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Abstract

We count the number of walks of length n on a k-node circular digraph that

cover all k nodes in two ways. The first way illustrates the transfer-matrix method.

The second involves counting various classes of height-restricted lattice paths. We

observe that the results also count so-called k-balanced strings of length n, gener-

alizing a 1996 Putnam problem.
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1 Introduction: Walks and k-Balanced Binary Strings

Let Ck be a circular digraph that consists of k nodes, namely, v0, . . . , vk−1. A walk on Ck

of length n is simply a sequence of n + 1 nodes (w0, . . . , wn) such that wi is adjacent to

wi+1 in Ck for 0 ≤ i ≤ n − 1. Notice that we may assign the (clockwise) arcs, between

nodes vi and v(i+1) (mod k) for each i = 0, . . . , k − 1, with transition label 1 whereas assign

the (counterclockwise) arcs, between v(i+1) (mod k) and vi for each i = 0, . . . , k − 1, with

transition label 0. Then each walk on Ck of length n generates a unique binary word of

length n. For ease of visualization, we provide Figure 1 as an instance when k = 4.

v0

v3 v1

v2

0

1 1

0

1

00
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Figure 1: When k = 4, an instance of a good walk of length 5 starting from v0 is

(v0, v1, v2, v1, v2, v3). This walk generates the unique binary string 11011.

We now define a “good walk” on Ck as a walk starting from v0 and visiting all k nodes

of Ck. We settle the question of how many good walks exist, by restricting our attention

to “bad walks” (i.e. walks that do not cover all nodes).

The binary strings generated by “bad walks” can be placed into a 1-1 correspondence

with the so-called (k − 2)-balanced binary strings. A k-balanced binary string, in turn,

is defined as a finite binary string S in which every substring T (of consecutive bits) of

S has −k ≤ ∆(S) ≤ k, where ∆(S) denotes the number of 1’s minus the number of 0’s.

For example, 11011 represents an unbalanced string (for 2-balanced binary strings).

A 1996 Putnam problem [1] by Michael Larsen asked for the number of 2-balanced

binary strings, and a generalization to k-balanced strings was the motivation for this

paper. An explicit-sum solution to the Putnam problem is given in [1] but generalizing it

seems unwieldy. Here we focus on generating functions.

The outline of the paper is as follows. In Section 2 we use the transfer-matrix method

to obtain the desired generating function as a difference Sk+1(x) − Sk(x) where Sk(x) is

the sum of the entries in a certain k × k matrix, and to make a first stab at simplifying

Sk(x). In Section 3 we survey the use of Chebychev polynomials to count various classes

of height-restricted lattice paths and deduce an alternative expression for the desired

generating function as a product Rk(x)Rk−1(x). In Section 4 we reconcile the two formulas

Sk+1(x) − Sk(x) and Rk(x)Rk−1(x).
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2 The Transfer-Matrix Approach

2.1 The basic result

Theorem 1. Let Ak denote the tridiagonal k×k matrix with 1s just above and just below

the main diagonal and 0s elsewhere,

Ak =

















0 1 0 · · · 0

1 0 1 · · · 0

0 1 0
. . .

...
...

. . .
. . .

. . . 1

0 · · · 0 1 0

















, (1)

and let Sk(x) denote the sum of all the entries in (Ik − xAk)
−1 where Ik is the k × k

identity matrix. Then the generating function for “bad walks” of length n on C equals

Sk−1(x) − Sk−2(x).

In other words, the generating function for k-balanced strings of length n is

fk(x) = Sk+1(x) − Sk(x).

Proof Given a “bad walk” w = (w0 = v0, w1, . . . , wn) of length n, let

max(w) = max{i : {v0, v1, . . . , vi} ⊆ {w0, . . . , wn}}.

We see that “bad walks” with max(w) = r are just the walks w = (w0, . . . , wn) on

C \ {vr+1} such that w0 = v0 and vr ∈ {w0, . . . , wn}. Notice that an arbitrary walk w =

(w0, . . . , wn) on C \ {vr+1} either satisfies vr ∈ {w0, . . . , wn} or is a walk on C \ {vr, vr+1}.

Thus the walks with max(w) = r are those that miss {vr+1} but don’t miss {vr, vr+1}.

Now C \ {vr+1} is the path graph on vertex list vr+2, vr+3, . . . , vk−1, v0, v1, . . . , vr. Note

that v0 is the (k− 1− r)th entry in the vertex list and the adjacency matrix is Ak−1. The

transfer-matrix method [2, Theorem 4.7.2] says that the generating function for walks

from v0 to the jth vertex is the (k − 1 − r, j) entry of (Ik−1 − xAk−1)
−1. Similarly, the

generating function for walks from v0 to the jth vertex in the path graph C \ {vr, vr+1}

is the (k − 1− r, j) entry of (Ik−2 − xAk−2)
−1. Taking the difference and summing over r

and j yields the result.

2.2 A determinant formula

Now we obtain an expression for Sk(x) := sum of entries in (Ik − xAk)
−1. Let Uk(x)

denote the “combinatorial” Chebyshev polynomial introduced in the next section.
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Since det(Ik−xAk) and Uk(x) both satisfy the recurrence Pk(x) = Pk−1(x)−x2
Pk−2(x)

with initial conditions P0(x) = P1(x) = 1, we conclude that det(Ik − xAk) = Uk(x).

Applying linear algebra, we have Sk(x) = x1 + · · ·+ xk, where the xi (functions of x)

denote the solutions to the equation system

(Ik − xAk)











x1

x2
...

xk











=











1

1
...

1











.

By summing up the equations, we find

(1 − x)x1 + (1 − 2x)(x2 + · · ·+ xk−1) + (1 − x)xk = k, (2)

and Cramer’s rule implies

x1 = xk = det





















1 −x 0 0 · · · 0

1 1 −x 0 · · · 0

1 −x 1 −x · · ·
...

1 0 −x 1
. . .

...
...

...
. . .

. . .
. . .

...

1 0 · · · 0 −x 1





















/

Uk(x). (3)

Denote the determinant in the numerator by Wk. Thus from (2) and (3), we have

Sk(x) =
k − 2xx1

1 − 2x
=

kUk(x) − 2xWk

(1 − 2x)Uk(x)
.

3 The Lattice Path Approach

3.1 Combinatorial Chebychev polynomials

The familiar Chebychev polynomials Tk(x) and Uk(x) (first and second kinds) are defined

by cos kθ = Tk(cos θ) and sin(k + 1)θ/ sin θ = Uk(cos θ). They occur in diverse areas, as

suggested by the subtitle of Theodore Rivlin’s book [3]. Their application in combinatorics

to lattice path counting is less well known. For this purpose, it is convenient to define

modified Chebychev polynomials by

Tk(x) = 2xkTk

( 1

2x

)

, Uk(x) = xkUk

( 1

2x

)

.
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This removes an extraneous power of 2 and reverses the coefficients to produce integer-

coefficient polynomials with constant term 1 (except that T0 = 2) which might be called

the combinatorial Chebychev polynomials. Both satisfy the defining recurrence Pk(x) =

Pk−1(x)−x2
Pk−2(x), differing only in the initial conditions, and both have simple explicit

expressions:

Tk(x) =

bk/2c
∑

j=0

(−1)j

((

k − j

j

)

+

(

k − j − 1

j − 1

))

x2j , Uk(x) =

bk/2c
∑

j=0

(−1)j

(

k − j

j

)

x2j .

The first few are listed in the following Table.

k Tk(x) Uk(x)

0 2 1

1 1 1

2 1 − 2x2 1 − x2

3 1 − 3x2 1 − 2x2

4 1 − 4x2 + 2x4 1 − 3x2 + x4

5 1 − 5x2 + 5x4 1 − 4x2 + 3x4

6 1 − 6x2 + 9x4 − 2x6 1 − 5x2 + 6x4 − x6

7 1 − 7x2 + 14x4 − 7x6 1 − 6x2 + 10x4 − 4x6

Table of combinatorial Chebychev polynomials

3.2 Application to height-restricted lattice paths

Consider lattice paths of upsteps u = (1, 1) and downsteps d = (1,−1). The horizontal

line through a path’s initial vertex is ground level and heights are measured relative to

ground level. Thus if the path starts at the x-y origin, ground level is the x-axis. The

height of a path is the maximum of the heights of its vertices. A nonnegative path is one

that never dips below ground level. A balanced path (not to be confused with k-balanced

strings) is one that ends at ground level. A Dyck path is a nonnegative balanced path,

including the empty path.

The generating function for a given class of paths is
∑

n≥0 a(n)xn where a(n) is the

number of paths of size n: size is taken as “number of steps” except for paths specified to

terminate at height k, where size is “# steps − k” since such a path necessarily contains

k upsteps.

The application of combinatorial Chebychev polynomials to count height-restricted

lattice paths is given in Table 1. Here, and in the sequel, Uk is short for Uk(x) and so on.
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paths bounded by y = 0 and y = k

path ends generating

at height function

0 Fk =
Uk

Uk+1

k Gk =
1

Uk+1

paths bounded by y = ±k

path ends generating

at height function

0 F k =
Uk

Tk+1

k Gk =
1

Tk+1

Table 1

Generating functions for some height-restricted
lattice paths with specified terminal height

Thus the first item, Fk(x), is the generating function for Dyck paths of height ≤ k

with x marking length. The expressions for Fk and Gk are folklore; two early references

are [4, 5] and a recent one is [6]. For completeness we briefly outline below proofs for all

the items in Table 1.

It is also possible to find corresponding generating functions Hk(x) and Hk(x) for

paths with no restriction on the height of the terminal vertex. paths bounded by y = ±k.

Here it is necessary to distinguish the cases k = 2m is even and k = 2m + 1 is odd:

paths bounded by y = 0 and y = k

H2m =
Um+xUm−1

Tm+1

H2m+1 =
Um

Um+1−xUm

paths bounded by y = ±k

H2m =
(Um+xUm−1)

2

T2m+1

H2m+1 = (1 + 2x)
(Um)2

T2m+2

Table 2

Generating functions for some height-restricted lattice paths

Sri Gopal Mohanty [7] uses the reflection principle to count paths bounded by y =

s and y = −t for arbitrary nonnegative s and t, obtaining explicit sums rather than

generating functions.
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Proofs for Tables 1 and 2

F : A nonempty Dyck path P can be uniquely expressed as uP1dP2 where P1 and P2

are Dyck paths. The path P has height ≤ k if and only if P1 has height ≤ k − 1 and P2

has height ≤ k. This observation translates to a recurrence for the generating function:

Fk = 1 + x2Fk−1Fk,

with solution Fk = Uk/Uk+1 because the substitution Uk/Uk+1 for Fk reduces to Uk+1 =

Uk − x2
Uk−1, equivalent to a well known recurrence for Chebychev polynomials.

G : A path bounded by y = 0 and y = k that terminates at height k has a last upstep

to height i for i = 1, 2, . . . , k − 1 and the last upstep to height k is necessarily the last

step of the path. Remove these k upsteps to obtain a list of k Dyck paths (some may be

empty). The ith path in this list from right to left has height ≤ i and hence generating

function Fi. Thus Gk =
∏k

i=1 Fi = 1/Uk+1.

F : A balanced path P bounded by y = ±k is either (i) empty or (ii) starts up or

(iii) starts down. In case (ii) P decomposes as uP1dP2 where P1 is a Dyck path of height

≤ k − 1 and P2 is another balanced path bounded by y = ±k. Thus case (ii) contributes

x2Fk−1F k and, by symmetry, so does case (iii). Hence

F k = 1 + 2x2Fk−1F k

leading to F k = Uk/(Uk − 2x2
Uk+1) and so, using another well known Chebychev polyno-

mial identity, F k = Uk/Tk+1.

G : A path bounded by y = ±k terminating at height k has a last upstep to height

i, 1 ≤ i ≤ k − 1. Delete these upsteps to obtain a list consisting of a balanced path

bounded by y = ±k, followed by k − 1 Dyck paths of heights ≤ k − 1, ≤ k − 2, . . . , ≤ 1

respectively. Thus

Gk =
Uk

Tk+1

Uk−1

Uk

· · ·
U1

U2

=
1

Tk+1

.

H : A path bounded by y = 0 and y = k with no restriction on the terminal height

is either (i) empty or (ii) starts with an upstep and never returns to ground level or (iii)

has the form uPdQ where P is a Dyck path of height ≤ k − 1 and Q is a path bounded

by y = 0 and y = k. The contributions to the generating function Hk are respectively (i)

1, (ii) xHk−1, (iii) x2Fk−1Hk. Thus

Hk = 1 + xHk−1 + x2Fk−1Hk.

It is routine, if tedious, to verify that the expressions for H2m and H2m+1 in Table 2

satisfy this equation. The 2m case, for example, can be verified as follows. Replace Tm+1

by Um+1 − x2
Um−1 (another Chebychev identity) and revert to the standard Chebychev
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polynomials Uk(x). With the substitution y = 1/(2x) this reduces matters to verifying

that
(

U2
m(y) − U2

m−1(y)
)(

2yU2m(y) − U2m−1(y)
)

= Um(y)U2m(y)
(

Um+1(y) − Um−1(y)
)

,

an identity that ultimately depends on the elementary addition formulae for trigonometric

functions.

H : A path bounded by y = ±k with no restriction on the terminal height is either

(i) empty or (ii) starts with an upstep (resp. downstep) and never returns to ground level

or (iii) starts with an upstep (resp. downstep) and returns to ground level. Case (ii)

“start up” makes a contribution of xHk−1 and by symmetry, case (ii) “start down” makes

the same contribution. In case (iii) “start up”, the path has the form uPdQ where P is a

Dyck path of height ≤ k − 1 and Q is another path of the kind being counted. Thus case

(iii) makes contribution 2x2Fk−1Hk. Hence

Hk = 1 + 2xHk−1 + 2x2Fk−1Hk

and another trite calculation shows that the expression for Hk in Table 2 satisfies this

recurrence.

3.3 Application to k-balanced strings

A binary string of, say, Xs and Os can be coded as a lattice path: X → u, O → d.

The k-balanced strings of length n translate to lattice paths of n steps with vertical

extent ≤ k where vertical extent means “maximum vertex height − minimum vertex

height”. A recurrence for the generating function gk(x) for these paths (with x marking

number of steps) can be obtained from the following decomposition. Such a path is either

nonnegative or else dips below ground level and hence has a first downstep d carrying

it to its lowest level (below ground level). The first case gives contribution Hk. In the

second case, the path has the form PdQ where the reverse of P is a nonnegative path of

height ≤ k − 1 and Q is a nonnegative path of height ≤ k as illustrated.

d

O

P

Q

ground level for Q

ground level
for Reverse(P )

Hence

gk = Hk + xHk−1Hk.
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This is the desired generating function but it has an interesting alternative expression.

Define a sequence of rational functions (Rk(x))k≥1 by

R2m =
Um

Tm+1

, R2m+1 =
Um+1 + xUm

Um+1 − xUm

.

Then it is easy to check that Hk

(

1 + xHk−1

)

= RkRk−1, k ≥ 1. Thus gk = RkRk−1 and

we have established

Theorem 2. The generating function for k-balanced binary strings, equivalently for u-d

paths of vertical extent ≤ k, is given by















Um

Tm+1
·

Um+xUm−1

Um−xUm−1
if k = 2m is even;

Um+1+xUm

Um+1−xUm

·
Um

Tm+1
if k = 2m + 1 is odd.

Remark The expression in Theorem 2 for gk = RkRk−1 is in lowest terms because

Tm+1 = Um − 2x2
Um−1 and the recurrence Um = Um−1 − x2

Um−2 yields by induction that

Um and Um−1 are relatively prime.

Remark Rk can be compactly expressed in terms of entries in Tables 1 and 2:

R2m = F m, R2m+1 = 1 + 2xH2m+1.

Thus gk involves convolutions of paths bounded by y = ±bk/2c terminating at ground

level (F m) and nonnegative paths of height ≤ k terminating anywhere (H2m+1). A com-

binatorial explanation would be interesting but does not seem to be obvious.

4 Reconciling the Two Formulas

We have obtained expressions fk(x) and gk(x) for the generating function for k-balanced

strings in Sections 2 and 3 respectively. We now show that fk = gk. The proof ultimately

depends on the standard identities

U2k = U
2
k − x2

U
2
k−1,

U2k+1 = U
2
k − 2x2

UkUk−1.
(4)

Set

Pk =
kUk − 2xWk

(1 − 2x)

so that, from Section 2.2, Sk = Pk/Uk.
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First, we find an expression for the determinant Wk. By cofactor expansion along the

first row, Wk satisfies the defining recurrence

W0 = 0, W1 = 1, Wk = Uk−1 + xWk−1,

with solution, verified using (4),

W2m = (Um + xUm−1)Um−1,

W2m+1 = (Um + xUm−1)Um.

Now define two sequences of polynomials (Ak)k≥0, (Bk)k≥0 by

A2m = Um − xUm−1, A2m+1 = Tm+1 = Um − 2x2
Um−1;

B2m = Um + xUm−1, B2m+1 = Um.

Thus, in particular, Wk = BkBk−1 whether k is even or odd. Also define a sequence

(Ck)k≥0 of rational functions (actually polynomials) by

Ck =
kAk − 2xBk−1

1 − 2x
.

It is now easy to verify that

Pk = BkCk,

Uk = AkBk,

Rk =
Bk+1

Ak+1
,

where Rk is as defined in the preceding section, and that

CkAk+1 − Ck−1Ak = Wk.

Hence

fk = Sk+1 − Sk =
Pk+1

Uk+1
−

Pk

Uk
=

Ck+1

Ak+1
−

Ck

Ak
=

Wk+1

Ak+1Ak
=

Bk+1Bk

Ak+1Ak
= RkRk−1 = gk,

as required.
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