn u(t) V (t) v(t)

vector ~U = (U1, U2, . . .) ~u ~V ~v

Wt. of one arr. Uα = Uα1Uα2 · · · uλ Vβ vµ

Wt. of set S of arrs. ωA(S) ωa(S) ωB(S) ωb(S)

Wt. of all (n, g)-arrs. A
(g)
n (~U) =

∑
α A

(g)
α Uα a

(g)
n (~u) B

(g)
n (~V ) b

(g)
n (~v)

Wt. over all n A(g)(~U ; t) =
∑∞

n=0 tnA
(g)
n (~U) a(g)(~u; t) B(g)(~V ; t) b(g)(~v; t)

Table 1: Summary of notation for linear arrangements. When a formula is given in only
one column, use a similar formula in the other columns, substituting the corresponding
notation for each column. Abbreviations: “arr(s).” is arrangement(s); “wt.” is weight;
“ogf” is ordinary generating function.
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(and (−j,−i)) is a breakpoint of σ(1). Since we always set σ(1) = 〈1, . . . , n〉 in this paper,
consecutive entries in σ(1) have the form (j − 1, j) in both the unsigned and signed cases.

Watterson et al., 1982 [32] used breakpoints for two unsigned unichromosomal circular
genomes, using a symbolic representation of gene orders. Formal definitions for unsigned
permutations were given by Kececioglu and Sankoff, 1993 [16, 18] and Bafna and Pevzner,
1993 [5, 6], and for signed permutations by [5, 6] and Kececioglu and Sankoff, 1994 [17].
Hannenhalli and Pevzner, 1995 [12] generalized it to two genomes with multiple chromo-
somes, and Tesler and Pevzner, 2003 [26] made further definitions about the chromosome
ends. Our notion of breakpoints corresponds to internal breakpoints in [26]; we do not
count external breakpoints at the ends of the chromosomes (when the first entries are not
all the same, or the last entries are not all the same).

A strip is a sequence of consecutive entries of σ(1) terminated on both sides either by
the start/end of the permutation, or a breakpoint. For n ≥ 1, the number of strips is one
more than the number of breakpoints. For n = 0, there is a unique arrangement (the null
arrangement) and it has 0 strips. A singleton is a strip of length 1.

Let a
(g)
n,k be the number of unsigned (n, g)-arrangements that break into k strips, and

b
(g)
n,k be the number of signed (n, g)-arrangements that break into k strips.

Example 2.1. Consider these signed permutations (in one-line notation):

σ(1) : 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13〉
σ(2) : 〈−9, 8,−7,−6,−5, 10, 11, 12, 1, 2, 3, 4,−13〉
σ(3) : 〈−4,−3,−2,−1, 5, 6, 7, 8, 9, 10, 11, 12, 13〉

There are g = 3 signed permutations, each on n = 13 elements, and ~σ = (σ(1), σ(2), σ(3))
is a signed (13, 3)-arrangement.

The are 5 breakpoints in σ(1): (4, 5), (7, 8), (8, 9), (9, 10), (12, 13). This breaks this
arrangement into k = 5 + 1 = 6 strips:

σ(1) : 1, 2, 3, 4 , 5, 6, 7 , 8 , 9 , 10, 11, 12 , 13

σ(2) : −9 , 8 , −7,−6,−5 , 10, 11, 12 , 1, 2, 3, 4 , −13

σ(3) : −4,−3,−2,−1 , 5, 6, 7 , 8 , 9 , 10, 11, 12 , 13

.
The ordered type of this arrangement is the lengths of the consecutive strips in σ(1):

β = (4, 3, 1, 1, 3, 1). It is a composition of n: 13 = 4 + 3 + 1 + 1 + 3 + 1 is expressed as a
sum of positive integers. Let Cn denote the set of all compositions of n and Cn,k denote
the set of all compositions of n into exactly k nonzero parts. For n > 0, |Cn| = 2n−1 and
for n ≥ k > 0, |Cn,k| =

(
n−1
k−1

)
while |Cn,0| = 0. For n = 0, there is a null composition, so

|C0| = |C0,0| = 1 while |C0,k| = 0 for k > 0.
We may also consider the unordered type of this arrangement, which is the lengths

of the strips listed in decreasing order µ = (4, 3, 3, 1, 1, 1). This is a partition of n:
13 = 4+3+3+1+1+1 is expressed as a sum of weakly decreasing positive integers. Let
Pn denote the set of all partitions of n and Pn,k denote the set of all partitions of n into
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exactly k nonzero parts. The cardinalities of these sets, p(n) = |Pn| and p(n, k) = |Pn,k|,
have been studied extensively for centuries; for surveys, see Dickson, 1920 [10, Ch. 3],
Andrews, 1976 [2], and Andrews and Eriksson, 2004 [3].

The ordered weight of this arrangement is V4V3V1V1V3V1, where the Vi’s are noncom-
muting variables. The unordered weight is v4v3

2v1
3, where the vi’s are commuting vari-

ables. The (un)ordered weight of a set of arrangements is the sum of the weights of the
arrangements in the set. We will compute generating functions for the weights of all
arrangements, subclassified in various ways.

Note that if the second or third genome were used as the reference instead of the
first, the ordered type and weight would change (since the strips would be in a different
left-to-right order) but the unordered type and weight would not change.

For a partition or composition µ, let `(µ) be the number of nonzero parts and mi(µ)
be the number of parts equal to i (for i > 0). When we use unordered types (partitions),
many different ordered types (compositions) are combined; specifically, for a partition µ,
the number of distinct compositions obtained by permuting its nonzero parts is

M(µ) =

(
`(µ)

m1(µ), m2(µ), . . .

)
=

`(µ)!

m1(µ)! m2(µ)! · · ·
.

The strips in this arrangement are J1 = 〈1, 2, 3, 4〉, J2 = 〈5, 6, 7〉, J3 = 〈8〉, J4 =
〈9〉, J5 = 〈10, 11, 12〉, J6 = 〈13〉. The negative of strip J = 〈j1, j2, . . . , jm〉 is −J =
〈−jm, . . . ,−j2,−j1〉, while its reverse is J r = 〈jm, . . . , j2, j1〉.

The representation of ~σ in terms of concatenations of these strips is

σ(1) : J1, J2, J3, J4, J5, J6

σ(2) : −J4, J3,−J2, J5, J1,−J6

σ(3) : −J1, J2, J3, J4, J5, J6

The (signed) compression of ~σ is obtained by replacing ±Ji with ±i:

τ (1) : 〈1, 2, 3, 4, 5, 6〉
τ (2) : 〈−4, 3,−2, 5, 1,−6〉
τ (3) : 〈−1, 2, 3, 4, 5, 6〉

A signed (n, g)-arrangement is incompressible if it equals its compression. This is equiva-
lent to any of these conditions: it has no adjacencies; all its strips are singletons; its type
has form (1n). Note that the compression of a signed (n, g)-arrangement is incompressible.

Let B
(g)
n,k be the subset of B

(g)
n consisting of signed (n, g)-arrangements that break into

k strips, and b
(g)
n,k = |B

(g)
n,k| be the number of such arrangements. Note that B

(g)
n,n is the

set of incompressible signed (n, g)-arrangements. With this notation, the example above
illustrates the following:

Theorem 2.2. The procedure illustrated above gives a bijection

Ψb : B
(g)
n,k → B

(g)
k,k × Cn,k

between signed (n, g)-arrangements with k strips and ordered pairs (~τ , β) where
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(i) ~τ = (τ (1), . . . , τ (g)) ∈ B
(g)
k is incompressible;

(ii) β ∈ Cn,k is the ordered type of the arrangement.

Example 2.3. Here is a similar example with unsigned permutations, obtained by drop-
ping the signs in Example 2.1. Let ~π = |~σ| where ~σ is given in Example 2.1 and |~σ|
denotes taking the absolute value of all elements in each of σ(1), . . . , σ(g):

π(1) : 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13〉
π(2) : 〈9, 8, 7, 6, 5, 10, 11, 12, 1, 2, 3, 4, 13〉
π(3) : 〈4, 3, 2, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13〉

This breaks into k = 4 unsigned strips:

π(1) : 1, 2, 3, 4 , 5, 6, 7, 8, 9 , 10, 11, 12 , 13 = I1, I2, I3, I4

π(2) : 9, 8, 7, 6, 5 , 10, 11, 12 , 1, 2, 3, 4 , 13 = Ir
2 , I3, I1, I4

π(3) : 4, 3, 2, 1 , 5, 6, 7, 8, 9 , 10, 11, 12 , 13 = Ir
1 , I2, I3, I4

The ordered type of this is the composition α = (4, 5, 3, 1), and the unordered type
is the partition λ = (5, 4, 3, 1). The ordered weight is U4U5U3U1 (where the Ui’s are
noncommuting) and the unordered weight is u5u4u3u1 (where the ui’s are commuting).
The unsigned strips of ~π are I1 = 〈1, 2, 3, 4〉, I2 = 〈5, 6, 7, 8, 9〉, I3 = 〈10, 11, 12〉, I4 = 〈13〉.

Unsigned compression does not uniquely decompose in the same way as Theorem 2.2;
we cannot just replace signed arrangements by unsigned arrangements in the theorem
statement. If we compress to an unsigned arrangement (replace Ij or Ir

j by j), (〈1, 2, 3, 4〉,
〈2, 3, 1, 4〉, 〈1, 2, 3, 4〉), it is compressible in this example since it has a strip (2, 3). If we
compress to a signed arrangement (replace Ij by j and Ir

j by −j), (〈1, 2, 3, 4〉, 〈−2, 3, 1, 4〉,
〈−1, 2, 3, 4〉), it’s not a bijection because singletons (such as I4) are the same when re-
versed. The analog of Theorem 2.2 for unsigned permutations is more complex:

Theorem 2.4. There is an injection

Ψa : A
(g)
n,k → B

(g)
k,k × Cn,k

from unsigned (n, g)-arrangements ~π = (π(1), . . . , π(g)) ∈ A
(g)
n with k strips, to ordered

pairs (~τ , α), where

(i) ~τ = (τ (1), . . . , τ (g)) ∈ B
(g)
k is incompressible;

(ii) α ∈ Cn,k is the ordered type of the unsigned arrangement ~π;

(iii) When αj = 1, the sign of j is +1 in each of τ (1), . . . , τ (g).
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Contrast this to Theorem 2.2 for signed arrangements: both input and output ar-
rangements were signed (here ~π is unsigned and ~τ is signed), and there was no (iii).

Next we will state relationships between the strips in ~σ and |~σ|, as illustrated by
Examples 2.1 and 2.3. To state them, we need to define certain partial orders.

Definition 2.5. Let n ≥ 0 and α, β ∈ Cn. Then β is a sequential refinement of α iff β is
obtained by concatenating together compositions of α1, α2, . . . , α`(α). Further, β ≤ α in
sequential refinement order on Cn iff β is a sequential refinement of α.

Definition 2.6. Let n ≥ 0 and λ, µ ∈ Pn. Then µ is a refinement of λ iff µ can be
obtained by concatenating together partitions of λ1, λ2, . . . and sorting the parts into
nonincreasing order. Further, µ ≤ λ in refinement order on Pn iff µ is a refinement of λ.

Definition 2.7. Let α, β be compositions or partitions of n > 0. Then α > β in reverse
lexicographic order iff for some k, αi = βi when 0 < i < k and αk > βk. When n = 0,
there is just one element in C0 or P0, so it is equal to itself.

Sequential refinement on compositions, and refinement on partitions, are partial or-
ders. Reverse lexicographic order is a total order that extends both of these partial orders.

In Examples 2.1 and 2.3, the ordered type of ~σ is β = (4, 3, 1, 1, 3, 1) and the ordered
type of |~σ| is α = (4, 5, 3, 1). β is a sequential refinement of α: 4 = 4, 5 = 3+1+1, 3 = 3,
1 = 1. With unordered types µ = (4, 3, 3, 1, 1, 1) of ~σ and λ = (5, 4, 3, 1) of |~σ|, we have
that µ is a refinement of λ.

Proposition 2.8. Let ~σ be a signed (n, g)-arrangement.

(i) Let β be the ordered type of ~σ and α be the ordered type of |~σ|. Then β ≤ α in
sequential refinement order.

(ii) Let µ be the unordered type of ~σ and λ be the unordered type of |~σ|. Then µ ≤ λ in
refinement order.

Proof. Strips in |~σ| arise from concatenating one or more consecutive strips in ~σ, so
consecutive strip lengths in ~σ are grouped and added together to give lengths in |~σ|.

In the reverse direction, given an unsigned arrangement ~π, one of the many signed
arrangements ~σ with ~π = |~σ| is as follows; this one is useful because it preserves the type:

Definition 2.9. Let ~π ∈ A
(g)
n . The canonical signage of ~π is the arrangement obtained

by decomposing ~π into strips, imposing positive signs on the elements in each forwards
strip and each singleton (strip of length 1), and negative signs in each reverse strip.

The canonical signage of Example 2.3 is

σ(1) : 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13〉
σ(2) : 〈−9,−8,−7,−6,−5, 10, 11, 12, 1, 2, 3, 4, 13〉
σ(3) : 〈−4,−3,−2,−1, 5, 6, 7, 8, 9, 10, 11, 12, 13〉
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Figure 2: The fraction of arrangements that are incompressible with g = 2 genomes of
size n, as n increases. (a) Unsigned genomes: the fraction a

(2)
n,n/n! approaches exp(−2) ≈

0.1353. (b) Signed genomes: the fraction b
(2)
n,n/(2n n!) approaches exp(− 1

2
) ≈ 0.6065. (c)

The fraction of incompressible signed permutations σ that are compressible as unsigned
permutations |σ| is 1 − 2na

(2)
n,n/b

(2)
n,n, which approaches 1 − exp(−3/2) ≈ 0.7769.

Note that the sign of 13 in σ(2) is different than in Example 2.1. In converting unsigned
gene orders to signed gene orders, one would typically compute the canonical signage as
indicated above, though the true signs of the singletons would remain unclear. See Pevzner
and Hannenhalli [13] for additional details. We will discuss it further in Section 8.

3 Strips in signed arrangements

In this section, we derive exact formulas for the number of signed arrangements by ordered
type, unordered type, or number of strips, and also asymptotic formulas.

Consider g ≥ 2 genomes and n ≥ 0 genes.
Let B

(g)
β denote the number of signed (n, g)-arrangements of ordered type β ∈ Cn and

b
(g)
µ denote the number of signed (n, g)-arrangements of unordered type µ ∈ Pn.

Note: The notation b
(g)
µ is distinguished from b

(g)
n,k because µ is a partition. So b

(g)
5,3 is

the number of length 5 arrangements with 3 strips, while b
(g)
(5,3) is the number of length 8

arrangements with one length 5 strip and one length 3 strip.

Theorem 3.1. (i) b
(g)
0,0 = 1, and for k > 0, we have

b
(g)
k,k =

k∑

r=1

(−1)k−r

(
k − 1

r − 1

)
(2rr!)g−1 . (1)

In the special case g = 2 and k > 0, this simplifies as follows, using the integer floor
function bxc; also see Fig. 2(b):

b
(2)
k,k =

⌊
k! 2k exp(−1

2
)
⌋

+
⌊
(k − 1)! 2k−1 exp(−1

2
)
⌋

+ 1 . (2)
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(ii) For n, k ≥ 1, we have

b
(g)
n,k =

(
n − 1

k − 1

) k∑

r=1

(−1)k−r

(
k − 1

r − 1

)
(2rr!)g−1 . (3)

The k = 0 case is b
(g)
0,0 = 1 and b

(g)
n,0 = 0 for n > 0. Also note b

(g)
n,k = 0 for n < k.

(iii) For β ∈ Cn,k, B
(g)
β = b

(g)
k,k.

(iv) For µ ∈ Pn,k, b
(g)
µ = b

(g)
k,kM(µ) = b

(g)
k,k

(
k

m1(µ),...,mn(µ)

)
.

Theorem 3.2. Fix q ≥ 0. As n → ∞, the number of (n, g)-arrangements with exactly q

adjacencies, b
(g)
n,n−q, has the following asymptotic form. For g ≥ 2,

lim
n→∞

b
(g)
n,n−q

(2n−q(n − q)!)g−1
(

n−1
n−q−1

) =

{
exp(−1

2
) if g = 2;

1 if g > 2,
(4)

and for g = 2,

lim
n→∞

b
(2)
n,n−q

2nn!
=

exp(−1
2
)

2qq!
. (5)

The proof of Theorem 3.2 is deferred to Appendix A.1.

Proof of Theorem 3.1. (i) Let n, k ≥ 1. From the bijection in Theorem 2.2, the number
of signed (n, g)-arrangements with k strips is

b
(g)
n,k = |B

(g)
n,k| = |B

(g)
k,k| |Cn,k| = b

(g)
k,k

(
n−1
k−1

)
. (6)

The total number of signed (n, g)-arrangements is (2nn!)g−1, so on summing (6) over all
possible numbers of strips (k = 1 to n), we obtain, for all n ≥ 1,

(2nn!)g−1 =
n∑

k=1

b
(g)
n,k =

n∑

k=1

b
(g)
k,k

(
n−1
k−1

)
. (7)

This system of equations (7) (one equation for each n = 1, 2, . . .) may be solved for b
(g)
k,k

for k ≥ 1, giving unique solution (1). This solution is obtained using the first of Riordan’s
famous inverse relations [27, p. 485, Eq. (1b)]. The proof of (2) is postponed.

(ii) Combining (6) and (1) gives (3). For n = 0, the only arrangement is the null

arrangement, with 0 strips, giving b
(g)
0,0 = 1 and b

(g)
0,k = 0 for k > 0.

(iii) Theorem 2.2 gives that the (n, g)-arrangements of ordered type β are in bijection

with B
(g)
k,k, where k = `(β). So B

(g)
β = b

(g)
k,k.

(iv) For µ ∈ Pn,k, the (n, g)-arrangements of unordered type µ come from (n, g)-
arrangements of ordered type β where β ∈ Cn,k runs over permutations of the parts of µ.

There are M(µ) =
(

k
m1(µ),m2(µ),...,mn(µ)

)
such values of β, each with B

(g)
β = b

(g)
k,k.
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To prove (2), we require the following lemma.

Lemma 3.3. Let expk(x) =
∑k

m=0 xm/m!, where k ≥ 0 is an integer. Then for any
integer n > 0,

expk(−
1
n
) =

⌊
nk k! exp(− 1

n
)
⌋

+ 1
2
(1 + (−1)k)

nk k!
. (8)

Proof. expk(−
1
n
) =

∑k
m=0(−

1
n
)m/m! is a partial sum of the Maclaurin series expansion of

exp(− 1
n
). All denominators m! (0 ≤ m ≤ k) divide nkk!, so nkk! expk(−

1
n
) is an integer

and nkk! exp(− 1
n
) = nkk! expk(−

1
n
) + ε where

ε = nkk!
(
exp(− 1

n
) − expk(−

1
n
)
)

=

∞∑

m=k+1

(−1)mnk−mk!

m!
.

ε is an alternating series whose first term (−1)k+1/(k + 1) has absolute value < 1 (or = 1
if k = 0). The ratio of term m + 1 over term m is −1/(n(m + 1)), with absolute value
below 1. So 0 < |ε| < 1. The sign of ε is given by its first term: negative if k is even,
positive if k is odd. So the integer nkk! expk(−

1
n
) may be expressed as

nk k! expk(−
1
n
) = nk k! exp(− 1

n
) − ε =

⌊
nk k! exp(− 1

n
)
⌋

+ δ (9)

where δ = 1
2
(1 + (−1)k) = 1 if k is even, 0 if k is odd. Dividing (9) by nkk! gives (8).

Proof of (2). Plug g = 2 and m = k − r into (1), simplify factorials, and apply (8):

b
(2)
k,k =

k∑

r=1

(−1)k−r

(
k − 1

r − 1

)
2rr! =

k−1∑

m=0

(−1)m

(
k − 1

k − m − 1

)
2k−m(k − m)!

= (k − 1)!
k−1∑

m=0

(−1)m2k−m(k − m)!

(k − m − 1)! m!
= 2k(k − 1)!

k−1∑

m=0

(−1
2
)m(k − m)

m!

Extend the summation to m = k; the m = k term is 0 due to the factor of k − m:

= 2k(k − 1)!
k∑

m=0

(−1
2
)m(k − m)

m!
= 2kk!

k∑

m=0

(−1
2
)m

m!
− 2k(k − 1)!

k∑

m=1

(−1
2
)m

(m − 1)!

= 2kk! expk(−
1
2
) + 2k−1(k − 1)! expk−1(−

1
2
)

=
⌊
2k k! exp(−1

2
)
⌋

+
⌊
2k−1 (k − 1)! exp(− 1

2
)
⌋

+ 1
2

(
2 + (−1)k + (−1)k−1

)
.

4 Generating functions for signed arrangements

In this section, we will define and compute generating functions for the number of signed
(n, g)-arrangements by ordered type and by number of strips.

Let ~V = (V1, V2, . . .) be an infinite sequence of noncommuting indeterminates (that
commute with t). For convenience, set V0 = 1. Set V (t) =

∑∞

n=1 tnVn.
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For a sequence β = (β1, β2, . . . , βk) of nonnegative integers (including partitions, com-
positions, and sequences with 0’s), set Vβ = Vβ1Vβ2 · · ·Vβk

.
Let ~σ ∈ B(g) have ordered type β. The ordered weight of ~σ is ωB(~σ) = Vβ. The ordered

weight of a set of arrangements S ⊂ B(g) is ωB(S) =
∑

~σ∈S ωB(~σ) and the graded ordered

weight is ωB(S; t) =
∑

~σ∈S tn(~σ)ωB(~σ) where if ~σ ∈ B
(g)
n then n(~σ) = n.

We define generating functions for the number of arrangements by ordered type:

B(g)
n (~V ) = B(g)

n (V1, V2, . . .) = ωB(B(g)
n ) =

∑

β∈Cn

B
(g)
β Vβ1Vβ2 . . . Vβ`(β)

(10)

B(g)(~V ; t) = B(g)(V1, V2, . . . ; t) = ωB(B(g); t) =

∞∑

n=0

tn
∑

β∈Cn

B
(g)
β Vβ1Vβ2 . . . Vβ`(β)

. (11)

Eq. (11) is a formal power series in t and an infinite number of noncommuting indetermi-
nates V1, V2, . . . . Further, the coefficient of each power of t is a polynomial in V1, V2, . . . .
Thus, we may work in the noncommutative ring Z〈V1, V2, . . .〉[[t]]. Our main result is

Theorem 4.1. A generating function to count signed arrangements by ordered type is

B(g)(~V ; t) =

∞∑

r=0

(2rr!)g−1
(

V (t)
1+V (t)

)r

. (12)

Lemma 4.2. (1 + V (t))−1 and V (t)
1+V (t)

are well-defined formal power series, and V (t)
1+V (t)

is
divisible by t.

Proof. When V (t)k is expanded as a power series in t, the coefficient of tn is 0 if n < k,
and is a polynomial in V1, . . . , Vn if n ≥ k.

(1 + V (t))−1 =
∑∞

k=0(−1)kV (t)k is the formal multiplicative inverse of 1 + V (t), pro-
vided it is well-defined. Indeed, when it is expanded as a power series in t, the coefficient of
tn has contributions only from terms k = 0, . . . , n, so again it is a polynomial in V1, . . . , Vn.

Finally, V (t)
1+V (t)

=
∑∞

k=1(−1)k−1V (t)k is divisible by t since V (t) is divisible by t.

Proof of Theorem 4.1. Note that (12) is a well-defined formal power series, even though
it is not convergent as an analytic power series. When it is expanded as power series in
t, the coefficient of tn has a finite number of contributions, all from terms r = 0, 1, . . . , n.
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Evaluate (11), using the formulas for B
(g)
β and b

(g)
k,k from Theorem 3.1:

B(g)(~V ; t) =
∞∑

n=0

tn
n∑

k=0

∑

β∈Cn,k

B
(g)
β Vβ1Vβ2 · · ·Vβk

=
∞∑

n=0

tn
n∑

k=0

∑

β∈Cn,k

b
(g)
k,kVβ1Vβ2 · · ·Vβk

=

∞∑

k=0

b
(g)
k,k

∞∑

n=0

∑

β∈Cn,k

(tβ1Vβ1)(t
β2Vβ2) · · · (t

βkVβk
) =

∞∑

k=0

b
(g)
k,kV (t)k

= 1 +
∞∑

k=1

V (t)k
k∑

r=1

(−1)k−r

(
k − 1

r − 1

)
(2rr!)g−1

= 1 +
∞∑

r=1

(2rr!)g−1
∞∑

k=r

(−1)k−r

(
k − 1

r − 1

)
V (t)k =

∞∑

r=0

(2rr!)g−1

(
V (t)

1 + V (t)

)r

.

We consider three specializations of the formal power series (12). These could be
computed from Theorem 3.1, but we will show how to do them with specializations since
this will be the required method for unsigned arrangements.

1. A generating function to count signed arrangements by unordered types is obtained
by allowing V1, V2, . . . to commute. This will be done in detail in Section 6.

2. A generating function to count signed arrangements by size and number of strips.
Specializing Vn → z for n > 0 gives V (t) → zt/(1 − t); applying this to (12) gives

b(g)(t, z) =

∞∑

n=0

n∑

k=0

b
(g)
n,kt

nzk =

∞∑

n=0

b(g)
n (z)tn =

∞∑

r=0

(2rr!)g−1

(
zt

1 − t(1 − z)

)r

. (13)

Expanding this as a Maclaurin series in t, the coefficients bn(z) of tn are

b
(g)
0 (z) = 1 b(g)

n (z) =

n∑

r=1

(2rr!)g−1
(

n−1
r−1

)
zr(1 − z)n−r (for n ≥ 1). (14)

3. A generating function, IB(g)(t), to count incompressible signed arrangements by size.
Specialize V1 → 1 and Vn → 0 for n > 1. This gives V (t) → t. Apply it to (12):

IB(g)(t) =
∞∑

n=0

b(g)
n,ntn =

∞∑

r=0

(2rr!)g−1 tr

(1 + t)r
. (15)

As a side note, the exponential generating function corresponding to this has a nice
form when g = 2. Let EIB(t) =

∑∞

n=0 b
(2)
n,n tn/n! be the exponential generating function

for the number of incompressible signed (n, 2)-arrangements.

Theorem 4.3. EIB(t) = 1 +
∫ t

0
2 exp(−u)
(1−2u)2

du.
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Proof.

EIB′(t) exp(t) =
∞∑

k=1

b
(2)
k,k

tk−1

(k − 1)!

∞∑

m=1

tm−1

(m − 1)!
=

∞∑

n=1

tn−1

(n − 1)!

n∑

k=1

(
n − 1

k − 1

)
b
(2)
k,k

where we collected by powers tn−1, with (n − 1) = (k − 1) + (m − 1). Next plug in (7):

=

∞∑

n=1

2nn!
tn−1

(n − 1)!
=

∞∑

n=1

2nntn−1 =
2

(1 − 2t)2

EIB′(t) =

∞∑

k=1

b
(2)
k,k

tk−1

(k − 1)!
=

2 exp(−t)

(1 − 2t)2

Integrate and use initial condition EIB(0) = b
(2)
0,0 = 1 to obtain EIB(t) as stated.

5 Strips in unsigned arrangements

In this section, we will obtain a generating function for enumeration of unsigned arrange-
ments by ordered type. We will use this to determine formulas for the number of unsigned
arrangements by type, or with a specified number of strips. The computations are con-
siderably more complicated than for signed arrangements. Section 5.1 gives the notation
for the unsigned case and develops a map between the weight of an unsigned arrange-
ments and all signed arrangements arising from implanting signs in it. Section 5.2 gives
generating functions for unsigned arrangements by ordered type and by number of strips.

5.1 Weights on adding signs to unsigned arrangements

We adopt notation similar to that of Section 4. Essentially, symbols B, b, β, V , µ,
for signed arrangements will be replaced by A, a, α, U , λ, for unsigned arrangements,
including font, capitalization, and sub/superscript variations.

Let ~U = (U1, U2, . . .) be an infinite sequence of noncommuting indeterminates (that
commute with t). For convenience, set U0 = 1. Set U(t) =

∑∞

n=1 tnUn.
Let ~π ∈ A(g) with ordered type α. The ordered weight of ~π is ωA(~π) = Uα = Uα1Uα2 · · · .
The ordered weight of a set S ⊂ A(g) of arrangements is ωA(S) =

∑
~π∈S ωA(~π) and the

graded ordered weight is ωA(S; t) =
∑

~π∈S tn(~π)ωA(~π) .
The generating functions for counting unsigned arrangements by ordered type are

A(g)
n (~U) = A(g)

n (U1, U2, . . .) = ωA(A(g)
n ) =

∑

α∈Cn

A(g)
α Uα1Uα2 . . . Uα`(α)

(16)

A(g)(~U ; t) = A(g)(U1, U2, . . . ; t) = ωA(A(g); t) =
∞∑

n=0

tn
∑

α∈Cn

A(g)
α Uα1Uα2 . . . Uα`(α)

. (17)

This is a formal power series in an infinite number of noncommuting indeterminates, in
the ring Z〈U1, U2, . . .〉[[t]]. In Section 5.2, we will derive a formula for this series and apply
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it to get an explicit formula for a
(g)
n,k, the number of (n, g)-arrangements with k strips, as

well as generating functions for it and an asymptotic formula. But first, in this section,
we develop the machinery to relate the weight of an unsigned arrangement to the weight
of all signed arrangements that arise by implanting signs into it.

Implanting signs in an unsigned strip that is forwards in all genomes.
The (n, g)-identity arrangement is id(g)

n = (idn, . . . , idn) (g copies of 〈1, . . . , n〉).
Consider an unsigned strip of length n, w.l.o.g. id(g)

n . Signs may be implanted to form a
signed (n, g)-arrangement ~σ = (σ(1), . . . , σ(g)): σ(i) = (εi11, εi22, . . . , εinn) for i = 1, . . . , g,
where ε1,j = 1 and each εij ∈ {+1,−1} for i = 2, . . . , g.

The sign vector of j is ~εj = (ε1j , . . . , εgj). Each entry j = 1, . . . , n has 2g−1 possible
sign combinations. Let ~ε+ = (+1, . . . , +1) (of length g) consist of all positive signs. Set

G = 2g−1 − 1 , G̃ = 21−g − 1 . (18)

There are G possible sign vectors besides ~ε+. For later use, we note that

G = −G̃/(G̃ + 1) , G̃ = −G/(G + 1) , G̃ + 1 =
1

G + 1
. (19)

A run of m consecutive entries with sign vector ~ε+ forms a signed strip of length m.
Each entry with sign vector different from ~ε+ forms a signed strip on one element.

Let 0 < j1 < · · · < jk = n + 1 where j1, . . . , jk−1 are the positions for which ~εj 6= ~ε+.
Let β = (j1, j2 − j1, j3 − j2, . . . , jk − jk−1). Then as a signed permutation, we form strips
of lengths (β1 − 1, 1, β2 − 1, 1, . . . , βk−1 − 1, 1, βk − 1) (except that we omit any 0’s that
arise from βr − 1 with βr = 1).

Example 5.1. Consider adding signs to an unsigned strip of length n = 9 in 3 genomes:

σ(1) : 1,2 3 , 4 , 5,6,7 8 , 9

σ(2) : 1,2 -3 , -4 , 5,6,7 8 , 9

σ(3) : 1,2 3 , 4 , 5,6,7 -8 , 9

The positions that are not all positive (sign 6= ~ε+) are 3, 4, 8 (shown with bold boxes
around them), and we add on n + 1 = 10 to this list (though it is not part of the
permutations). The successive differences of these positions give a composition of n + 1:
β = (3, 4 − 3, 8 − 4, 10 − 8) = (3, 1, 4, 2). Note that the arrangement alternates between
positive strips (possibly of length 0) and non-positive positions, and each part of the
composition represents joining a strip with the non-positive position terminating it.

The strip lengths are (3 − 1, 1, 1 − 1, 1, 4 − 1, 1, 2 − 1) = (2, 1, 0, 1, 3, 1, 1), and we
omit all zeros to obtain (2, 1, 1, 3, 1, 1). The ordered weight of this is V2V1V0V1V3V1V1 =
V2V1V1V3V1V1, while the unordered weight is v3v2v1

4.
If all entries but 3, 4, 8 have sign vector ~ε+, then for entries 3, 4, and 8, we may

independently choose any of G = 22 − 1 = 3 sign vectors not equal to ~ε+, and get the
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same partition into strips as shown above (but with different sign vectors on entries 3, 4,
8). So there are G3 = 27 signages obtained from signs 6= ~ε+ in precisely those positions.

Implanting signs in an unsigned strip that is backwards in some genomes.
Consider any unsigned strip of length n > 1 in g genomes. The canonical sign vector

~εc = (ε1, . . . , εg) has εi = +1 if the strip is forwards in genome i and εi = −1 if it’s
backwards. The canonical signage assigns sign εi to all entries in that strip in genome i.
The weights and counts of all signages where sign vectors 6= ~εc are implanted at certain
entries is the same as computed above for implanting signs 6= ~ε+ at those entries in id(g)

n .
In Example 5.1, if the strip is backwards in the third genome, the canonical signage is

σ(1) : 1, 2, 3, 4, 5, 6, 7, 8, 9
σ(2) : 1, 2, 3, 4, 5, 6, 7, 8, 9
σ(3) : −9,−8,−7,−6,−5,−4,−3,−2,−1

and the sign modifications on entries 3, 4, 8 corresponding to the ones in Example 5.1 are

σ(1) : 1,2 3 , 4 , 5,6,7 8 , 9

σ(2) : 1,2 -3 , -4 , 5,6,7 8 , 9

σ(3) : -9 , 8 -7,-6,-5 , -4 , -3 -2,-1

Theorem 5.2. (i) The ordered weight of all signages of unsigned id(g)
n (n > 0) is

φ(Un) =

n∑

k=1

∑

β∈Cn+1,k

Vβ1−1 · GV1 · Vβ2−1 · GV1 · · ·Vβk−1

=
n∑

k=1

Gk−1
∑

β∈Cn+1,k

Vβ1−1,1,β2−1,1,··· ,βk−1 . (20)

(ii) Let ~π be an unsigned (n, g)-arrangement with ordered type α. The ordered weight of
all signages of ~π is φ(Uα1)φ(Uα2) · · · .

Proof. Part (i) is clear from the example above. There are k−1 entries with non-canonical
sign: β1, β1 + β2, . . . , β1 + · · ·+ βk−1. Entry β1 + · · ·+ βk = n + 1 terminates the strip.

For part (ii), the signages subdivide the original strips of ~π. We choose one of the
signages of the first strip (as ordered in π(1), one of the signages of the second strip, and
so on, independently for each strip. The ordered type of the signage is the concatenation
of the ordered types of the signages applied to each original strip, while the unordered
type is obtained from this by sorting the parts. So we apply part (i) to each separate
strip of ~π (relabelling the elements from 1, 2, . . . into those of the strip) and combine the
weights of the strips together by noncommutative multiplication of their signed weights
in the same order as the strips are in π(1).
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Define a ring homomorphism φ : Q〈U1, U2, . . .〉 → Q〈V1, V2, . . .〉 by defining φ(Ui)
via (20). Ui’s are generators, so this extends to the whole ring via φ(f +h) = φ(f)+φ(h)
and φ(fh) = φ(f)φ(h). We shall see that this is actually a ring isomorphism. It induces a
homomorphism φ : Q〈U1, U2, . . .〉[[t]] → Q〈V1, V2, . . .〉[[t]] by applying φ to the coefficient
of each power of t.

Corollary 5.3. φ
(
A(g)(~U ; t)

)
= B(g)(~V ; t).

We will develop additional formulas for φ and its inverse, so that we may compute
generating functions for signed arrangements in terms of the generating functions for
unsigned arrangements. A recursion for φ(Un) is easy to obtain from (20):

Theorem 5.4. For n ≥ 1,

φ(Un) = Vn +
n−1∑

r=0

Vr · GV1 · φ(Un−1−r) = Vn +
n−1∑

r=0

φ(Un−1−r) · GV1 · Vr . (21)

Proof. The k sum in (20) has one term for k = 1, namely Vn (corresponding to β = (n+1)).
For k > 1, we factor off Vr ·GV1 from the left (where r = β1 − 1 ≥ 0) or GV1 ·Vr from the
right (where r = βk − 1 ≥ 0) to obtain a sum of the exact same form with a smaller n
(namely n−r−1). For the terms where some βi = 1, note that φ(U0) = φ(1) = 1 = V0.

For α ∈ Cn, let Uα = Uα1Uα2 · · · . Then

φ(Uα) = φ(Uα1)φ(Uα2) · · · =
∑

β∈Cn

Hαβ(G)Vβ (22)

where we plug in (20), expand the products, collect terms, and obtain transition matrix
H(G) from the coefficients. For n > 0, H(G) is a 2n−1×2n−1 matrix, indexed by composi-
tions α, β ∈ Cn. (For n = 0, it is 1×1.) We list the row α and column β indices in reverse
lexicographic order on Cn (we will see below that any extension of sequential refinement
order is suitable); see Definitions 2.5 and 2.7. Each matrix entry Hαβ(G) is a polyno-
mial in G with nonnegative integer coefficients. If ~π is an unsigned (n, g)-arrangement of
ordered type α, then Hαβ(G) gives the number of signages of ~π with ordered type β.

Next we develop formulas to compute φ−1. Recall that we defined generating functions
U(t) =

∑∞

n=1 tnUn and V (t) =
∑∞

n=1 tnVn. Note that U0 = V0 = 1 are not included in
U(t), V (t), so we use 1 + U(t) or 1 + V (t) to include the constant term when necessary.

Theorem 5.5. (i) φ is invertible, hence it is a ring isomorphism.

(ii) In sequential refinement order on compositions, H(G) is lower triangular with 1’s
on the diagonal.

(iii) H(G)−1 = H(G̃), where G̃ = −G/(G + 1) = 2−(g−1) − 1. Thus for α ∈ Cn,

φ−1(Vα) = φ−1(Vα1)φ
−1(Vα2) · · · =

∑

β∈Cn

Hαβ(G̃)Uβ (23)
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(iv) A practical way to compute φ−1(Vα) is via the product in (23) and the recursion, for
n ≥ 1,

φ−1(Vn) = Un +
n−1∑

r=0

Ur · G̃U1 · φ
−1(Vn−1−r) = Un +

n−1∑

r=0

φ−1(Vn−1−r) · G̃U1 · Ur (24)

(v) Recursions (21) and (24) have solutions in terms of generating functions:

φ(U(t)) =
(
1 −

(
1 + V (t)

)
GV1t

)−1((
1 + V (t)

)
GV1t + V (t)

)

=
(
GV1t

(
1 + V (t)

)
+ V (t)

)(
1 − GV1t

(
1 + V (t)

))−1

(25)

φ−1(V (t)) =
(
1 −

(
1 + U(t)

)
G̃U1t

)−1((
1 + U(t)

)
G̃U1t + U(t)

)

=
(
G̃U1t

(
1 + U(t)

)
+ U(t)

)(
1 − G̃U1t

(
1 + U(t)

))−1

(26)

(vi) Duality: Let f(z; x1, x2, . . . ; y1, y2, . . .) ∈ Q(z)〈x1, x2, . . . ; y1, y2, . . .〉.

Then f
(
G; φ(U1), φ(U2), . . . ; V1, V2, . . .

)
= 0 in Q(G)〈V1, V2, . . .〉

iff f
(
G̃; φ−1(V1), φ

−1(V2), . . . ; U1, U2, . . .
)

= 0 in Q(G̃)〈U1, U2, . . .〉.

(Note that duality requires using the formal variables G and G̃; one may not plug
in specific values of g.)

Note: Examples of duality include (21) vs. (24); (22) vs. (23); and (25) vs. (26).

Proof. (i,ii) By (21), φ(Uα) = φ(Uα1)φ(Uα2) · · · = Vα + · · · where the remaining terms
are a linear combination of Vβ’s with β less than α in sequential refinement order. So
the transition matrix for φ in the basis from Uα’s to Vβ’s is triangular with 1’s on the
diagonal. Thus, φ is invertible.

(iii,iv,vi) The recursion (21) may be recast in terms of U(t), V (t) in either of two ways:

φ(U(t)) = V (t) +
(
1 + V (t)

)
GV1t

(
1 + φ

(
U(t)

))

= V (t) +
(
1 + φ

(
U(t)

))
GV1t

(
1 + V (t)

)
. (27)

Isolating the leading V (t) term in each formula gives

V (t) = φ
(
U(t)

)
−
(
1 + V (t)

)
GV1t

(
1 + φ

(
U(t)

))

= φ
(
U(t)

)
−
(
1 + φ

(
U(t)

))
GV1t

(
1 + V (t)

)
.

Apply φ−1. Note that φ is multiplicative and invertible so φ−1 is too, and φ−1(V1) = U1

G+1
:

φ−1(V (t)) = U(t) −
(
1 + U(t)

) G

G + 1
U1t
(
1 + φ−1

(
V (t)

))

= U(t) −
(
1 + φ−1

(
V (t)

)) G

G + 1
U1t
(
1 + U(t)

)
.
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Set G̃ = −G/(G + 1) and rewrite that as

φ−1(V (t)) = U(t) +
(
1 + U(t)

)
G̃U1t

(
1 + φ−1

(
V (t)

))

= U(t) +
(
1 + φ−1

(
V (t)

))
G̃U1t

(
1 + U(t)

)
. (28)

Expand (28) as a series in t and take the coefficient of tn to get recursion (24); this
proves (iv). Alternately, compare equations (27) and (28). φ(Ui) (i ≥ 1), Vj (j ≥ 1), G in

the former have been interchanged with φ−1(Vi), Uj, G̃ in the latter. In the same manner
as recursion (21) leads to an equation (27) in the generating functions, we apply these
interchanges to obtain that generating function equation (28) leads to recursion (24).

Evaluating recursion (21) leads to an expansion φ(Un) =
∑

β H(n),β(G)Vβ of form (22)
(with α = (n)). Evaluating recursion (24) leads to a similar expansion but with the

interchanges above, φ−1(Vn) =
∑

β H(n),β(G̃)Uβ (Eq. (23) with α = (n)).
Then the product φ(Uα) = φ(Uα1)φ(Uα) · · · expanded as a linear combination of Vβ’s,

and φ−1(Vα) = φ−1(Vα1)φ
−1(Vα2) · · · expanded as a linear combination of Uβ’s, have

similar coefficients except that G in the former coefficients is replaced by G̃ in the latter.
This gives (23), proving (iii). More generally, it leads to a duality theorem (vi).

(v) Eq. (27) can be solved for φ(U(t)), and (28) can be solved for φ−1(V (t)). We show
the first equality in (25); the other parts of (25) and (26) are shown similarly. By (27),

φ(U(t)) = V (t) +
(
1 + V (t)

)
G V1 t

(
1 + φ

(
U(t)

))

= V (t) +
(
1 + V (t)

)
G V1 t +

(
1 + V (t)

)
G V1 t φ

(
U(t)

)

so (
1 −

(
1 + V (t)

)
G V1 t

)
φ
(
U(t)

)
= V (t) +

(
1 + V (t)

)
G V1 t ,

giving

φ(U(t)) =
(
1 −

(
1 + V (t)

)
G V1 t

)−1(
V (t) +

(
1 + V (t)

)
G V1 t

)
.

In Section 7, we will show how to use the preceding results to compute the number of
unsigned (n, g)-arrangements by type.

Our next goal is to compute a formal power series for the graded weights of all unsigned
arrangements, but first we need to compute φ−1 on various expressions.

Lemma 5.6.

φ−1(V1) = U1

G+1
= (G̃ + 1)U1 and φ−1(GV1) = −G̃U1 (29)

φ−1
(
1 + V (t)

)
= (1 −

(
1 + U(t)

)
G̃U1t)

−1(1 + U(t)) (30)

φ−1(
(
1 + V (t)

)−1
) =

(
1 + U(t)

)−1
− G̃U1t (31)

φ−1

(
V (t)

1 + V (t)

)
=

U(t)

1 + U(t)
+ G̃U1t. (32)
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Proof. Eq. (29) is the n = 1 cases of (21) and (24). They are related using (19).

Note that φ−1(1) = 1 =
(
1− (1+U(t))G̃U1t

)(
1− (1+U(t))G̃U1t

)−1
. Add this to (26)

and simplify the numerator to get (30). Simplify the reciprocal of (30) to get (31).

Subtract both sides of (31) from φ−1(1) = 1. Substitute 1− (1+V (t))−1 = V (t)
1+V (t)

and

1 − (1 + U(t))−1 = U(t)
1+U(t)

to get (32):

5.2 Generating functions for unsigned arrangements

Theorem 5.7. A generating function to count unsigned arrangements by ordered type is

A(g)(~U ; t) =

∞∑

n=0

∑

α∈Cn

A(g)
α Uα =

∞∑

r=0

(2rr!)g−1

(
U(t)

1 + U(t)
+ G̃U1t

)r

. (33)

Proof.

A(g)(~U ; t) = φ−1
(
B(g)(~V ; t)

)
by Corollary 5.3 and Theorem 5.5

=
∞∑

r=0

(2rr!)g−1

(
φ−1

(
V (t)

1 + V (t)

))r

by Theorem 4.1

=
∞∑

r=0

(2rr!)g−1

(
U(t)

1 + U(t)
+ G̃U1t

)r

by (32).

Now we consider three specializations of this formal power series for A(g)(~U ; t).

1. A generating function to count unsigned arrangements by unordered types is ob-
tained by allowing U1, U2, . . . to commute. This will be done in detail in Section 6.

2. A generating function to count incompressible unsigned permutations by size is
obtained by specializing (33) with U1 → 1 and Un → 0 for n > 1. This specialization
gives U(t) → t and

U(t)

1 + U(t)
+ G̃u1t →

t

1 + t
+ G̃t =

t(1 + G̃ + G̃t)

1 + t
=

t(1 − Gt)

(1 + G)(1 + t)
=

t(1 − Gt)

2g−1(1 + t)

where we made use of (18–19). Plugging this into (33) gives the specialization

IA(g)(t) =

∞∑

n=0

a(g)
n,nt

n =

∞∑

r=0

(2rr!)g−1

(
t(1 − Gt)

2g−1(1 + t)

)r

=

∞∑

r=0

r!g−1

(
t(1 − Gt)

1 + t

)r

.

(34)

For the g = 2 case, the sequence a
(2)
n,n is listed in the On-Line Encyclopedia of Integer

Sequences, A002464 [31]. Further references will follow Theorem 5.8.

3. Specializing Un → z for n > 0 in (33) gives a generating function for the number of
unsigned arrangements by size and number of strips:

a(g)(t, z) =

∞∑

n=0

n∑

k=0

a
(g)
n,k tnzk =

∞∑

n=0

a(g)
n (z) tn where a(g)

n (z) =

n∑

k=0

a
(g)
n,kz

k .
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Theorem 5.8. For g ≥ 2, n ≥ 1, and 1 ≤ k ≤ n,

a(g)(t, z) =

∞∑

r=0

r!g−1

(
zt
(
1 + Gt(1 − z)

)

1 − t(1 − z)

)r

(35)

a(g)
n (z) =

n∑

r=0

r!g−1zr(1 − z)n−r

min(r,n−r)∑

i=0

Gi

(
r

i

)(
n − i − 1

r − 1

)
(36)

a
(g)
n,k =

k∑

r=0

r!g−1(−1)k−r

(
n − r

k − r

)min(r,n−r)∑

i=0

Gi

(
r

i

)(
n − i − 1

r − 1

)
(37)

Initial conditions are a
(g)
0 (z) = 1, a

(g)
0,0 = 1, a

(g)
0,k = 0 for k > 0, and a

(g)
n,0 = 0 for n > 0.

Note: In different notation than ours, Riordan, 1965 [28, p. 710, Eq. (17)] states the
g = 2 case of (35); he attributes the result to Carlitz. Also in different notation, Abramson
and Moser, 1967 [1, p. 1249, Eq. (i)] prove a formula for the g = 2 case of (37).

Proof. In (33), specialize Un → z for n > 0, giving U(t) → zt/(1 − t). Then

U(t)

1 + U(t)
+ G̃U1t →

zt

1 − t + zt
+ G̃zt =

zt
(
1 + Gt(1 − z)

)

(G + 1)
(
1 − t(1 − z)

) =
zt
(
1 + Gt(1 − z)

)

2g−1
(
1 − t(1 − z)

) .

Plugging into (33) and cancelling the powers of 2 gives (35). Expand (35) as a formal

power series in t to obtain a
(g)
n (z) as the coefficient of tn. Expand the numerator using the

Binomial Theorem, and the denominator using the negative binomial series (1 − y)−r =∑∞

j=0

(
r+j−1
r−1

)
yj, with y = t(1 − z):

a(g)(t, z) = 1+
∞∑

r=1

r!g−1trzr

(
r∑

i=0

(
r

i

)
(Gt(1 − z))i

)(
∞∑

j=0

(
r + j − 1

r − 1

)
(t(1 − z))j

)
(38)

Collect (38) by powers tn, where n = r + i + j and j = n − r − i:

a(g)(t, z) = 1 +
∞∑

n=1

tn
n∑

r=1

r!g−1zr

min(r,n−r)∑

i=0

(
r

i

)
(G(1 − z))i

(
n − i − 1

r − 1

)
(1 − z)n−r−i

= 1 +

∞∑

n=1

tn
n∑

r=1

r!g−1zr(1 − z)n−r

min(r,n−r)∑

i=0

Gi

(
r

i

)(
n − i − 1

r − 1

)

Take the coefficient of tn to get (36). Finally, expand this as a polynomial in z and compute

the coefficient a
(g)
n,k of zk to prove (37). Note that the coefficient of zk in zr(1−z)n−r equals

(−1)k−r
(

n−r
k−r

)
if 0 ≤ r ≤ k ≤ n and equals 0 otherwise.

The following theorem states asymptotic formulas for a
(g)
n,k; the proof is postponed to

Appendix A.2.
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Theorem 5.9. For g ≥ 2,

lim
n→∞

a
(g)
n,n−q

n!(n − q)!g−22q(g−1)/q!
=

{
exp(−2) if g = 2;

1 if g > 2,
(39)

and for g = 2,

lim
n→∞

a
(2)
n,n−q

n!
=

2q exp(−2)

q!
. (40)

Note: Eq. (40) was proved, in different notation than ours, by Wolfowitz, 1944 [34].
Kaplansky, 1945 [15] gave two additional subdominant terms. See Fig. 2(a) for a plot of
the g = 2, q = 0 case.

6 Generating functions by unordered type

In this section, we give generating functions for the number of signed or unsigned ar-
rangements by unordered type. The results of Sections 4-5 for ordered types have analogs
for unordered types, obtained by allowing the variables to commute. We will use low-
ercase variables for the commutative case. Let ~u = (u1, u2, . . .) and ~v = (v1, v2, . . .) be
infinite sequences of commuting indeterminates. For convenience, set u0 = v0 = 1. Set
u(t) =

∑∞

n=1 tnun and v(t) =
∑∞

n=1 tnvn.

Definition 6.1. The commutative specialization of a function in noncommuting variables
U1, U2, . . . or V1, V2, . . . is obtained by specializing Un → un and Vn → vn for all n ≥ 1.

A signed arrangement ~σ ∈ B(g) with unordered type µ has unordered weight ωb(~σ) =
vµ = vµ1vµ2 · · · . An unsigned arrangement ~π ∈ A(g) of unordered type λ has unordered
weight ωa(~π) = uλ = uλ1uλ2 · · · . These are extended to the (graded) unordered weight of
sets of arrangements analogously to the ordered case.

The generating functions for counting signed arrangements by unordered type are

b(g)
n (~v) = b(g)

n (v1, v2, . . .) = ωb(B
(g)
n ) =

∑

µ∈Pn

b(g)
µ vµ1vµ2 . . . vµ`(µ)

(41)

b(g)(~v; t) = b(g)(v1, v2, . . . ; t) = ωb(B
(g); t) =

∞∑

n=0

tn
∑

µ∈Pn

b(g)
µ vµ1vµ2 . . . vµ`(µ)

(42)

=

∞∑

r=0

(2rr!)g−1
(

v(t)
1+v(t)

)r

(43)

by specializing Theorem 4.1 to commutative variables. This is a formal power series in
the ring Z[v1, v2, . . .][[t]].
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The generating functions for counting unsigned arrangements by unordered type are

a(g)
n (~u) = a(g)

n (u1, u2, . . .) = ωa(A
(g)
n ) =

∑

λ∈Pn

a
(g)
λ uλ1uλ2 . . . uλ`(λ)

(44)

a(g)(~u; t) = a(g)(u1, u2, . . . ; t) = ωa(A
(g); t) =

∞∑

n=0

tn
∑

λ∈Pn

a
(g)
λ uλ1uλ2 . . . uλ`(λ)

(45)

=
∞∑

r=0

(2rr!)g−1

(
u(t)

1 + u(t)
+ G̃u1t

)r

(46)

by specializing Theorem 5.7 to commutative variables. This is a formal power series in
the ring Z[u1, u2, . . .][[t]].

The homomorphism φ of Section 5 induces homomorphisms φ : Q[u1, u2, . . .] →
Q[v1, v2, . . .] and φ : Q[u1, u2, . . .][[t]] → Q[v1, v2, . . .][[t]] in the commutative case. We
will see that these are isomorphisms. We summarize the results on formulas for φ:

Theorem 6.2. (i) The unordered weight of all signages of unsigned id(g)
n (n > 0) is

φ(un) =
n∑

k=1

Gk−1v1
k−1

∑

µ∈Pn+1,k

M(µ)vµ1−1,µ2−1,...,µk−1 (47)

= vn + Gv1

n−1∑

r=0

vr · φ(un−1−r) (48)

(ii) Let ~σ be an unsigned (n, g)-arrangement with unordered type λ. The unordered
weight of all signages of ~σ is φ(uλ1)φ(uλ2) · · · .

(iii) φ
(
a(g)(~u; t)

)
= b(g)(~v; t).

Proof. These follow by specializing Theorems 5.2, 5.4 and Corollary 5.3 to commutative
variables. In (20), compositions with the same nonzero parts but in a different order
result in identical terms once we allow the variables to commute; collecting like terms
gives coefficient M(µ) in (47), for the number of such compositions.

The analog of (22) is

φ(uλ) = φ(uλ1)φ(uλ2) · · · =
∑

µ∈Pn

hλµ(G)vµ (49)

where we plug in (47), expand out the products and collect terms, and obtain transition
matrix h(G) from the coefficients. For n ≥ 0, the matrix h(G) is a p(n) × p(n) matrix
(where p(n) is the number of integer partitions of n), indexed by partitions λ, µ ∈ Pn.
We list row λ and column µ indices in reverse lexicographic order on Pn (or any other
extension of refinement order). If ~σ is an unsigned (n, g)-arrangement of unordered type
λ, then hλµ(G) gives the number of signages of ~σ with unordered type µ.
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Theorem 6.3. All parts (i)–(vi) of Theorem 5.5 go through to the commutative case via
the commutative specialization, with the following additional modifications:

(ii) In refinement order on partitions, h(G) is lower triangular with 1’s on the diagonal.

(iii) h(G)−1 = h(G̃). Thus φ−1(vλ) = φ−1(vλ1)φ
−1(vλ2) · · · =

∑
µ∈Pn

hλµ(G̃)uµ .

7 Example: Unsigned arrangements counted by type

We will use the results of the preceding sections to explicitly compute A
(g)
α , the number

of unsigned (n, g)-arrangements with ordered type α, and a
(g)
λ , the number of unsigned

(n, g)-arrangements with unordered type λ. Fix n > 0. To compute A
(g)
α for all α ∈ Cn,

1. Compute the ordered weight of all signed (n, g)-arrangements,

B(g)
n (~V ) = ωB(B(g)

n ) =
∑

β∈Cn

B
(g)
β Vβ =

n∑

k=0

b
(g)
k,k

∑

β∈Cn,k

Vβ

where b
(g)
k,k is given by (1), the double sum has 2n−1 terms, and Vβ = Vβ1Vβ2 · · · .

2. Compute A
(g)
n (~U) = ωA(A

(g)
n ) = φ−1(B

(g)
n (~V )), the ordered weight of all unsigned

(n, g)-arrangements. Use (24) to compute φ−1(V1), . . . , φ
−1(Vn), and use that φ−1 is

multiplicative and additive.

3. Collect terms by monomials in the U ’s: A
(g)
n (~U) =

∑
α∈Cn

A
(g)
α Uα. The coefficient of

Uα = Uα1Uα2 · · · is A
(g)
α .

We may compute a
(g)
λ for all λ ∈ Pn via the corresponding commutative formulas. Or,

use a
(g)
λ =

∑
α A

(g)
α , where α runs over distinct compositions obtained by permuting the

parts of λ.
Table 2 shows all unsigned (4, 2)-arrangements. An (n, 2)-arrangement is (σ(1), σ(2))

where σ(1) is the identity, so the table only shows the values of σ(2). We will apply
the above algorithm to compute the counts in this table for (4, 2)-arrangements, and for
(4, g)-arrangements for general g.

Let g = 2, so G = 1 and G̃ = −1
2
. By (1), the number of incompressible signed

(k, 2)-arrangements for k = 1, 2, 3, 4 is b
(2)
1,1 = 2, b

(2)
2,2 = 6, b

(2)
3,3 = 34, b

(2)
4,4 = 262. By (24),

φ−1(V1) = 1
2
U1

φ−1(V2) = U2 −
3
4
U1U1

φ−1(V3) = U3 −
1
2
U2U1 −

1
2
U1U2 + 1

8
U1U1U1

φ−1(V4) = U4 −
1
2
U3U1 −

1
2
U1U3 −

1
4
U2U1U1 + 1

4
U1U2U1 −

1
4
U1U1U2 + 5

16
U1U1U1U1
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# strips a
(2)
4,k Unordered a

(2)
λ Ordered A(2)

α
Permutations π(2)

k type λ type α

1 2 (4) 2 (4) 2 〈1, 2, 3, 4〉; 〈4, 3, 2, 1〉
2 10 (3, 1) 4 (3, 1) 2 〈3, 2, 1 | 4〉; 〈4 | 1, 2, 3〉

(1, 3) 2 〈1 | 4, 3, 2〉; 〈2, 3, 4 | 1〉
(2, 2) 6 (2, 2) 6 〈1, 2 | 4, 3〉; 〈2, 1 | 3, 4〉; 〈2, 1 | 4, 3〉;

〈3, 4 | 1, 2〉; 〈3, 4 | 2, 1〉; 〈4, 3 | 1, 2〉
3 10 (2, 1, 1) 10 (2, 1, 1) 2 〈3 | 1, 2 | 4〉; 〈4 | 2, 1 | 3〉

(1, 2, 1) 6 〈1 | 3, 2 | 4〉; 〈1 | 4 | 2, 3〉; 〈2, 3 | 1 | 4〉;
〈3, 2 | 4 | 1〉; 〈4 | 1 | 3, 2〉; 〈4 | 2, 3 | 1〉

(1, 1, 2) 2 〈1 | 3, 4 | 2〉; 〈2 | 4, 3 | 1〉
4 2 (1, 1, 1, 1) 2 (1, 1, 1, 1) 2 〈2 | 4 | 1 | 3〉; 〈3 | 1 | 4 | 2〉

Table 2: Unsigned (4, 2)-arrangements: ~π = (π(1), π(2)) on n = 4 elements with g = 2
permutations. π(1) = 〈1, 2, 3, 4〉 = identity and π(2) ∈ S4 as listed. π(2) is given in one-line

permutation notation, but annotated with vertical bars between strips. There are A
(2)
α

arrangements of ordered type α; a
(2)
λ of unordered type λ; and a

(2)
4,k with k strips.

The signed (4, 2)-arrangements have weight

B
(2)
4 (~V ) = B

(2)
(4)V4 + B

(2)
(31)V3V1 + B

(2)
(13)V1V3 + B

(2)
(22)V2V2

+ B
(2)
(211)V2V1V1 + B

(2)
(121)V1V2V1 + B

(2)
(112)V1V1V2 + B

(2)
(1111)V1V1V1V1

= b
(2)
1,1V4 + b

(2)
2,2(V3V1 + V1V3 + V2V2)

+ b
(2)
3,3(V2V1V1 + V1V2V1 + V1V1V2) + b

(2)
4,4V1V1V1V1

= 2V4 + 6(V3V1 + V1V3 + V2V2)

+ 34(V2V1V1 + V1V2V1 + V1V1V2) + 262V1V1V1V1 . (50)

The unsigned (4, 2)-arrangements have weight A
(2)
4 (~U) = φ−1(B

(2)
4 (~V )):

A
(2)
4 (~U) = φ−1(B

(2)
4 (~V ))

= 2φ−1(V4) + 6
(
φ−1(V3)φ

−1(V1) + φ−1(V1)φ
−1(V3) + φ−1(V2)φ

−1(V2)
)

+ · · ·

= 2U4 + 2U3U1 + 2U1U3 + 6U2U2

+ 2U2U1U1 + 6U1U2U1 + 2U1U1U2 + 2U1U1U1U1 . (51)

For each α ∈ C4, the coefficient of Uα1Uα2 · · · is A
(2)
α . Compare with Table 2.

For unordered types, replace Ui → ui, Vi → vi so that they commute. This gives

b
(2)
4 (~v) = 2v4 + 12v3v1 + 6v2

2 + 102v2v1
2 + 262v1

4

a
(2)
4 (~u) = 2u4 + 4u3u1 + 6u2u2 + 10u2u1

2 + 2u1
4
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This gives the a
(2)
λ column in Table 2. Finally, the generating function for the number of

strips is obtained by specializing vi → z or ui → z, and is distinguished notationally by
having a scalar argument z instead of a vector argument. a

(2)
4 (z) gives the a

(2)
4,k column.

b
(2)
4 (z) = 2z + 18z2 + 102z3 + 262z4

a
(2)
4 (z) = 2z + 10z2 + 10z3 + 2z4

In the above computations, g = 2 gave G = 1 and G̃ = −1
2
. To compute A

(g)
α for all

g, we leave g as a variable, so that G = 2g−1 − 1 and G̃ = 2−(g−1) − 1. By (1), the number
of incompressible signed (n, g)-arrangements for n = 1, 2, 3, 4 is

b
(g)
1,1 = 2g−1 b

(g)
3,3 = 48g−1 − 2(8g−1) + 2g−1

b
(g)
2,2 = 8g−1 − 2g−1 b

(g)
4,4 = 384g−1 − 3(48g−1) + 3(8g−1) − 2g−1

which replace 2, 6, 34, 262 in (50). The map from signed weights to unsigned weights is

φ−1(V1) = (G̃ + 1)U1

φ−1(V2) = U2 + G̃(G̃ + 2)U1U1

φ−1(V3) = U3 + G̃U2U1 + G̃U1U2 + G̃(G̃2 + 3G̃ + 1)U1U1U1

φ−1(V4) = U4 + G̃U3U1 + G̃U1U3 + G̃(G̃ + 1)U2U1U1

+ G̃2U1U2U1 + G̃(G̃ + 1)U1U1U2 + G̃2(G̃ + 3)(G̃ + 1)U1U1U1U1

We ultimately arrive at these counts of unsigned (4, g)-arrangements by ordered type:

A
(g)
(4) = 2g−1 A

(g)
(2,1,1) = A

(g)
(1,1,2) = 12g−1 − 4g−1 − 8g−1 + 2g−1

A
(g)
(3,1) = A

(g)
(1,3) = 4g−1 − 2g−1 A

(g)
(1,2,1) = 12g−1 − 2(4g−1) + 2g−1

A
(g)
(2,2) = 8g−1 − 2g−1 A

(g)
(1,1,1,1) = 24g−1 − 3(12g−1) + 8g−1 + 2(4g−1) − 2g−1

and these counts by unordered type:

a
(g)
(4) = 2g−1 a

(g)
(2,1,1) = 3(12g−1) − 2(8g−1) − 4(4g−1) + 3(2g−1)

a
(g)
(3,1) = 2(4g−1) − 2(2g−1) a

(g)
(1,1,1,1) = 24g−1 − 3(12g−1) + 8g−1 + 2(4g−1) − 2g−1

a
(g)
(2,2) = 8g−1 − 2g−1

8 Applications to rearrangement distance and con-

served segments

In genome studies using unsigned marker data, it is common to use the canonical signage;
although this may not properly resolve the signs of the singletons, it does establish strip
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boundaries. However, there could be undetected flips of individual markers within the
strips. In Section 8.1, we will see that for two genomes under the uniform distribution, the
canonical signage leads to errors in strip boundaries in ≈ 77% of all cases. In Section 8.2,
we will study a manifestation of this error in a synteny block detection algorithm by
Sankoff and Trinh [29, 30]. In Section 8.3, we will study the number of arrangements when
a minimum or maximum strip length is imposed (for example, to filter out singletons).

In Section 8.4, we will describe issues and potential future work concerning the differ-
ence in the distribution of incompressible arrangements (typically representing segment
orders) vs. arbitrary arrangements (typically representing gene orders).

8.1 Incorrect identification of conserved segments due to mis-
classified signs

We consider genome rearrangement studies that determine conserved segments as strips in
unsigned marker data. The following theorem shows that if all arrangements are equally
likely, the canonical signage is likely to make errors in determining strip boundaries for
≈ 77% of all cases with two genomes when n is large, but is unlikely to make errors in
the boundaries for three or more genomes when n is large. We are only addressing the
strip boundaries; the signs of singleton elements remain ambiguous, but changing signs
of singletons does not affect strip boundaries.

Theorem 8.1. Let ~σ range over B(g)
n,n. As n → ∞, the probability that |~σ| has fewer than

n unsigned strips approaches 1− exp(−3/2) ≈ 0.7769 if g = 2, and approaches 0 if g > 2.

Proof. Let ~σ ∈ B
(g)
n and consider the unsigned arrangement |~σ|. The number of strips in

|~σ| is less or equal to the number of strips in σ, so if |~σ| has n unsigned strips then ~σ must
have n signed strips. (The converse need not hold.)

Thus, the number of arrangements ~σ ∈ B(g)
n,n with |~σ| ∈ A(g)

n,n is 2n(g−1)a
(g)
n,n (by assigning

all possible signs to the n elements in all but the first genome).

The number of arrangements ~σ ∈ B
(g)
n,n with |~σ| 6∈ A

(g)
n,n is b

(g)
n,n − 2n(g−1)a

(g)
n,n.

The fraction of arrangements ~σ ∈ B
(g)
n,n for which |~σ| 6∈ A

(g)
n,n is

P
(
|~σ| 6∈ A(g)

n,n

∣∣∣ ~σ ∈ B(g)
n,n

)
=

b
(g)
n,n − 2n(g−1)a

(g)
n,n

b
(g)
n,n

= 1 −
a

(g)
n,n/n!g−1

b
(g)
n,n/(2n(g−1)n!g−1)

. (52)

For 2 genomes, the g = 2, q = 0 cases of (40) and (5) show that this approaches
1 − exp(−2)/ exp(− 1

2
) = 1 − exp(−3/2) as n → ∞. See Fig. 2(c).

For g > 2 genomes, the q = 0 cases of (39) and (4) are

lim
n→∞

a
(g)
n,n

n!g−1
= 1 and lim

n→∞

b
(g)
n,n

2n(g−1)n!g−1
= 1

so (52) approaches 0 as n → ∞.

Notes:
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1. Genome rearrangement studies typically assume that genomes evolved through a se-
ries of rearrangement events, such as a certain number of reversals. Assuming that
the arrangements are due to a particular number of reversals leads to a non-uniform
probability distribution over all arrangements; Theorem 8.1 assumes a uniform prob-
ability distribution over all arrangements, so it would not apply in that situation.

2. Sankoff and Trinh [29, 30] introduced an algorithm for constructing syntenic blocks
for two genomes, that was intended to be simpler to analyze than the algorithm
by Pevzner and Tesler [25]. Peng, Pevzner and Tesler [23] determined a number of
flaws in the Sankoff-Trinh construction, one of which is quantified by this theorem.
This will be described in the next section.

8.2 Sankoff and Trinh: Synteny block construction

In a debate between Pevzner and Tesler [24] and Sankoff and Trinh [29, 30] concerning
the random breakage model of evolution, Sankoff and Trinh introduced a synteny block
construction algorithm. Peng et al. [23] found a number of flaws in this algorithm, and
stated that a certain error would occur in this algorithm in approximately 77% of all
signed permutations. We will now prove that; for full details on the context, see [23]. The
portion of Sankoff and Trinh’s algorithm relevant to this discussion is as follows. Let π be
a signed permutation on 1, . . . , n. There are also integer parameters w ≥ 0 and ∆ ≥ 1.
In our terminology, this concerns the signed (n, 2)-arrangement (idn, π).

ST-Synteny(π, w, ∆)
Step 1: Define each element of π as a block and iteratively amalgamate the resulting

blocks as follows: two adjacent blocks in π are amalgamated if for some i, j > 0, element
i or −i is in one block and j or −j is in the other block and |i − j| ≤ w. Signs of the
elements are recorded but ignored during amalgamation.

Step 2: Delete any “short” block containing less than ∆ elements (∆ = 3 in [29]).

We recount an example from [23] of one of the types of errors that occurs with this
algorithm. Given one reversal

σ(1) : 1 . . . 100 101 . . . 200 201 . . . 300
π = σ(2) : 1 . . . 100 −200 . . .−101 201 . . . 300

(53)

there should be 3 blocks and 2 breakpoints. However, there is no setting of the parameters
of ST-Synteny that does this. If w = 0, the 300 separate elements become 300 separate
blocks. These would be deleted for being too small with any setting of the minimum block
size ∆ > 1, so we set ∆ = 1. If w ≥ 1, ST-Synteny forms one large block, as follows.
First it does a number of amalgamation steps resulting in the expected 3 blocks:

〈1 . . . 100〉 〈−200 . . .−101〉 〈201 . . .300〉 (54)

Essentially to this point, we have performed unsigned compression on |π| (the bijection
in Theorem 2.4; unsigned because Step 1 ignores the signs of elements).
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But the iterative amalgamation does not stop there. Since 100 and −101 are now in
adjacent blocks and |101 − 100| = 1 ≤ w, it merges the first two blocks. Since −200 and
201 are in adjacent blocks, those blocks are also merged. The result is a single block

〈1 . . . 100 −200 . . .−101 201 . . . 300〉 (55)

In particular, there is no setting of the ST-Synteny parameters that will produce strips
as defined in this paper, although that should be what w = ∆ = 1 produces. Instead,
the setting ∆ = w = 1 is equivalent to repeatedly applying absolute value and unsigned
compression in any order, until the result stabilizes. On the other hand, iterating signed
compression would stabilize in one step. We now explain this more formally.

Definition 8.2 (Signed compression of a signed permutation). For a signed per-
mutation π ∈ Bn, consider the signed (n, 2)-arrangement (idn, π). Compute the signed
compression Ψb(idn, π) = (~τ , β) (Theorem 2.2), where ~τ = (τ (1), τ (2)) is a signed arrange-
ment and β is a composition. Define fb(π) = τ (2).

Definition 8.3 (Unsigned compression of a permutation). For a permutation
π ∈ Sn or signed permutation π ∈ Bn, form the unsigned (n, 2)-arrangement (idn, |π|).
Compute the unsigned compression Ψa(idn, |π|) = (~τ , α) (Theorem 2.4), where |π| means
to take the absolute value of each element in π. Again, ~τ = (τ (1), τ (2)) is a signed arrange-
ment and α is a composition. Define fa(π) = τ (2).

For w = ∆ = 1, the ST-Synteny algorithm reduces to repeated applications of fa to π
until it stabilizes. If fa(fb(π)) has the same size as fb(π), then this algorithm stabilizes in
one step and the result is a correct decomposition into strips. Otherwise, the algorithm
overamalgamates.

Continuing with the example above, the signed compression of π in (53) is fb(π) =
〈1,−2, 3〉, where “1” represents the compression of 1, . . . , 100; “−2” represents the com-
pression of −200, . . . ,−101; and “3” represents the compression of 201, . . . , 300. Signed
compression is stable in one step, since fb(fb(π)) = fb(π). Unsigned compression also
gives fa(π) = 〈1,−2, 3〉 (cf. (54)), but the orientation is ignored so it undergoes further
compression: fa(fa(π)) = fa(〈1,−2, 3〉) = fa(〈1, 2, 3〉) = 〈1〉 (cf. (55)). Then it terminates
since fa(〈1〉) = 〈1〉 does not reduce the length. In 〈1〉, “1” represents the whole original
permutation, without indication of the details of the rearrangements therein.

Next, we quantify how often over-amalgamation occurs. Consider signed permutations
on n ≥ 1 elements with k ≥ 1 strips, π ∈ Bn,k. There are b

(2)
n,k =

(
n−1
k−1

)
b
(2)
k,k such permu-

tations, of which
(

n−1
k−1

)
2ka

(2)
k,k would also compress to exactly k strips using fa instead of

fb. Thus the total number of signed permutations of size n that are correctly broken into
strips by this algorithm is

(a)
n∑

k=1

(
n − 1

k − 1

)
2ka

(2)
k,k out of (b)

n∑

k=1

(
n − 1

k − 1

)
b
(2)
k,k = 2n n! (56)
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total signed arrangements. The ratio of the kth term of (56a) to the kth term of (56b)
approaches exp(−3/2) for large k as n → ∞, by the proof of Theorem 8.1. The terms grow
fast enough by (5) and (40) that the ratio of sum (56a) to (56b) approaches exp(−3/2).

The fraction of signed arrangements of size n that are not correctly broken into strips
by this algorithm therefore approaches 1 − exp(−3/2).

8.3 Minimum and maximum strip length

In [13], Pevzner and Hannenhalli give an algorithm for assigning signs in unsigned ar-
rangements with two genomes, based on an optimization criterion (minimizing the signed
reversal distance between the genomes). Under their optimization criterion, singletons
will only have the canonical signage half the time (canonical for singletons is positive);
strips of length 2 usually have the canonical signage, but not always; and strips of length
3 or greater are always assigned the canonical signage. Their optimization criterion is
useful computationally, although evolution did not necessarily optimize their criterion.
This motivates the criteria that in an unsigned genome, signs should be assigned canoni-
cally in all unsigned strips of length ≥ L, while unsigned strips of length < L may have
ambiguous signs and should be deleted.

Theorem 8.4. Let L > 1. The generating function for the number a
(g)
≥L(n) of unsigned

(n, g)-arrangements in which all strips have length ≥ L is

∞∑

n=0

a
(g)
≥L(n) tn =

∞∑

r=0

r!g−1

(
2g−1tL

1 − t + tL

)r

= b(g)(t, tL−1) . (57)

Proof. Specialize (46) by setting ui = 0 for i < L, ui = 1 for i ≥ L.

Then G̃u1t = 0 (u1 = 0 since L > 1) and u(t) =
∑∞

i=L ti = tL/(1 − t).
Plug these into (46) and simplify to get the left side of (57).
Observe that plugging z = tL−1 into (13) gives that same summation, hence we have

the right side of (57). A combinatorial interpretation is that unsigned (n, g)-arrangements
with k parts, all of length ≥ L, are in a bijection with signed (n−k(L−1), g)-arrangements
with k parts, all of length ≥ 1. Starting with such an unsigned arrangement, apply the
canonical signage, remove L − 1 entries from each strip, and renumber the remaining
elements to obtain such a signed arrangement. This is reversible.

Note that Abramson and Moser, 1967 [1, p. 1249, Eq. (ii)] have a multiple summation
formula (L − 2 nested sums) for the g = 2 case of this.

In studying the reversal distance between two genomes and phylogenetic trees based
on multiple genomes, in the signed case one may compress all strips to singletons without
affecting the distances. In the unsigned case, by the Pevzner and Hannenhalli [13] result,
one may retain strips of length ≤ 3, and compress each strip of length ≥ 4 to a strip
of length 3, without affecting the distances. We may specialize (46) and (43) to obtain
generating functions that count arrangements by maximum strip length:
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Theorem 8.5. Let L > 1. Let a
(g)
<L(n) and b

(g)
<L(n) respectively be the numbers of unsigned

and signed (n, g)-arrangements in which all strips have length < L. Then

∞∑

n=0

a
(g)
<L(n)tn =

∞∑

r=0

(2r r!)g−1
(

t−tL

1−tL
+ G̃t

)r

,

∞∑

n=0

b
(g)
<L(n)tn =

∞∑

r=0

(2r r!)g−1
(

t−tL

1−tL

)r

.

8.4 Rearrangement distance for segments vs. genes

Some papers work with conserved segments while others work with conserved genes. The
distribution of incompressible permutations, signed or unsigned, is different than the
distribution of all permutations.

The reversal distance between two unichromosomal genomes is the minimum number
of reversals required to convert one into the other. For two signed genomes, a polynomial-
time algorithm for it was first found by Pevzner and Hannenhalli [14], and a linear time
algorithm was developed by Bader, Moret, and Yan, 2001 [4].

For n genes, Kececioglu and Sankoff, 1994 [17] and Bourque and Pevzner, 2002 [8]
used simulations to empirically compute the expected reversal distance d to the identity
after performing r random signed reversals on the identity. [17] determined that E(d) ≈ r
for r ≤ .5n when n = 1000, and [8] determined E(d) ≈ r for r ≤ .4n when n = 100. Both
of these studies were based on simulations. Berestycki and Durrett [7] used mathematical
analysis (rather than simulations) to show that E(d) ≈ r for r ≤ .5n as n → ∞, but they
do not quantify how large n has to be for this to be practical. Xu et al., 2006 [35] compute
the expected rearrangement distance between two multichromosomal genomes with a
specified number of genes and chromosomes, using additional rearrangement operations
that may apply to multichromosomal genomes.

These studies assume r random rearrangement operations are performed on n genes,
and analyze the minimal number of rearrangements d ≤ r that could have produced
that arrangement. The number of breakpoints depends on the particular details of the
rearrangements. However, genome rearrangement studies that start by computing strips
(or more generally conserved segments or syntenic blocks; see [19, 24]) will result in k ≤ n
strips, with k − 1 internal breakpoints. Results that analyze the relation between d and
r based on n genes do not directly apply to the relation between d and r based on k
segments, particularly if k � n. Future work should address this; [23, 29, 30] are a start.

9 Circular chromosomes

The arrangements described in previous sections of this paper are linear arrangements,
which model unichromosomal linear genomes. In this section, we will derive analogous
results for circular arrangements, which model unichromosomal circular genomes. Sec-
tion 9.1 gives an example of a circular arrangement, defines the notation, and gives basic
enumeration results for counting the number of signed circular arrangements with speci-
fied type or number of strips. In Section 9.2, we derive the generating functions for the
number of signed circular arrangements by ordered type, and in Section 9.3 we do the
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same for unsigned circular arrangements. Section 9.4 gives the generating functions for
unordered types. Finally, in Section 9.5, we specialize these results to get generating
functions for the number of strips and number of incompressible arrangements.

9.1 Circular arrangements, notation and example

Unsigned circular permutations of {1, . . . , n} are unsigned permutations 〈j1, . . . , jn〉 of
{1, . . . , n} modulo cyclic shifts:

〈j1, . . . , jn〉 ≡ 〈j2, . . . , jn, j1〉 ≡ · · · ≡ 〈jn, j1, . . . , jn−1〉 (58)

and reversing the whole sequence:

〈j1, . . . , jn〉 ≡ 〈jn, jn−1, . . . , j1〉 (59)

For n ≥ 3 there are 2n equivalent linear representations of each unsigned circular per-
mutation, while for n < 3 some reversals and cyclic shifts are the same. Let S̊n be the
set of unsigned circular permutations of {1, . . . , n}. Then |S̊n| = 1 for n = 0, 1, 2, 3 and
|S̊n| = (n− 1)!/2 for n ≥ 3. Technically, the action just described is dihedral rather than
circular, but the term circular genome is well-established.

Signed circular permutations of {1, . . . , n} are signed permutations 〈j1, . . . , jn〉 of
{1, . . . , n} modulo cyclic shifts (58) and negatives in place of (59):

〈j1, j2, . . . , jn〉 ≡ 〈−jn, . . . ,−j2,−j1〉 (60)

For n ≥ 1 there are 2n equivalent linear representations of each signed circular permu-
tation. Let B̊n be the set of signed circular permutations on 1, . . . , n. Then |B̊n| = 1 for
n = 0 and 2n−1(n − 1)! for n ≥ 1.

We will treat the case of g ≥ 2 circular genomes at a time, corresponding to a tuple
of g circular permutations in which the first is the identity. An (un)signed circular (n, g)-
arrangement is a g-tuple of permutations ~σ = (σ(1), . . . , σ(g)) in S̊n (unsigned) or B̊n

(signed) where σ(1) = 〈1, . . . , n〉. Let Å
(g)
n denote the set of unsigned circular (n, g)-

arrangements and B̊
(g)
n denote the set of signed circular arrangements. Let Å(g) and B̊(g)

denote the sets of (un)signed circular arrangements of all sizes.
Adjacencies and breakpoints are defined as for linear arrangements, except that con-

secutive entries of the permutations now are modulo the relations described above (so
the sequences do not have starts/ends but instead wrap around; thus, entries (n, 1) are
consecutive in σ(1)). Linear strips are sequences of consecutive entries of σ(1) bounded on
both sides by breakpoints. Circular strips arise when there are no breakpoints. The term
strip alone will refer to linear strips. Further technicalities will be described in Note 9.2.

Example 9.1. Consider this signed circular (12, 3)-arrangement:

σ(1) : 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12〉
σ(2) : 〈3, 4, 5, 11, 12, 1,−10,−9,−8,−7,−6, 2〉
σ(3) : 〈9, 10,−4,−3,−2,−1,−12, 11,−7,−6,−5, 8〉
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A different but equivalent representation of this same arrangement is

σ(1) : 〈12, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11〉
σ(2) : 〈12, 1,−10,−9,−8,−7,−6, 2, 3, 4, 5, 11〉
σ(3) : 〈12, 1, 2, 3, 4,−10,−9,−8, 5, 6, 7,−11〉

The breakpoints in σ(1) are (1, 2), (4, 5), (5, 6), (7, 8), (10, 11), (11, 12), and the adjacencies
are (12, 1), (2, 3), (3, 4), (6, 7), (8, 9), (9, 10). We code (i − 1, i) as i (for i = 2, . . . , n) and
(n, 1) as 1, giving breakpoint set S = {2, 5, 6, 8, 11, 12}. The 6 breakpoints break this
arrangement into 6 linear strips:

σ(1) : 12, 1 , 2, 3, 4 , 5 , 6, 7 , 8, 9, 10 , 11 = J1, J2, J3, J4, J5, J6

σ(2) : 12, 1 , −10,−9,−8 , −7,−6 , 2, 3, 4 , 5 , 11 = J1, J2,−J5, J3, J4,−J6

σ(3) : 12, 1 , 2, 3, 4 , −10,−9,−8 , 5 , 6, 7 , −11 = J1, J2,−J5, J3, J4,−J6

The strips are J1 = 〈12, 1〉, J2 = 〈2, 3, 4〉, J3 = 〈5〉, J4 = 〈6, 7〉, J5 = 〈8, 9, 10〉, and
J6 = 〈11〉, where J1 is the strip in σ(1) with 1 and the strips are numbered consecutively
in σ(1) from there. The ordered 1-type of the arrangement is the lengths of the consecutive
strips in σ(1) starting with J1: γ = (2, 3, 1, 2, 3, 1). The ordered type is the lexicographically
largest cyclic shift of the 1-type, β = (3, 1, 2, 3, 1, 2), and the ordered weight is based on
this, V3V1V2V3V1V2 (noncommuting Vi’s). The unordered type is the partition formed by
putting the strip lengths in weakly decreasing order, µ = (3, 3, 2, 2, 1, 1), and the unordered
weight is v3

2v2
2v1

2 (commuting vi’s).
Replacing ±Ji by ±i gives the compression of ~σ as a signed circular arrangement:

τ (1) : 〈1, 2, 3, 4, 5, 6〉
τ (2) : 〈1,−5,−4, 2, 3, 6〉
τ (3) : 〈1, 2,−5, 3, 4,−6〉

Let C̊n be the set of compositions of n that are lexicographically largest among all their
cyclic shifts, and C̊n,k be the subset of those which have k parts. Ordered 1-types range

over Cn; ordered types range over C̊n; and unordered types range over Pn. The identity
arrangement is an exception to this, and will be described in Note 9.2.

The period per(γ) of a composition γ = (γ1, . . . , γk) ∈ Cn is the minimum d (1 ≤ d ≤ k)
for which (γ1, . . . , γk) = (γd+1, . . . , γk, γ1, . . . , γd). The period divides k = `(γ).

For n > 1, a signed circular (n, g)-arrangement (besides the identity) is incompressible
if it equals its compression (equivalent to any of: it has no adjacencies; all its strips are
singletons; its type is (1n)). Note that the compression of any signed circular arrangement
is incompressible. The circular identity arrangement has special conventions.

Note 9.2. Special conventions for the circular identity arrangement.

(i) Circular arrangements (both signed and unsigned) with k > 0 breakpoints break
into k linear strips. It is impossible to have exactly 1 breakpoint. The circular
identity arrangement id(g)

n (all g permutations equal 〈1, . . . , n〉) has 0 breakpoints;
we regard it as 0 linear strips and 1 circular strip. With this convention, circular
arrangements with k breakpoints have k linear strips under all conditions.
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(ii) As a signed circular arrangement, id(g)
n (for n ≥ 0) has type denoted by a new symbol,

C(n) (it is not (n), which would mean a linear strip of length n); ordered weight
V̊n; and unordered weight v̊n. The variables with ring accents are new variables
distinct from the non-ringed versions. As an unsigned circular arrangement, it has
type C(n), ordered weight Ůn and unordered weight ůn.

(iii) For circular signed and unsigned arrangements, the null arrangement id
(g)
0 (n = 0)

is incompressible, while id(g)
n for n > 0 is compressible with compression id

(g)
0 .

Let n ≥ 0. Let B̊
(g)
n,k be the subset of B̊

(g)
n consisting of arrangements that break into

k ≥ 0 linear strips, and b̊
(g)
n,k = |B̊

(g)
n,k| be the number of such arrangements.

Let B̊
(g)
β be the number of signed circular arrangements with ordered type β ∈ C̊n and

b̊
(g)
µ be the number of signed circular arrangements with unordered type µ ∈ Pn.

For S ⊂ {1, . . . , n}, let B̊
(g)
n,S be the subset of B̊

(g)
n in which the breakpoint set is S. Let

b̊
(g)
n,S = |B̊

(g)
n,S| be the number of such arrangements.

Theorem 9.3. For n ≥ 0 and S ⊂ {1, . . . , n} with |S| = k > 0, the procedure illustrated
in Example 9.1 gives a bijection (“compression”)

Ψb : B̊
(g)
n,S → B̊

(g)
k,k

between signed circular (n, g)-arrangements with k strips whose breakpoint set is S, and
incompressible signed circular (k, g)-arrangements. For the circular identity arrangement,

Ψb(id
(g)
n ) = id

(g)
0 , which gives the bijection for n ≥ 0, S = ∅, k = 0.

Corollary 9.4. (i) b̊
(g)
0,0 = 1 (the null arrangement) and for k > 0,

b̊
(g)
k,k = (−1)k +

k∑

r=1

(−1)k−r

(
k

r

)
(2r−1(r − 1)!)g−1 . (61)

(ii) For all S ⊂ {1, . . . , n} with |S| = k, we have B̊
(g)
n,S = b̊

(g)
k,k.

(iii) b̊
(g)
n,k = b̊

(g)
k,k

(
n
k

)
.

(iv) For β ∈ C̊n,k, B̊
(g)
β = n

`(β)/ per(β)
b̊
(g)
k,k. Note `(β) = k.

Due to conventions on the circular identity arrangement (Note 9.2), B̊
(g)
C(n) = 1 for

n ≥ 0 (extending the k = 0 case) and B̊
(g)
(n) = 0 for n > 0 (the k = 1 case).

(v) For µ ∈ Pn,k, b̊
(g)
µ = M̊(µ)̊b

(g)
k,k where the number of subsets of {1, . . . , n} with un-

ordered circular type µ is

M̊(µ) =
n

`(µ)
M(µ) =

n

`(µ)

(
`(µ)

m1(µ), m2(µ), . . .

)
=

n · (`(µ) − 1)!

m1(µ)! m2(µ)! · · ·
. (62)

Note `(µ) = k. As in (iv), b̊
(g)
C(n) = 1 for n ≥ 0 and b̊

(g)
(n) = 0 for n > 0.
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Proof. The bijection in Theorem 9.3 gives (ii). Letting S range over all k-element subsets
of {1, . . . , n} gives (iii). Letting S range over subsets of {1, . . . , n} of all sizes k = 0, . . . , n
gives the following, which will lead to (i):

n∑

k=0

b̊
(g)
k,k

(
n

k

)
= |B̊(g)

n | =

{
(2n−1(n − 1)!)g−1 if n ≥ 1;

1 if n = 0.
(63)

This system of equations (63) for n ≥ 0 may be solved for b̊
(g)
k,k, giving unique solution (61).

For (iv), the subsets of {1, . . . , n} with ordered type β have the form

S ⊕ q = {β1 + q, β1 + β2 + q, . . . , β1 + · · · + βk + q} (mod n) (64)

where S = {1 + β1, 1 + β1 + β2, . . .}; every sum is reduced modulo n to a number between
1 and n; and q ranges over all integers. Values q = 0, 1, 2, . . . , n

`(β)/ per(β)
− 1 give distinct

sets S ⊕ q and all other values of q repeat one of these. So B̊
(g)
β =

∑
q B̊n,S⊕q over these

values of q, giving (iv).

For (v), b̊
(g)
µ =

∑
S b̊

(g)
n,S where S ranges over subsets of {1, . . . , n} of unordered circular

type µ. All of these have k = |S| breakpoints, so b̊
(g)
µ is b̊

(g)
k,k times the number, M̊(µ), of

such sets. The formula for M̊(µ) is proven below in Proposition 9.5.

Proposition 9.5. For n > 0, the number of subsets of {1, . . . , n} with unordered circular
type µ ∈ Pn is M̊(µ) = n

`(µ)
M(µ).

Proof. Let k = `(µ). Let E be the subset of C̊n consisting of compositions that are
permutations of µ. Each β ∈ E has per(β) distinct cyclic shifts, so the total number of
compositions in Cn obtained by permuting parts of µ is M(µ) =

∑
β∈E per(β).

Circular arrangements of unordered type µ have ordered type β for some β ∈ E. There
are n

`(β)/ per(β)
distinct breakpoint sets with circular ordered type β, shown in (64). Note

that `(β) = `(µ) for all β ∈ E. So

M̊(µ) =
∑

β∈E

n

`(β)/ per(β)
=
∑

β∈E

n

`(µ)/ per(β)
=

n

`(µ)

∑

β∈E

per(β) =
n

`(µ)
M(µ) . (65)

9.2 Signed circular arrangements by ordered type

For every n, the circular identity arrangement consists of one circular strip (Note 9.2),
while all other arrangements consist of two or more linear strips. We introduce new
variables with ring accents for weights of circular strips.

For weights of signed arrangements, let ~v = (v1, v2, v3, . . .) and ~̊v = (̊v0, v̊1, v̊2, . . .)

be infinite sequences of commuting indeterminates. Let ~V = (V1, V2, V3, . . .) and ~̊V =
(V̊0, V̊1, V̊2, . . .) be infinite sequences of noncommuting indeterminates. For convenience,
set v0 = V0 = 1 (note that v̊0 and V̊0 are still indeterminates, not 1). Define monomials
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Vβ, vµ as before (Vβ = Vβ1Vβ2 · · · ). Define ~u, ~̊u, ~U , ~̊U , Uα, uλ similarly for unsigned
arrangements.

In the noncommutative case, we define the straightening of a monomial Vγ to be

[Vγ]◦ = Vβ, where γ ∈ Cn,k and β ∈ C̊n,k is the lexicographically largest cyclic shift of γ.
This corresponds to converting an ordered 1-type to an ordered type. For a formal series

f =

∞∑

n=0

k̊nV̊n +

∞∑

n=0

∑

γ∈Cn

kγVγ the straightening is [f ]◦ =

∞∑

n=0

k̊nV̊n +

∞∑

n=0

∑

γ∈Cn

kγ[Vγ ]◦

where the coefficients (k’s) are free of V ’s. For example, [(5GV(2,1) − V3)(V5 − V(4,1))]◦ =
[5GV(2,1,5) − 5GV(2,1,4,1) − V(3,5) + V(3,4,1)]◦ = 5GV(5,2,1)−5GV(4,1,2,1)−V(5,3)+V(4,1,3). Define
straightening for monomials and series in Uα’s analogously. Straightening is not relevant
in the commutative case.

Note that straightening commutes with sums, [f + h]◦ = [f ]◦ + [h]◦, but does not
commute with products: usually, [fh]◦ 6= [f ]◦[h]◦, so straightening must be done after
computing all products. Multiplication has a cyclic property [f1f2 · · · fk]◦ = [f2 · · · fkf1]◦.

Let ~σ ∈ B̊(g). If ~σ = id(g)
n then its ordered weight is ω̊B(σ) = V̊n and its unordered

weight is v̊n. For ~σ 6= id(g)
n , if ~σ has ordered 1-type γ, ordered type β, and unordered type

µ, then its ordered weight is ω̊B(~σ) = [Vγ]◦ = Vβ and its unordered weight is ω̊b(~σ) = vµ.
Weights of sets of arrangements are defined analogously to the linear case. The generating
function for the number of signed circular arrangements by ordered type is

B̊(g)(~V ; ~̊V ; t) =
∞∑

n=0

tnB̊(g)
n (~V ; ~̊V ) =

∞∑

n=0

V̊ntn +
∞∑

n=1

tn
∑

β∈C̊n, `(β)>1

B̊
(g)
β Vβ1Vβ2 . . . Vβ`(β)

. (66)

Since we summed over β ∈ C̊n rather than Cn, the monomials Vβ are already straightened.
We will give the analogous formula for the unordered case in Section 9.4.

Set V (t) =
∑∞

n=1 tnVn, V ′(t) =
∑∞

n=1 ntn−1Vn, and V̊ (t) =
∑∞

n=0 tnV̊n.
The following theorem gives a formula for (66). Later we will apply φ−1 to it to derive

a generating function for the unsigned case.

Theorem 9.6. The generating function for the number of signed circular arrangements
by ordered type is

B̊(g)(~V ; ~̊V ; t) =

[
V̊ (t) + t V ′(t)

(
−
(
1 + V (t)

)−1
+

∞∑

r=1

(2r−1(r − 1)!)g−1 V (t)r−1

(
1 + V (t)

)r+1

)]

◦

=

[
V̊ (t) + t V ′(t)

(
−
(
1 + V (t)

)−1
+

B(g)(~V ; t)
(
1 + V (t)

)2

)]

◦

(67)

Proof. In (66), consider B̊
(g)
β Vβ1Vβ2 . . . Vβk

, where β ∈ C̊n,k with k > 1. By Corol-

lary 9.4(iv), B̊
(g)
β = n

`(β)/ per(β)
b̊
(g)
k,k. Let d = per(β), so β has k/d periods. A single

period of β has sum β1 + · · ·+ βd = n
k/d

= n
`(β)/ per(β)

, so B̊
(g)
β = (β1 + · · · + βd)̊b

(g)
k,k. Then

B̊
(g)
β Vβ1Vβ2 . . . Vβk

= B̊
(g)
β Vβ =

∑
γ b̊

(g)
k,k γ1 [Vγ ]◦
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where γ runs over {(βi, βi+1, . . . , βk, β1, · · · , βi−1) : i = 1, . . . , d}, the d distinct composi-
tions that straighten to β. (Note that in that sum, γ1 takes on values β1, . . . , βd.) By (66),

B̊(g)(~V ; ~̊V ; t) =

∞∑

n=0

V̊ntn +

∞∑

n=1

tn
∑

β∈C̊n, `(β)>1

B̊
(g)
β Vβ = V̊ (t) +

∞∑

k=2

b̊
(g)
k,k

∞∑

n=1

tn
∑

γ∈Cn,k

γ1[Vγ ]◦

Note that b̊
(g)
1,1 = 0, so we may extend this sum to k = 1. Also we commute straightening

with the linear combination.

= V̊ (t) +




∞∑

k=1

b̊
(g)
k,k

∞∑

n=1

tn
∑

γ∈Cn,k

γ1Vγ




◦

= V̊ (t) +

[
∞∑

k=1

b̊
(g)
k,kt V ′(t)V (t)k−1

]

◦

= V̊ (t) +

[
t V ′(t)

∞∑

k=1

b̊
(g)
k,kV (t)k−1

]

◦

(68)

Use (61) to evaluate the sum within that expression:

∞∑

k=1

b̊
(g)
k,kV (t)k−1 =

∞∑

k=1

(−1)kV (t)k−1 +
∞∑

k=1

k∑

r=1

(−1)k−r

(
k

r

)
(2r−1(r − 1)!)g−1V (t)k−1

= −
(
1 + V (t)

)−1
+

∞∑

r=1

(2r−1(r − 1)!)g−1
∞∑

k=r

(−1)k−r

(
k

r

)
V (t)k−1

= −
(
1 + V (t)

)−1
+

∞∑

r=1

(2r−1(r − 1)!)g−1 V (t)r−1

(
1 + V (t)

)r+1

= −
(
1 + V (t)

)−1
+

B(g)(~V ; t)
(
1 + V (t)

)2 by (12). (69)

Plugging (69) into (68) gives (67).

Specialization of (67) for the number of signed circular arrangements by size and
number of strips will be considered in Section 9.5.

9.3 Unsigned circular arrangements by ordered type

In this section, we will extend Theorem 5.2 and Corollary 5.3 to compute the ordered
weight generating function for unsigned circular arrangements.

For weights of unsigned circular arrangements, notation is defined analogously to the
signed case but with U ’s instead of V ’s and a’s instead of b’s (with the same conventions

on upper/lowercase, fonts, boldface, ring accents, etc.). Å
(g)
α is the number of unsigned

circular arrangements of ordered type α. This has generating function

Å(g)(~U ; ~̊U ; t) =

∞∑

n=0

tnÅ(g)
n (~U ; ~̊U) =

∞∑

n=0

Ůntn +

∞∑

n=1

tn
∑

α∈C̊n , `(α)>1

Å(g)
α Uα1Uα2 . . . Uα`(α)

(70)
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We will derive a formula for this by applying φ−1 to the signed weight formula (67).
To do this, we must first compute φ(Ůn).

Theorem 9.7. (i) Consider the unsigned circular identity (n, g)-arrangement id(g)
n . Its

ordered weight is Ůn, and the ordered weight of all signages of it is φ(Ůn) = V̊n +Wn

where W0 = W1 = 0, W2 = GV1V1, and for n > 2,

Wn =

n∑

k=1

∑

γ∈Cn,k

Gkγ1 [Vγ1−1V1Vγ2−1V1 · · ·Vγk−1V1]◦ (71)

=

n∑

k=1

∑

β∈C̊n,k

n

k/ per(β)
GkVβ1−1V1Vβ2−1V1 · · ·Vβk−1V1 (72)

(ii) Let ~π 6= id(g)
n be an unsigned circular (n, g)-arrangement with ordered type α. The or-

dered weight of all signages of ~π is [φ(Uα1)φ(Uα2) · · ·]◦, where φ(Ui) is given by (20).

(iii) [φ
(
Å(g)(~U ; ~̊U ; t)

)
]◦ = B̊(g)(~V ; ~̊V ; t).

Proof. Parts (ii) and (iii) have similar proofs to the linear case (Theorem 5.2(ii) and
Corollary 5.3), except that we straighten the weights to account for circularity. Part (i),
however, is new.

When n = 0 or 1, the only signage is id(g)
n , so the total weight of signages is φ(Ůn) = V̊n.

When n = 2, all 2g−1 = G + 1 elements of B̊
(g)
2 are signages of the unsigned identity.

One of them is the signed identity, with weight V̊2. The remaining G of them each have
weight V1V1, for a total weight φ(Ů2) = V̊2 + GV1V1.

The rest of the proof concerns n ≥ 3. Signages of the unsigned circular id(g)
n can be

described by sign vectors ~εj = (ε1j , . . . , εgj) for j = 1, . . . , n, where ε1j = 1.

Consider any signage ~σ of id(g)
n . Let j1 < · · · < jk be the entries (between 1 and n

inclusive) for which ~εj 6= ~ε+. If k = 0 then all ~εj = ~ε+ and we have the signed circular

identity (n, g)-arrangement ~σ = id(g)
n , with weight V̊n.

Otherwise, let γ = (j1 + n − jk, j2 − j1, j3 − j2, . . . , jk − jk−1). Then ~σ has 1-type
ρ = (γ1 − 1, 1, γ2 − 1, 1, . . . , γk−1 − 1, 1, γk − 1) (except that we omit any 0’s that arise
from γr −1 with γr = 1) and weight [Vρ]◦ = [Vγ1−1V1Vγ2−1V1 · · ·Vγk−1]◦ (where the 0’s in ρ
are effectively removed in the product on the right by having set V0 = 1). If we view the
arrangement shown at the top of Example 5.1 as circular, then S = {3, 4, 8}, γ = (4, 1, 4),
ρ = (3, 1, 1, 3, 1) (omitting 0’s in (3, 1, 0, 1, 3, 1)), the ordered type is (3, 1, 3, 1, 1), and the
weight is V3V1V0V1V3V1 = V3V1V3V1V1 = [Vρ]◦.

The total number of signages with signs 6= ~ε+ precisely on entries S = {j1, . . . , jk} is
Gk. The sets S ′ leading to same γ as S are S⊕ q = {j1 + q, . . . , jk + q} where −(j1−1) ≤
q ≤ n− jk; there are γ1 = n− jk + j1 of these. So the weight of all signages with the same
value of γ is γ1 [Vγ1−1V1Vγ2−1V1 · · ·Vγk−1]◦.

Eq. (71) sums this over all possibilities of at least one non-~ε+ sign to get the total
weight Wn of all such signages.
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If we use ordered type instead of ordered 1-type of S, there would be n
`(β)/ per(β)

distinct

shifts of S with the same ordered type β, giving sum (72) instead.

Computing Å(g)(~U ; ~̊U ; t) = [φ−1
(
B̊(g)(~V , ~̊V ; t)

)
]◦ leads to the following result:

Theorem 9.8. A generating function for the number of unsigned circular arrangements
by ordered type is

Å(g)(~U ; ~̊U ; t) =
[(

(1 + U(t))−1tU ′(t)(1 + U(t))−1 + G̃U1t
)(

A(g)(~U ; t) − 1 − U(t)
)

+ (U(t) − U1t)G̃U1t
]

◦
+ Ů(t) (73)

The proof is tedious, so we postpone it to Appendix A.3. Given this theorem, for any
n we may compute Å

(g)
α for all α ∈ C̊n by a procedure similar to the one in Section 7:

1. Compute B̊
(g)
n (~V ; ~̊V ) = ωB(B̊

(g)
n ) = V̊n +

∑
β∈C̊n,`(β)>1 B̊

(g)
β Vβ1Vβ2 . . . Vβ`(β)

.

2. Compute Å
(g)
n (~U ; ~̊U) = [φ−1

(
B̊

(g)
n (~V ; ~̊V )

)
]◦ and collect terms by monomials in the

U ’s and Ůn. The coefficient of Uα is Åα, and the coefficient of Ůn is ÅC(n) = 1.

9.4 Circular arrangements by unordered type

In this section, we give generating functions for the number of signed or unsigned circular
arrangements by unordered type. The results of the preceding sections go through to
unordered types by letting the variables commute. We use commuting lowercase variables
un, ůn, u(t), ů(t) in the unsigned case (and v’s for the signed case), as previously defined.

The commutative specialization is to specialize Un → un, Ůn → ůn, Vn → vn, and
V̊n → v̊n. Straightening is not needed in the commutative case, so we simply drop the
straightening operations.

A generating function for the number of signed circular arrangements by unordered
type is obtained by specializing (66) and Theorem 9.6 to commutative variables:

b̊(g)(~v; ~̊v; t) =

∞∑

n=0

tn̊b(g)
n (~v; ~̊v) =

∞∑

n=0

v̊ntn +

∞∑

n=1

tn
∑

µ∈Pn , `(µ)>1

b̊(g)
µ vµ1vµ2 . . . vµ`(µ)

(74)

= v̊(t) + t v′(t)

(
−(1 + v(t))−1 +

b(g)(~v; t)

(1 + v(t))2

)
. (75)

A generating function for unsigned circular arrangements by unordered type is obtained
by specializing (70) and Theorem 9.8 to commutative variables:

å(g)(~u; ~̊u; t) =
∞∑

n=0

tnå(g)
n (~u; ~̊u) =

∞∑

n=0

ůntn +
∞∑

n=1

tn
∑

λ∈Pn, `(λ)>1

å
(g)
λ uλ1uλ2 . . . uλ`(λ)

(76)

= ů(t) +

(
tu′(t)

(1 + u(t))2
+ G̃u1t

)(
a(g)(~u; t) − 1 − u(t)

)
+ (u(t) − u1t)G̃u1t

(77)
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The ring homomorphism φ extends to the commutative case for circular arrangements:

Theorem 9.9. (i) Consider the unsigned circular identity (n, g)-arrangement id(g)
n . Its

unordered weight is ůn. The unordered weight of all signages of it is φ(̊un) = v̊n+wn

where w0 = w1 = 0, w2 = Gv1v1, and for n > 2,

wn =

n∑

k=1

∑

µ∈Pn,k

GkM̊(µ)vµ1−1vµ2−1 · · · vµk−1v1
k (78)

(ii) Let ~σ 6= id(g)
n be an unsigned circular (n, g)-arrangement with unordered type λ.

The unordered weight of all signages of ~σ is φ(uλ1)φ(uλ2) · · · , where φ(ui) is given
by (47).

(iii) φ
(
å(g)(~u; ~̊u; t)

)
= b̊(g)(~v; ~̊v; t).

Proof. This is a specialization of Theorem 9.7 to commutative variables.
Part (i) requires additional proof. Consider the commutative specialization of (72).

For a partition µ ∈ Pn,k, let E be the set of β ∈ C̊n,k that are permutations of the parts
of µ. The terms of (72) with β ∈ E are collected into a single term when the variables
become commutative; by (65),

∑
β∈E

n
k/ per(β)

= M̊(µ), giving (78).

Finally, å
(g)
λ can be computed by a procedure similar to the one at the end of Sec-

tion 9.3: let bn(~v, ~̊v) = v̊n +
∑

µ∈C̊n ,`(µ)>1 b̊
(g)
µ vµ, compute φ−1

(̊
b
(g)
n (~v; ~̊v)

)
, and collect terms

by monomials in the u’s. The coefficient of uλ is a
(g)
λ and the coefficient of ůn is a

(g)
C(n) = 1.

9.5 Number of strips in circular arrangements

We may specialize the equations for å(g)(~u; ~̊u; t) and b̊(g)(~v; ~̊v; t) to get generating functions
for the number of strips and number of incompressible arrangements.

For the number of (linear) strips in B̊, specialize v̊n → z0 (n ≥ 0) and vn → z (n ≥ 1)
to get v̊(t) → 1/(1 − t); v(t) → zt/(1 − t); and v ′(t) → z/(1 − t)2. Apply this to (75):

b̊(g)(t, z) =
∞∑

n=0

b̊(g)
n (z) tn =

∞∑

n=0

n∑

k=0

b̊
(g)
n,k zktn

=
1

1 − t(1 − z)
+

zt

(1 − t(1 − z))2

∞∑

r=1

(2r−1(r − 1)!)g−1 (zt)r−1

(1 − t(1 − z))r−1

=
1

1 − t(1 − z)
+

zt

(1 − t(1 − z))2
b(g)(t, z) . (79)

Take the coefficient of tn in the Maclaurin expansion to get

b̊(g)
n (z) = (1 − z)n +

n−1∑

r=0

(2rr!)g−1

(
n

r + 1

)
zr+1(1 − z)n−r−1 . (80)
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For incompressible arrangements, we specialize v̊n → 0 for n ≥ 0, v1 → 1, vn → 0 for
n > 1. This gives v̊(t) → 0, v(t) → t, and v′(t) → 1. Apply this to (75):

IB̊
(g)

(t) =
∞∑

n=0

b̊(g)
n,nt

n = −
t

1 + t
+ t

∞∑

r=1

(2r−1(r − 1)!)g−1 tr−1

(1 + t)r+1

= −
t

1 + t
+

t

(1 + t)2
IB(g)(t)

where IB(g)(t) is given by (15). This rearranges to IB(g)(t) = 1 + t + (1+t)2

t
IB̊(t). Taking

the coefficient of tn relates incompressible signed linear and circular arrangements:

b(g)
n,n = b̊

(g)
n+1,n+1 + 2̊b(g)

n,n + b̊
(g)
n−1,n−1 (for n ≥ 1). (81)

We make similar specializations for unsigned circular arrangements. A generating
function for å

(g)
n,k is obtained by making these specializations in (77): ůn → z0 (n ≥ 0)

and in → z (n ≥ 1), which give ů(t) → 1/(1 − t) and u(t) → zt/(1 − t). Plugging these
into (77) and simplifying gives

å(g)(t, z) =

∞∑

n=0

å(g)
n (z) tn =

∞∑

n=0

n∑

k=0

å
(g)
n,kz

ktn

=
1

1 − t(1 − z)
− G̃zt(1 + zt)

+

(
G̃zt +

zt

(1 − t(1 − z))2

) ∞∑

r=0

r!g−1

(
zt(1 + Gt(1 − z))

1 − t(1 − z)

)r

=
1

1 − t(1 − z)
− G̃zt(1 + zt) +

(
G̃zt +

zt

(1 − t(1 − z))2

)
a(g)(t, z) . (82)

Expanding this as a Maclaurin series in t and taking the coefficient of tn gives å
(g)
n (z) =

1 for n = 0, 1, 2, and the following for n ≥ 3:

å(g)
n (z) = (1− z)n +

n−1∑

r=0

r!g−1zr+1(1− z)n−r−1

min(r,n−r−1)∑

i=0

Gi
(

r
i

) (
G̃
(

n−i−2
r−1

)
+
(

n−i
r+1

))
(83)

Expanding that as a polynomial in z and taking the coefficient of zk gives å
(g)
n,0 = 1

(all n ≥ 0), å
(g)
n,1 = 0 (all n ≥ 0), å

(g)
2,k = 0 (all k ≥ 1), and for n ≥ 3, k ≥ 0,

å
(g)
n,k = (−1)k

(
n
k

)
+

k−1∑

r=0

r!g−1(−1)k−r−1
(

n−r−1
k−r−1

)min(r,n−r−1)∑

i=0

Gi
(

r
i

) (
G̃
(

n−i−2
r−1

)
+
(

n−i
r+1

))
(84)

The specialization for the number of incompressible unsigned circular arrangements is
ůn → 0 (n ≥ 0), u1 → 1 and un → 0 (n > 1). This gives ů(t) → 0 and u(t) → t. Making
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these specializations in (77) and simplifying gives a generating function for incompressible
unsigned circular arrangements (see (34) for the linear case, IA(g)(t)):

IÅ
(g)

(t) =
∞∑

n=0

å(g)
n,ntn = t

( 1

(1 + t)2
+ G̃

)(
IA(g)(t) − (1 + t)

)
(85)

10 Expected number of strips

We will compute the expected number of linear strips in all four types of arrangements
studied here, under the uniform distribution on all arrangements.

Each of a
(g)
n (z), b

(g)
n (z), å

(g)
n (z), b̊

(g)
n (z) has the form fn(z) =

∑n
k=0 f

(g)
n,kz

k, where f
(g)
n,k is a

count ≥ 0. Under the uniform distribution, the corresponding probability generating func-
tion is Fn(z) = fn(z)/fn(1). The expected number of strips is µ = F ′

n(1) = f ′
n(1)/fn(1)

and the variance is σ2 = F ′′
n (1) + µ − µ2 = f ′′

n(1)/fn(1) + µ − µ2.

For signed linear arrangements, B
(g)
n , use fn(z) = b

(g)
n (z) as given in (14). Then

b
(g)
n (1) = (2nn!)g−1, so

Fn(z) = b(g)
n (z)/(2nn!)g−1 =

n∑

r=1

(2rr!)g−1

(2nn!)g−1

(
n − 1

r − 1

)
zr(1 − z)n−r

On differentiating and plugging in z = 1, most terms vanish due to the powers of 1 − z:

µ = F ′
n(1) = n −

n − 1

(2n)g−1

F ′′
n (1) = n(n − 1) −

2(n − 1)2

(2n)g−1
+

(n − 1)(n − 2)

(4n(n − 1))g−1

σ2 = F ′′
n (1) + F ′

n(1) − (F ′
n(1))2 = −

(n − 1)2

(2n)2(g−1)
+

n − 1

(2n)g−1
+

(n − 1)(n − 2)

(4n(n − 1))g−1

The formulas hold for n ≥ 2. For n = 0, (µ, σ2) = (0, 0), and for n = 1, (µ, σ2) = (1, 0).
The above computations also could have been done in generating function form for all

n simultaneously from (13).

For unsigned linear arrangements, A
(g)
n , use fn(z) = a

(g)
n (z) as given in (36), and

fn(1) = n!(g−1). The computations are analogous to those above (but messier) and result
in (µ, σ2) = (0, 0) for n = 0; (µ, σ2) = (1, 0) for n = 1; and the following for n ≥ 2:

µ = n −
2g−1(n − 1)

ng−1
(86)

σ2 =
2g−1(n − 1)

ng−1
−

4g−1(n − 1)

n2(g−1)
+

2g−1(n − 2)(2g−1(n − 3) + 2)

(n(n − 1))g−1
(87)

Note that Wolfowitz, 1942 [33, Eqs. (7.9,7.10)] obtained the g = 2 case of (86)–(87).
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For signed circular arrangements, B̊
(g)
n , use fn(z) = b̊

(g)
n (z) (Eq. (80)) and fn(1) =

(2n−1(n − 1)!)g−1 for n ≥ 1 (note f0(1) = 1). Then for n = 0, 1 we have (µ, σ2) = (0, 0);
for n = 2 we have (µ, σ2) = (2 − 22−g, 23−g − 42−2g); and for n ≥ 3,

µ = n

(
1 −

1

2g−1(n − 1)g−1

)

σ2 =
n

2g−1(n − 1)g−1
+

n(n − 1)

4g−1(n − 1)g−1(n − 2)g−1
−

n2

4g−1(n − 1)2(g−1)

For unsigned circular arrangements, Å
(g)
n , use fn(z) = å

(g)
n (z) as given in (83), and

fn(1) = ((n−1)!/2)g−1 for n ≥ 3 (note fn(1) = 1 for n = 0, 1, 2, 3). Then for n = 0, 1, 2, 3,
we have (µ, σ2) = (0, 0); and for n ≥ 3,

µ = n

(
1 −

2g−1

(n − 1)g−1

)

σ2 =
n2g−1

(n − 1)g−1
−

n24g−1

(n − 1)2(g−1)
+

n
(
(n − 3)4g−1 + 2(2g−1)

)

(n − 1)g−1(n − 2)g−1

The results above for (un)signed circular arrangements are for the expected number of
linear strips; the circular identity counts as one circular strip and zero linear strips.

11 Recursions and differential equations

For fixed g ≥ 2, we will describe how to construct both a recursion and a mixed differ-
ential/recursion equation for each of a

(g)
n (z), b

(g)
n (z), å

(g)
n (z), b̊

(g)
n (z) in terms of smaller n.

Although we have given direct formulas for these, it is also useful to have recursion equa-
tions. We’ll work out the case of a

(2)
n (z) and sketch the details of the others. However,

our Maple software computes all of them. We begin by rewriting (35) as

a(g)(t, z) =

∞∑

r=0

r!g−1K(t, z)r where K(t, z) =
zt(1 + Gt(1 − z))

1 − t(1 − z)
. (88)

First we will construct an ODE in t of order g − 1 that a(g)(t, z) satisfies. Then we will

turn that into a recursion in n that the a
(g)
n (z)’s satisfy.

Consider the operator PK on functions of t and z:

PKF (t, z) =
1

∂K/∂t

∂

∂t

(
K(t, z)F (t, z)

)
=

(
1 +

K(t, z)

∂K/∂t

∂

∂t

)
F (t, z) . (89)

Since ∂
∂t

(K(t, z)K(t, z)r) = (r+1)K(t, z)r ∂K
∂t

, we have that PK(K(t, z)r) = (r+1)K(t, z)r

and (PK)g−1K(t, z)r = (r + 1)g−1K(t, z)r. Thus, the operator

K(t, z)PK
g−1 = K(t, z)

(
1 +

K(t, z)

∂K/∂t

∂

∂t

)g−1
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promotes term r of the sum in (88) to term r + 1. The only term of the sum not in the
image of this operator is the r = 0 term, which evaluates to 0!g−1K(t, z)0 = 1. So

K(t, z)

(
1 +

K(t, z)

∂K/∂t

∂

∂t

)g−1

a(g)(t, z) + 1 = a(g)(t, z) . (90)

We will work out the g = 2 case. Plug g = 2 into (90) to obtain

K(t, z) a(g)(t, z) + K(t, z)
K(t, z)

∂K/∂t

∂a(g)

∂t
(t, z) + 1 = a(g)(t, z) .

Plug K(t, z) (Eq. (88)) and G = 2g−1 − 1 = 1 into this, clear denominators, and simplify:

(
1 + (1 − 2z)t + 3(z − 1)t2 − (z − 1)2(2z − 1)t3 − z(z − 1)3t4

)
a(g)(t, z)

+
(
−zt2 + z(z − 1)t3 + z(z − 1)2t4 − z(z − 1)3t5

)∂a(g)

∂t
(t, z)

= 1 − (z − 1)t − 3 (z − 1)2t2 − (z − 1)3t3 . (91)

Plug a(g)(t, z) =
∑∞

n=0 tna
(g)
n (z) into (91) and use standard series methods to find a recur-

rence equation for a
(g)
n (z): expand the sums, combine powers of t, and take coefficients of

tn. For convenience, set a
(g)
n (z) = 0 when n < 0. We obtain that for all integers n,

a(2)
n (z) + (1 − z − zn)a

(2)
n−1(z) − (1 − z)

(
(n − 2)z + 3

)
a

(2)
n−2(z)

+ (1 − z)2
(
(n − 5)z + 1

)
a

(2)
n−3(z) + z(1 − z)3(n − 3)a

(2)
n−4(z)

= δn − (z − 1)δn−1 − 3(z − 1)2δn−2 − (z − 1)3δn−3 (92)

where δ0 = 1, δx = 0 for x 6= 0. So for n ≥ 4, we have homogeneous recursion equations

a(2)
n (z) + (1 − z − zn)a

(2)
n−1(z) − (1 − z)

(
(n − 2)z + 3

)
a

(2)
n−2(z)

+ (1 − z)2
(
(n − 5)z + 1

)
a

(2)
n−3(z) + z(1 − z)3(n − 3)a

(2)
n−4(z) = 0 (n ≥ 4). (93)

The inhomogeneities in (92) allow us to compute a
(2)
0 (z), . . . , a

(2)
3 (z). Plug in n = 0:

a
(2)
0 (z) + (1 − z)a

(2)
−1(z) − (1 − z)(−2z + 3)a

(2)
−2(z)

+ (1 − z)2(−5z + 1)a
(2)
−3(z) + z(1 − z)3(−3)a

(2)
−4(z) = 1 .

Since a
(2)
−1(z) = · · · = a

(2)
−4(z) = 0, this gives a

(2)
0 (z) = 1. Plugging in n = 1, 2, 3 and

using the corresponding inhomogeneities on the right gives initial conditions a
(2)
0 (z) = 1,

a
(2)
1 (z) = z, a

(2)
2 (z) = 2z, and a

(2)
3 (z) = 2z + 4z2.

For a fixed N , iterating this recursion gives a more efficient way to tabulate all a
(2)
n,k

with 0 ≤ k ≤ n ≤ N than repeated use of (37) or (36). However, those equations apply to
general g, while a new recursion must be computed for each g. Analyzing this procedure
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further would show that for each g, we get a recursion of order 4(g − 1) in n where the

coefficient of a
(2)
n−i(z) (i = 0, . . . , 4(g−1)) has degree ≤ 4(g−1) in z and degree ≤ g−1 in n.

The recursion is homogeneous for n ≥ 4(g−1) and has initial conditions for n < 4(g−1).

Note: For unsigned linear arrangements on g = 2 genomes, Eq. (93) is equivalent to
a recurrence given by Riordan, 1965 [28] in different notation. Our method for deriving
it is more general, as it may be applied to obtain recurrences for signed and unsigned,
circular or linear, (n, g)-arrangements for all g ≥ 2.

In the procedure illustrated above, we may use z-derivatives instead of t-derivatives
throughout. That leads to this replacement for (90):

K(t, z)

(
1 +

K(t, z)

∂K/∂z

∂

∂z

)g−1

a(g)(t, z) + 1 = a(g)(t, z) . (94)

For g = 2, evaluating that and clearing denominators gives

(
1 − (2z + 1)t + (3z − 1)t2 − (z − 1)(2z2 − z + 1)t3 − z(z − 1)3t4

)
a(2)(t, z)

+
(
−z2t + z2(z − 1)t2 + z2(z − 1)2t3 − z2(z − 1)3t4

)∂a(2)

∂z
(t, z)

= 1 − (z + 1)t − (3z − 1)(z − 1)t2 − (z − 1)3t3 . (95)

Plugging in a(g)(t, z) =
∑∞

n=0 a
(g)
n (z) tn leads to the mixed differential/recursion equation

a(2)
n (z)−(2z+1)a

(2)
n−1(z)+(3z−1)a

(2)
n−2(z)−(z−1)(2z2−z+1)a

(2)
n−3(z)−(z−1)3za

(2)
n−4(z)

− z2 ∂a
(2)
n−1

∂z
+ z2(z − 1)

∂a
(2)
n−2

∂z
+ z2(z − 1)2∂a

(2)
n−3

∂z
− z2(z − 1)3∂a

(2)
n−4

∂z
= δn − (z + 1)δn−1 − (3z − 1)(z − 1)δn−2 − (z − 1)3δn−3 . (96)

For fixed g, we may similarly derive both a recursion and a mixed differential/recursion

equation for b
(g)
n (z). By (13), b(g)(t, z) has a power series of the form

b(g)(t, z) =

∞∑

r=0

(2rr!)g−1L(t, z)r where L(t, z) =
zt

1 − t(1 − z)
. (97)

This satisfies

2g−1L(t, z)

(
1 +

L(t, z)

∂L/∂t

∂

∂t

)g−1

b(g)(t, z) + 1 = b(g)(t, z) . (98)

Plugging b(g)(t, z) =
∑∞

n=0 b
(g)
n (z) tn into this leads to a recursion for b

(g)
n (z) by standard

series methods. Using ∂
∂z

instead of ∂
∂t

leads to a mixed differential/recursion equation.

A similar method can be used to derive recurrence or mixed differential/recurrence

equations in the circular case. Instead of using a(g)(t, z) =
∑∞

n=0 a
(g)
n (z) tn and b(g)(t, z) =

the electronic journal of combinatorics 15 (2008), #R105 46



∑∞

n=0 b
(g)
n (z) tn in the above procedure, use these formulas that follow from (82) and (79),

to express the linear generating functions in terms of the circular generating functions:

a(g)(t, z) =

∑∞

n=0 å
(g)
n (z) tn + G̃zt(1 + zt) − 1/(1 − t(1 − z))

G̃zt + zt/(1 − t(1 − z))2)
(99)

b(g)(t, z) =

∑∞

n=0 b̊
(g)
n (z) tn − 1/(1 − t(1 − z))

zt/(1 − t(1 − z))2
. (100)

A Technical proofs

A.1 Proof of Theorem 3.2: asymptotic number of signed ar-

rangements

Proof of Theorem 3.2. We will use the falling factorial notation

(x)k = x(x − 1)(x − 2) · · · (x − k + 1) . (101)

By (3),

b
(g)
n,n−q

(2n−q(n − q)!)g−1
(

n−1
n−q−1

) =

n−q∑

r=1

(−1)n−q−r

(
n − q − 1

r − 1

)(
2rr!

2n−q(n − q)!

)g−1

Change r to n − q − r:

=

n−q−1∑

r=0

(−1)r

(
n − q − 1

n − q − r − 1

)(
2n−q−r(n − q − r)!

2n−q(n − q)!

)g−1

=

n−q−1∑

r=0

(−1
2
)r (n − q − 1)!

(n − q − r − 1)! r!

(
(n − q − r)!

(n − q)!

)g−1

Pull off one factor of (n − q − r)!/(n − q)!:

=

n−q−1∑

r=0

(−1
2
)r

r!

n − q − r

n − q

(
(n − q − r)!

(n − q)!

)g−2

=

n−q−1∑

r=0

(−1
2
)r

r!

(
1 −

r

n − q

)(
1

(n − q)r

)g−2

(102)

We treat the cases g = 2 and g > 2 separately. For g > 2, we have

b
(g)
n,n−q

(2n−q(n − q)!)g−1
(

n−1
n−q−1

) =

n−q−1∑

r=0

(−1
2
)r

r!

(
1 −

r

n − q

)(
1

(n − q)r

)g−2

Term r = 0 is 1. The terms have alternating signs and decreasing magnitudes (take ratios)
that go to 0 for each r > 0 as n → ∞. So the sum goes to 1 as n → ∞, giving the g > 2
case of (4).
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For g = 2, Eq. (102) simplifies to

b
(2)
n,n−q

2n−q (n − q)!
(

n−1
n−q−1

) =

n−q−1∑

r=0

(−1
2
)r

r!

(
1 −

r

n − q

)

=

n−q−1∑

r=0

(−1
2
)r

r!
+

1

2(n − q)

n−q−1∑

r=1

(−1
2
)r−1

(r − 1)!

= expn−q−1(−
1
2
) +

expn−q−2(−
1
2
)

2(n − q)
→ exp(−1

2
) + 0 as n → ∞,

which gives the g = 2 case of (4). The ratio of the denominators in the limits in equa-
tions (4) and (5) is

2n−q(n − q)!
(

n−1
n−q−1

)

2n n!
=

(n − q)! (n − 1)!

2qn! (n − q − 1)! q!
=

n − q

n
·

1

2q q!

which goes to 1/(2q q!) as n → ∞, leading to (5).

A.2 Proof of Theorem 5.9: asymptotic number of unsigned ar-
rangements

The proof of Theorem 5.9 uses of a summation whose properties we list in the following
lemma:

Lemma A.1. Let 0 ≤ m ≤ n be integers, G > 0 be real, and define

S(n, m, G) =

min(m,n−m)∑

i=0

Gi

(
n − m

i

)(
n − i − 1

n − m − 1

)
m!(n − m)!

n!
. (103)

Note that all terms are nonnegative. The boundaries are S(n, 0, G) = 1 (for n ≥ 0) and
S(n, n, G) = 0 (for n > 0). Then

S(n, m, G) = (G + 1)m(1 + O(m2/n)) as n → ∞; (104)

S(n, m + 1, G)/S(n, m, G) < G + 1 for 0 ≤ m < n. (105)

The proof of the lemma is at the end of this section.

Proof of Theorem 5.9. Let n > 0, plug k = n − q into (37), divide by n!(n − q)!g−2, and
judiciously insert a factor of 1 = (n − r)!/(n − r)!:

a
(g)
n,n−q

n!(n − q)!g−2
=

n−q∑

r=1

((
r!

(n − q)!

)g−2
(−1)n−q−r

(n − r)!

(
n − r

n − q − r

)

·

min(r,n−r)∑

i=0

Gi

(
r

i

)(
n − i − 1

r − 1

)
(n − r)! r!

n!

)
. (106)

Change the summation variable from r to m = n − r and use function (103):
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=
n−1∑

m=q

(
(n − m)!

(n − q)!

)g−2
(−1)m−q

m!

(
m

q

)
S(n, m, G) . (107)

This is an alternating sum. Using (105), the ratio of term m+1 over term m has absolute
value bounded by

G + 1

(n − m)g−2(m + 1 − q)
. (108)

The proof splits into two cases, g = 2 and g > 2.
For g > 2, for all m the ratio (108) tends to 0 as n → ∞. So as n → ∞, (107) is

dominated by its first term S(n, q, G) = ((G + 1)q/q!)(1 − O(q2/n)) = (2q(g−1)/q!)(1 −
O(q2/n)) with error bounded by its second term, which is a fraction O(1/(n − q)g−2) of
the first term. This rearranges to the g > 2 case of (39).

For g = 2 we have G = 1. Ratio (108) simplifies to (G+1)/(m+1−q) = 2/(m+1−q),
which is below 1 when m ≥ q +2. So if we truncate the sum (107) at any term m ≥ q +2,
the error is bounded by the next term. We choose to terminate at m =

⌊
n1/3

⌋
so the

error term is O(m2/n) = O(n−1/3). As n → ∞, the truncated sum termwise approaches

bn1/3c∑

m=q

(−1)m−q

m!

(
m

q

)
(G + 1)m(1 + O(n−1/3))

→
∞∑

m=q

(−1)m−q

m!

(
m

q

)
(G + 1)m =

∞∑

m=q

(−1)m−q

m!

(
m

q

)
2m =

2q exp(−2)

q!
.

This gives (40) and the g = 2 case of (39).

Now we prove Lemma A.1.

Proof of (104). The sum S(n, m, G) in (103) may be rewritten using factorials and falling
factorial notation (101):

S(n, m, G) =

min(m,n−m)∑

i=0

Gi (n − m)! (n − i − 1)! m! (n − m)!

i! (n − m − i)! (n − m − 1)! (m − i)! n!
(109)

=

min(m,n−m)∑

i=0

Gi

(
m

i

)
(n − m) · (n − i − 1)m−1

(n)m (110)

Note that (n − m) · (n − i − 1)m−1/(n)m is a ratio of two monic polynomials in n, each
of degree m. As n → ∞, it asymptotically equals 1 − (i ·m + m − i)/n + O(1/n2). Also,
min(m, n − m) = m when n ≥ 2m, and = n − m when n < 2m. So as n → ∞, (110) is

m∑

i=0

Gi

(
m

i

)(
1 −

i · m + m − i

n
+ O( 1

n2 )

)
= (G + 1)m ·

(
1 + O(m2

n
)
)

.
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Proof of (105). If 0 = m < n then S(n, 1, G)/S(n, 0, G) = (1 − 1
n
)(G + 1)/1 < G + 1.

Let 0 < m < n. Set h = n − m > 0 and m′ = min(m, n − m). Consider

D = (G + 1)S(n, m, G) − S(n, m + 1, G) (111)

= T +

m′∑

i=0

Gi

(
m

i

)
h · (n − i − 1)m−1

(m + 1 − i)(n)m

(
i(m − 1)

h + 1 − i
+

(m + 1)(h + i(h − 1))

h2

)
(112)

where T = 0 if n < 2m + 2, and if n ≥ 2m + 2, there is an additional term

T = Gm+1 (n − m − 1)m+1

(n)m+1

(
(m + 1)2

n − 2m − 1
−

m2

n − 2m

)
. (113)

The coefficient of Gi in (112) is positive for i = 0, . . . , m′:

• h = n − m > 0 since m < n. This also gives (m + 1)(h + i(h − 1)) > 0 and h2 > 0.

• i ≤ n − m = h and i ≤ m, so (n − i − 1)m−1 > 0; h + 1− i > 0; and m + 1− i > 0.

• m ≤ n − 1 so (n)m > 0.

If n ≥ 2m + 2, we must also show that T > 0. Since (m + 1)2/(n − 2m − 1) has a
larger numerator and smaller denominator than m2/(n − 2m), the difference is positive
and T > 0.

Thus we have shown D > 0, which proves (105).
Note that S(n, 0, G) = 1, so iterating (105) gives S(n, m, G) < (1+G)m for 1 ≤ m ≤ n.

Thus, the O(m2/n) error term in (104) as n → ∞ is an overestimate as m increases, but
it is sufficient for our purposes.

A.3 Proof of Theorem 9.8: weight generating function for un-

signed circular arrangements

This appendix section builds to a proof of Theorem 9.8. For this section, define

P = 1 + U(t) , Q = G̃ U1 t , R = 1 + V (t) , S = G V1 t . (114)

Lemma A.2.

φ−1(R) = (1 − PQ)−1P = P (1 − QP )−1 (115)

φ−1(S) = −Q (116)

φ−1(R−1) = P−1 − Q = P−1(1 − PQ) = (1 − QP )P−1 (117)

φ−1
(
(1 − RS)−1

)
= 1 − PQ (118)

φ−1(V ′(t)) = (1 − PQ)−1
(
U ′(t) + PQP

t

)
(1 − QP )−1 (119)
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Proof. Eqs. (115), (116), and (117) follow from (30), (29) and (31) respectively. For (118):

φ−1(1 − RS) = 1 −
(
(1 − PQ)−1P

)
(−Q) = 1 + (1 − PQ)−1PQ = (1 − PQ)−1 .

For (119), rearrange (115) to (1 − PQ) φ−1(R) = P . Differentiate with respect to t:

(−P ′Q − PQ′) φ−1(R) + (1 − PQ)φ−1(R′) = P ′

Rearrange it and plug in φ−1(R) = P (1 − QP )−1:

(1 − PQ)φ−1(R′) = P ′ + (P ′Q + PQ′) φ−1(R)P ′ + (P ′Q + PQ′) P (1 − QP )−1

Plug in P ′ = U ′(t), Q′ = Q/t, and R′ = V ′(t), and simplify:

(1 − PQ)φ−1(V ′(t)) = U ′(t) +
(
U ′(t)Q + PQ/t

)
P (1 − QP )−1

= U ′(t)
(
1 + QP (1 − QP )−1

)
+ PQP

t
(1 − QP )−1

= U ′(t)(1 − QP )−1 + PQP
t

(1 − QP )−1

=
(
U ′(t) + PQP

t

)
(1 − QP )−1

Left multiply by (1 − PQ)−1 to get (119).

Next we make a generating function version of Theorem 9.7:

Lemma A.3. (i) Set W (t) =
∑∞

n=1 tnWn, so φ(Ů(t)) = V̊ (t) + W (t). Then

W (t) =
[(

1 + V (t) + t V ′(t)
)
GV1t

(
1 −

(
1 + V (t)

)
GV1t

)−1
− GV1t − G(G + 1)V1V1t

2
]
◦

(120)
(ii) φ−1(V̊ (t)) = Ů(t) − [φ−1(W (t))]◦, where

−[φ−1(W (t))]◦ =
[(

1 − (1 + U(t))G̃U1t
)−1(

1 + U(t) + tU ′(t)
)
G̃U1t − G̃U1t − G̃U1U1t

2
]

◦

Note: Compare the equations for φ(Ů(t)) = V̊ (t) + W (t) and φ−1(V̊ (t)) = Ů(t) +
[−φ−1(W (t))]◦ in Lemma A.3. They are almost dual in the sense of Theorem 5.5(vi),
except for (i) the coefficient of t2; (ii) we must straighten the monomials; (iii) in the case
of single chromosomes treated in this manuscript, Ůn and V̊n only appear in functions
linearly; they are never multiplied by non-constant expressions. We may extend Theo-
rem 5.5(vi) by adding duals for n 6= 2: φ(Ůn) ↔ φ−1(V̊n) and V̊n ↔ Ůn. For n = 2,

φ(Ů2) − (V̊2 + GV1V1) ↔ φ−1(V̊2) − (Ů2 + G̃(G̃ + 1)U1U1).

Proof of Lemma A.3. (i) Eq. (71) does not apply to n = 1, 2; to make it apply to all
n ≥ 0, rewrite the left side of that equation as Wn + En, where En is a correction term:
E0 = 0, E1 = GV1, E2 = G(G + 1)V1V1, and En = 0 for n > 3. Then for all n ≥ 0,

Wn + En =

n∑

k=1

∑

β∈Cn,k

Gkβ1 [Vβ1−1V1Vβ2−1V1 · · ·Vβk−1V1]◦ (121)
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Multiply by tn and sum over n ≥ 0. Then

W (t) + E(t) =




∞∑

k=1

(
∞∑

β1=1

Gβ1Vβ1−1V1t
β1

)(
∞∑

β2=1

GVβ2−1V1t
β2

)k−1



◦

(122)

where E(t) =
∑∞

n=0 Entn = GV1t + G(G + 1)V1V1t
2. The β1 sum in (122) is

∞∑

β1=1

Gβ1Vβ1−1V1t
β1 =

(
∞∑

β1=1

β1Vβ1−1t
β1−1

)
GV1t

=
(
t
(
1 + V (t)

))′
GV1t =

(
1 + V (t) + t V ′(t)

)
GV1t

and the β2 sum in (122) is
(
1 + V (t)

)
V1Gt. Plugging these into (122) and evaluating the

geometric series (sum over k) gives

W (t) + E(t) =
[(

1 + V (t) + t V ′(t)
)
GV1t

(
1 −

(
1 + V (t)

)
V1Gt

)−1
]

◦
(123)

(ii) Using the abbreviations (114), we rewrite (120) as

W (t) = [(R + t V ′(t))S(1 − RS)−1 − S + S2/G̃]◦ (124)

where we used −(G + 1)/G = 1/G̃. Now compute φ−1 of this equation piece-by-piece:

φ−1
(
R + t V ′(t)

)
= P (1 − QP )−1 + t(1 − PQ)−1

(
U ′(t) + PQP

t

)
(1 − QP )−1

=
(
P + (1 − PQ)−1(t U ′(t) + PQP )

)
(1 − QP )−1 .

Right-multiply by φ(S(1 − RS)−1) = (−Q)(1 − PQ) = −Q + QPQ = −(1 − QP )Q:

φ−1
(
(R + t V ′(t))S(1 − RS)−1

)

= −
(
P + (1 − PQ)−1(t U ′(t) + PQP )

)
(1 − QP )−1(1 − QP )Q

= −
(
P + (1 − PQ)−1(t U ′(t) + PQP )

)
Q

= − (1 − PQ)−1t U ′(t)Q − PQ − (1 − PQ)−1PQPQ

= − (1 − PQ)−1t U ′(t)Q − (1 − PQ)−1PQ

= − (1 − PQ)−1(t U ′(t) + P )Q .

The remaining terms in (124) are φ−1(−S + S2/G̃) = Q + Q2/G̃. Then

φ−1(W (t)) = [−(1 − PQ)−1(t U ′(t) + P )Q + Q + Q2/G̃]◦ (125)

= [−(1 − (1 + U(t))G̃U1t)
−1(1 + U(t) + tU ′(t))G̃U1t (126)

+ G̃U1t + G̃U1U1t
2]◦
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Proof of Theorem 9.8. By Theorem 9.7, we have Å(g)(~U ; ~̊U ; t) = [φ−1
(
B̊(g)(~V ; ~̊V ; t)

)
]◦,

where we use (114) and then (124) to rewrite (67) as

B̊(g)(~V ; ~̊V ; t) =
[
(V̊ (t) + W ) − W + t V ′(t)

(
−R−1 + R−1B(g)(~V ; t)R−1

)]

◦

=
[
(V̊ (t) + W ) + t V ′(t)

(
−S(1 − RS)−1 − R−1 + R−1B(g)(~V ; t)R−1

)

− RS(1 − RS)−1 + S − S2/G̃
]

◦
(127)

Apply φ−1 to this piece-by-piece, and straighten. The left side is [φ−1(B̊(g)(~V ; ~̊V ; t))]◦ =

Å(g)(~U ; ~̊U ; t). The right side splits into three parts, T1 + T2 + T3. The first part is
T1 = [φ−1(V̊ (t) + W (t))]◦ = Ů(t). The last part is

T3 = φ−1
(
−RS(1 − RS)−1 + S − S2/G̃

)

= (1 − PQ)−1PQ(1 − PQ) − Q − Q2/G̃

= PQ − Q − Q2/G̃ = (P − Q/G̃ − 1)Q = (U(t) − U1t)G̃U1t

The middle part, T2, involves t V ′(t) times a large expression. Note that −S(1 −
RS)−1) − R−1 = −R−1(RS(1 − RS)−1 + 1) = −R−1(1 − RS)−1. Thus

T2 = φ−1
(
t V ′(t)

(
−R−1(1 − RS)−1 + R−1B(g)(~V ; t)R−1

))

= φ−1(t V ′(t)R−1)φ−1
(
−(1 − RS)−1 + B(g)(~V ; t)R−1

)
.

The first factor of T2 evaluates to

φ−1(t V ′(t)R−1) = (1 − PQ)−1(t U ′(t) + PQP )(1 − QP )−1(1 − QP )P−1

= (1 − PQ)−1(t U ′(t) + PQP )P−1 .

The second factor of T2 evaluates to

−(1 − PQ) + A(g)(~U ; t)P−1(1 − PQ) =
(
−1 + A(g)(~U ; t)P−1

)
(1 − PQ) .

So T2 = (1−PQ)−1(t U ′(t)+PQP )P−1
(
−1+A(g)(~U ; t)P−1

)
(1−PQ). When we straighten

this, the leading (1 − PQ)−1 and trailing (1 − PQ) cancel, and we further simplify:

[T2]◦ = [(t U ′(t) + PQP )P−1
(
−1 + A(g)(~U ; t)P−1

)
]◦

= [(t U ′(t) + PQP )P−1(A(g)(~U ; t) − P )P−1]◦

= [P−1(t U ′(t) + PQP )P−1(A(g)(~U ; t) − P )]◦

= [(t P−1U ′(t)P−1 + Q)(A(g)(~U ; t) − P )]◦

Combining all three pieces gives

Å(g)(~U ; ~̊U ; t) = [T1 + T2 + T3]◦

= Ů(t) +
[
(t P−1U ′(t)P−1 + Q)(A(g)(~U ; t) − P ) + (U(t) − U1t)G̃U1t

]

◦

Replacing P, Q by their definitions (114) gives (73).
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