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Abstract

We define a bijection between spanning subgraphs and orientations of graphs
and explore its enumerative consequences regarding the Tutte polynomial. We ob-
tain unifying bijective proofs for all the evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte
polynomial in terms of subgraphs, orientations, outdegree sequences and sandpile
configurations. For instance, for any graph G, we obtain a bijection between con-
nected subgraphs (counted by TG(1, 2)) and root-connected orientations, a bijection
between forests (counted by TG(2, 1)) and outdegree sequences and bijections be-
tween spanning trees (counted by TG(1, 1)), root-connected outdegree sequences and
recurrent sandpile configurations.

All our proofs are based on a single bijection Φ between the spanning subgraphs
and the orientations that we specialize in various ways. The bijection Φ is closely
related to a recent characterization of the Tutte polynomial relying on combinatorial

embeddings of graphs, that is, on a choice of cyclic order of the edges around each
vertex.

1 Introduction

In 1947, Tutte defined a graph invariant that he named the dichromate because he thought
of it as bivariate generalization of the chromatic polynomial [42]. Since then, the dichro-
mate, now known as the Tutte polynomial, has been widely studied (see [5, 7]).

∗This work was partially supported by the Centre de Recerca Matemàtica of Barcelona and by the
French Agence Nationale de la Recherche, project SADA ANR-05-BLAN-0372.
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There are several alternative definitions of the Tutte polynomial [3, 23, 32, 43]. The
most straightforward definition for a connected graph G = (V, E) is

TG(x, y) =
∑

S spanning subgraph

(x − 1)c(S)−1(y − 1)c(S)+|S|−|V |, (1)

where the sum is over all spanning subgraphs S (equivalently, subsets of edges), c(S)
denotes the number of connected components of S and |.| denotes cardinality. From this
definition, it is easy to see that TG(1, 1) (resp. TG(2, 1), TG(1, 2)) counts the spanning
trees (resp. forests, connected subgraphs) of G. More surprisingly, all the specializations
TG(i, j), 0 ≤ i, j ≤ 2 as well as some of their refinements have nice interpretations either
in terms of orientations [24, 28, 32, 33, 40] outdegree sequences [7, 41] or sandpile config-
urations [10, 34].

A number of articles have been devoted to combinatorial proofs of the specializations
of the Tutte polynomial [21, 22, 23, 24, 25, 33]. In this paper, we give unifying bijective
proofs for the interpretation of each of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 in terms
of orientations and outdegree sequences. The strength of our approach is to derive all
these interpretations from a single bijection Φ between subgraphs and orientations that
we specialize in various ways. Indeed, for any graph G, the mapping Φ induces a bijection
between:
• root-connected orientations and connected subgraphs (counted by TG(1, 2)),
• minimal orientations (which are in bijection with outdegree sequences) and forests
(counted by TG(2, 1)),
• strongly connected orientations and external subgraphs (counted by TG(0, 2)),
• acyclic orientations and internal forests (counted by TG(2, 0)),
• root-connected minimal orientations (which are in bijection with root-connected outde-
gree sequences) and spanning trees (counted by TG(1, 1)),
• strongly connected minimal orientations (which are in bijection with strongly-connected
outdegree sequences) and external spanning trees (counted by TG(0, 1)),
• root-connected acyclic orientations and internal spanning trees (counted by TG(1, 0)).
The enumerative corollaries of these bijections are not new. The enumeration of acyclic
orientations by TG(2, 0) was first established by Winder in 1966 [45] and rediscovered by
Stanley 1973 [40]. The result of Winder was stated as an enumeration formula for the
number of faces of hyperplanes arrangements and was independently extended to real
arrangements by Zaslavsky [46] and to orientable matroids by Las Vergnas [31]. The
enumeration of root-connected acyclic orientations by TG(1, 0) was found by Greene and
Zaslavsky [28]. In [23], Gessel and Sagan gave a bijective proof of both results. In [21],
Gebhard and Sagan gave three other proofs of Greene and Zaslavsky’s result. The enu-
meration of strongly connected orientations by TG(0, 2) is a direct consequence of Las
Vergnas’ characterization of the Tutte polynomial [32]. The enumeration of outdegree
sequences by TG(2, 1) was discovered by Stanley [41] and a bijective proof was established
in [29]. The enumeration of root-connected orientations by TG(1, 2), the enumeration
of root-connected outdegree sequences by TG(1, 1) and the enumeration of strongly con-
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nected outdegree sequences by TG(0, 1) were proved by Gioan in [24].
We shall also consider some specializations of the bijection Φ to some refined classes of
orientations (such as bipolar orientations) considered in [25, 28, 33].

We shall also deal with the sandpile model [1, 18] (equivalently chip firing game [4]).
It is known that the recurrent configurations of the sandpile model on G (equivalently
G-parking functions [39]) are counted by TG(1, 1) [18]. Observe that this is the number
of spanning trees. The following refinement is also true: the coefficient of yk in TG(1, y)
is the number of recurrent configurations at level k [34]. A bijective proof of this result
was given in [10]. We give an alternative bijective proof. We also answer a question of
Gioan [24] by establishing a bijection between recurrent configurations of the sandpile
model and root-connected outdegree sequences that leaves the configurations at level 0
unchanged.

Our bijections require a choice of a combinatorial embedding of the graph G, that
is, a choice of a cyclic ordering of the edges around each vertex. In [3] the internal and
external embedding-activities of spanning trees were defined for embedded graphs. It was
proved that for any embedding of the graph G, the Tutte polynomial of G is given by

TG(x, y) =
∑

T spanning tree

xI(T )yE(T ), (2)

where the sum is over all spanning trees T and I(T ) (resp. E(T )) denotes the internal
(resp. external) embedding-activity. This characterization of the Tutte polynomial is
reminiscent but inequivalent to the one given by Tutte in [43]. The characterization (2)
is our main tool in order to obtain enumerative corollary from our bijections. In this
respect, our approach is close to the one used by Gessel and Sagan in [22, 23] in order to
obtain enumerative consequences from a new notion of external activity.

The outline of this paper is as follows.
• In Section 2, we recall some definitions and preliminary results about graphs, orienta-
tions and the sandpile model.
• In Section 3, we take a glimpse at the results to be developed in the following sections.
We first establish some elementary results about the tour of spanning trees and their
embedding-activities. Then we define a mapping Φ from spanning trees to orientations.
We highlight a connection between the embedding-activities of a spanning tree T and the
acyclicity or strong-connectivity of the orientation Φ(T ). Building on the mapping Φ we
also define a bijection Γ between spanning trees to root-connected outdegree sequences
and a closely related bijection Λ between spanning trees and recurrent configurations of
the sandpile model.
• In Section 4, we define a partition Π of the set of subgraphs. Each part of this partition
is an interval in the boolean lattice of the set of subgraphs and is associated to a spanning
tree. The interval associated with a spanning tree T is closely related to the embedding-
activities of T . Using results from [26], we show how the partition Π explains the link
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between the subgraph expansion (1) and the spanning tree expansion (2) of the Tutte
polynomial. We also consider several criteria for subgraphs: connected, forest, internal,
external and prove that the families of subgraphs that can be defined by combining these
criteria are counted by one of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polyno-
mial.
• In Section 5, we extend the mapping Φ to the set of all subgraphs. This definition makes
use of the partition Π of the set of subgraphs. We prove that Φ is a bijection between
subgraphs and orientations.
• In Section 6, we study the specializations of the bijection Φ to the families of subgraphs
defined by the criteria connected, forest, internal, external. We prove that Φ induces
bijections between these families of subgraphs and the families of orientations defined by
the criteria root-connected, minimal, acyclic, strongly connected. As a consequence, we
obtain an interpretation for each of the evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte
polynomial in terms of orientations or outdegree sequences.
• In Section 7, we study the bijection Λ between spanning trees and recurrent configura-
tions of the sandpile model.
• Lastly, in Section 8 we comment on the case of planar graphs.

2 Definitions

We denote by N the set of non-negative integers. For any set S, we denote by |S| its
cardinality. For any sets S1, S2, we denote by S1 M S2 the symmetric difference of S1 and
S2. If S ⊆ S ′ and S ′ is clear from the context, we denote by S the complement of S,
that is, S ′ \ S. If S ⊆ S ′ and s ∈ S ′, we write S + s and S − s for S ∪ {s} and S \ {s}
respectively (whether s belongs to S or not).

2.1 Graphs

In this paper we consider finite, undirected graphs. Loops and multiple edges are allowed
but, for simplicity, we shall only consider connected graphs. A spanning subgraph of a
graph G = (V, E) is a graph G′ = (V, E ′) where E ′ ⊆ E. All the subgraphs considered
in this paper are spanning and we shall not further mention it. By convenience, we shall
identify the subgraph with its edge set. A cut is a set of edges C whose deletion increases
the number of connected components and such that the endpoints of every edge in C are
in distinct components of the resulting graph. Given a subset of vertices U , the cut defined
by U is the set of edges with one endpoint in U and one endpoint in U . A cocycle is a
cut which is minimal for inclusion (equivalently, it is a cut whose deletion increases the
number of connected components by one). For instance, the set of edges {e, f, g, h, i, j}
in in Figure 1 and {f, g, h} is a cocycle.

A forest is an acyclic graph. A tree is a connected forest. A spanning tree is a (span-
ning) subgraph which is a tree. Given a tree T and a vertex distinguished as the root-vertex
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Figure 1: The cut {e, f, g, h, i, j} and the connected components after deletion of this cut
(shaded regions).

we shall use the usual family vocabulary and talk about the parent, child, ancestors and
descendants of vertices in T . By convention, a vertex is considered to be an ancestor and
a descendant of itself. If a vertex of the graph G is distinguished as the root-vertex we
implicitly consider it to be the root-vertex of every spanning tree.

Let G be a graph and T be a spanning tree. An edge of G is said to be internal if it is
in T and external otherwise. The fundamental cycle (resp. cocycle) of an external (resp.
internal) edge e is the set of edges e′ such that the subgraph T − e′ + e (resp. T − e + e′)
is a spanning tree. Observe that the fundamental cycle C of an external edge e is a cycle
contained in T +e. Similarly, the fundamental cocycle D of an internal edge e is a cocycle
contained in T + e. Observe also that, if e is internal and e′ is external, then e is in the
fundamental cycle of e′ if and only if e′ is in the fundamental cocycle of e.

2.2 Embeddings

We recall the notion of combinatorial map [9, 11]. A combinatorial map (or map for
short) G = (H, σ, α) is a set of half-edges H, a permutation σ and an involution without
fixed point α on H such that the group generated by σ and α acts transitively on H. A
map is rooted if one of the half-edges is distinguished as the root. For h0 ∈ H, we denote
by G = (H, σ, α, h0) the map (H, σ, α) rooted on h0. From now on all our maps are rooted.

Given a map G = (H, σ, α, h0), we consider the underlying graph G = (V, E), where V
is the set of cycles of σ, E is the set of cycles of α and the incidence relation is to have at
least one common half-edge. We represent the underlying graph of the map G = (H, σ, α)
on the left of Figure 2, where the set of half-edges is H = {a, a′, b, b′, c, c′, d, d′, e, e′, f, f ′},
the involution α is (a, a′)(b, b′)(c, c′)(d, d′)(e, e′)(f, f ′) in cyclic notation and the permu-
tation σ is (a, f ′, b, d)(d′)(a′, e, f, c)(e′, b′, c′). Graphically, we keep track of the cycles of
σ by drawing the half-edges of each cycle in counterclockwise order around the corre-
sponding vertex. Hence, our drawing characterizes the map G since the order around
vertices give the cycles of the permutation σ and the edges give the cycles of the in-
volution α. On the right of Figure 2, we represent the map G ′ = (H, σ′, α), where
σ′ = (a, f ′, b, d)(d′)(a′, e, c, f)(e′, b′, c′). The maps G and G ′ have isomorphic underlying
graphs.
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Note that the underlying graph of a map G = (H, σ, α) is always connected since σ
and α act transitively on H. A combinatorial embedding (or embedding for short) of a
connected graph G is a map G = (H, σ, α) whose underlying graph is isomorphic to G
(together with an explicit bijection between the set H and the set of half-edges of G).
When an embedding G of G is given we shall write the edges of G as pairs of half-edges
(writing for instance e = {h, h′}). Moreover, we call root-vertex the vertex incident to
the root and root-edge the edge containing the root. In the following, we use the terms
combinatorial map and embedded graph interchangeably. We do not require our graphs to
be planar.

c′

c
a′a

b′ e′

dd′

eb f ′ f

d′

eb

c′

f ′ f
c

σ

a′a

b′ e′

d

Figure 2: Two embeddings of the same graph.

Intuitively, a combinatorial embedding corresponds to the choice of a cyclic order on
the edges around each vertex. This order can also be seen as a local planar embedding. In
fact there is a one-to-one correspondence between combinatorial embeddings of graphs and
the cellular embeddings of graphs in orientable surfaces (defined up to homeomorphism);
see [36, Thm. 3.2.4].

2.3 Orientations and outdegree sequences

Let G be a graph and let G be an embedding of G. An orientation is a choice of a direction
for each edge of G, that is to say, a function O which associates to any edge e = {h1, h2}
one of the ordered pairs (h1, h2) or (h1, h2). Note that loops have two possible directions.
We call O(e) an arc, or oriented edge. If O(e) = (h1, h2) we call h1 the tail and h2 the head.
We call origin and end of O(e) the endpoint of the tail and head respectively. Graphically,
we represent an arc by an arrow going from the origin to the end (see Figure 3).

tail head
origin end

Figure 3: Half-edges and endpoints of arcs.

A directed path is a sequence of arcs (a1, a2, . . . , ak) such that the end of ai is the origin
of ai+1 for 1 ≤ i ≤ k − 1. A directed cycle is a simple directed closed path. A directed
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cocycle is a set of arcs a1, . . . , ak whose deletion disconnects the graph into two compo-
nents and such that all arcs are directed toward the same component. If the orientation
O is not clear from the context, we shall say that a path, cycle, or cocycle is O-directed.
An orientation is said to be acyclic (resp. totally cyclic or strongly connected) if there is
no directed cycle (resp. cocycle).

We say that a vertex v is reachable from a vertex u if there is a directed path
(a1, a2, . . . , ak) such that the origin of a1 is u and the end of ak is v. If v is reachable
from u in the orientation O denote it by u O

→
v. An orientation is said to be u-connected

if every vertex is reachable from u. It is known that every edge in an oriented graph is
either in a directed cycle but not both [35]. Hence, an orientation O is strongly connected
if and only if the origin of every arc is reachable from its end. Equivalently, O is strongly
connected if every pair of vertices are reachable from one another.

The outdegree sequence (or score vector) of an orientation O of the graph G = (V, E)
is the function δ : V → N which associates to every vertex the number of incident tails.
We say that O is a δ-orientation. The outdegree sequences are strongly related to the
cycle flips, that is, the reversing of every edge in a directed cycle. Indeed, it is known that
the outdegree sequences are in one-to-one correspondence with the equivalence classes of
orientations up to cycle flips [20].

There are nice characterizations of the functions δ : V → N which are the outdegree
sequence of an orientation. Given a function δ : V → N, we define the excess of a subset
of vertices U ⊆ V by

excδ(U) =

(

∑

u∈U

δ(u)

)

− |GU |,

where |GU | is the number of edges of G having both endpoints in U . By definition, if δ
is the outdegree sequence of an orientation O, the sum

∑

u∈U δ(u) is the number of tails
incident with vertices in U . From this number, exactly |GU | are part of edges with both
endpoints in U . Hence, the excess excδ(U) corresponds to the number of tails incident
with vertices in U in the cut defined by U . It is clear that if δ : V → N is an outdegree
sequence, then the excess of V is 0 and the excess of any subset U ⊆ V is non-negative.
In fact, the converse is also true: every function δ : V → N satisfying these two conditions
is an outdegree sequence [20].

The following easy Lemma (whose proof is omitted) characterizes the reachability
between vertices in a directed graphs in terms of outdegree sequences.

Lemma 1 Let G = (V, E) be a graph and let u, v be two vertices. Let O be an orientation
of G and let δ be its outdegree sequence. Then v is reachable from u if and only if there
is no subset of vertices U ⊆ V containing u and not v and such that excδ(U) = 0.

Since reachability only depends on the outdegree sequence of the orientation, one can
define an outdegree sequence δ to be u-connected or strongly connected if the δ-orientations
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are. The u-connected outdegree sequences were considered in [24] in connection with the
cycle/cocycle reversing system (see Subsection 8.1).

2.4 The sandpile model

The sandpile model is a dynamical system introduced in statistical physics in order to
study self-organized criticality [1, 17]. It appeared independently in combinatorics as the
chip firing game [4]. Recurrent configurations play an important role in the model: they
correspond to configurations that can be observed after a long period of time. The recur-
rent configuration are also equivalent to the G-parking functions introduced by Shapiro
and Postnikov in the study of certain quotient of the polynomial ring [39]. Despite its
simplicity, the sandpile model displays interesting enumerative [10, 18, 34] and algebraic
properties [12, 19].

Let G = (V, E) be a graph with a vertex v0 distinguished as the root-vertex. A
configuration of the sandpile model (or sandpile configuration for short) is a function
S : V → N, where S(v) represents the number of grains of sand on v. A vertex v is
unstable if S(v) is greater than or equal to its degree deg(v). An unstable vertex v can
topple by sending a grain of sand through each of the incident edges. This leads to the
new sandpile configuration S ′ defined by S ′(u) = S(u) + deg(u, v) for all u 6= v and
S ′(v) = S(v) − deg(v, ∗), where deg(u, v) is the number of edges with endpoints u, v and
deg(v, ∗) is the number of non-loop edges incident to v. We denote this transition by
S v

99K
S ′. An evolution of the system is represented in Figure 4.

v0

v2

v1 v3

v0
99K

v1
99K

v2
99K

v3
99K

Figure 4: A recurrent configuration and the evolution rule.

A sandpile configuration is stable if every vertex v 6= v0 is stable. A stable config-
uration S is recurrent if S(v0) = deg(v0) and if there is a labeling of the n vertices in
V by v0, v1, . . . , vn−1 such that S v0

99K
S1

v1

99K
. . . vn−1

99K
Sn = S. This means that after top-

pling the root-vertex v0, there is a valid sequence of toppling involving each vertex once
that gets back to the initial configuration. For instance, the configuration at the left
of Figure 4 is recurrent. Lastly, the level of a recurrent configuration S is given by:
level(S) =

(
∑

v∈V S(v)
)

− |E|.
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3 A glimpse at the results

3.1 Tour of spanning trees and embedding-activities

We first define the tour of spanning trees. Informally, the tour of a tree is a walk around
the tree that follows internal edges and crosses external edges. A graphical representation
of the tour is given in Figure 5.

dd′

eb f ′ f

a
Tour of the tree

c′

c
a′

b′ e′

Figure 5: Intuitive representation of the tour of a spanning tree (indicated by thick lines).

Let G = (H, σ, α) be an embedding of the graph G = (V, E). Given a spanning tree
T , we define the motion function t on the set H of half-edges by:

t(h) = σ(h) if h is external,
σα(h) if h is internal.

(3)

It was proved in [3] that t is a cyclic permutation on H. For instance, for the em-
bedded graph of Figure 5, the motion function is the cyclic permutation (a, e, f, c, a′, f ′,
b, c′, e′, b′, d, d′). The cyclic order defined by the motion function t on the set of half-edges
is what we call the tour of the tree T .

We will now define the embedding-activities of spanning trees introduced in [3] in order
to characterize the Tutte polynomial (see Theorem 4 below).

Definition 2 Let G = (H, σ, α, h) be an embedded graph and let T be a spanning tree. We
define the (G, T )-order on the set H of half-edges by h < t(h) < t2(h) < . . . < t|H|−1(h),
where t is the motion function. (Note that the (G, T )-order is a linear order on H since
t is a cyclic permutation.) We define the (G, T )-order on the edge set by setting e =
{h1, h2} < e′ = {h′

1, h
′
2} if min(h1, h2) < min(h′

1, h
′
2). (Note that this is also a linear

order.)

Example: Consider the embedded graph G rooted on a and the spanning tree T repre-
sented in Figure 5. The (G, T )-order on the half-edges is a < e < f < c < a′ < f ′ <
b < c′ < e′ < b′ < d < d′. Therefore, the (G, T )-order on the edges is {a, a′} < {e, e′} <
{f, f ′} < {c, c′} < {b, b′} < {d, d′}.
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Definition 3 Let G be a rooted embedded graph and T be a spanning tree. We say that
an external (resp. internal) edge is (G, T )-active (or embedding-active if G and T are
clear from the context) if it is minimal for the (G, T )-order in its fundamental cycle (resp.
cocycle).

Example: In Figure 5, the (G, T )-order on the edges is {a, a′} < {e, e′} < {f, f ′} <
{c, c′} < {b, b′} < {d, d′}. Hence, the internal active edges are {a, a′} and {d, d′} and
there is no external active edge. For instance, {e, e′} is not active since {a, a′} is in its
fundamental cycle.

The following characterization of the Tutte polynomial was proved in [3].

Theorem 4 Let G be any rooted embedding of the connected graph G (with at least one
edge). The Tutte polynomial of G is equal to

TG(x, y) =
∑

T spanning tree

xI(T )yE(T ), (4)

where the sum is over all spanning trees and I(T ) (resp. E(T )) is the number of (G, T )-
active internal (resp. external) edges.

Example: We represented the spanning trees of K3 in Figure 6. If the embedding is
rooted on the half-edge a, then the order on the edges is a < c < b for the first two
spanning trees and a < b < c for the last one. Hence, the embedding-active edges are the
one indicated by a ? and the trees (taken from left to right) have respective contributions
x, x2 and y. Thus, by Theorem 4, the Tutte polynomial of K3 is TK3

(x, y) = x2 + x + y.

? ??
a

c′

a

c′

a

c′b bb

b′ b′ b′c c c
a′ a′a′

?

Figure 6: The embedding-activities of the spanning trees of K3.

Note that the characterization (4) of the Tutte polynomial implies that the sum in the
right-hand-side of (4) does not depend on the embedding, whereas the summands clearly
depends on it. This characterization is reminiscent but inequivalent to the one given by
Tutte in [43].

From now on we adopt the following conventions. If an embedding G and a spanning
tree T are clear from the context, the (G, T ) order is denoted by <. If F is a set of edges
and h is a half-edge, we say that h is in F if the edge e containing h is in F . A half-edge
h is said to be internal, external or (G, T )-active if the edge e is.
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We now make some elementary remarks about embedding-activities that will be useful
throughout the paper.

Lemma 5 Let G be an embedded graph. Let T be a spanning tree and let e = {h1, h2}
be an internal edge. Assume that h1 < h2 (for the (G, T )-order) and denote by v1 and v2

the endpoints of h1 and h2 respectively. Then, v1 is the parent of v2 in T . Moreover, the
half-edges h such that h1 < h ≤ h2 are the half-edges incident to a descendant of v2.

Proof. Let t be the motion function associated to the tree T (t is defined by 3). We
consider the subtrees T1 and T2 obtained from T by deleting e with the convention that h1

is incident to T1 and h2 is incident to T2. Let h be any half-edge distinct from h1 and h2.
By definition of t, the half-edges h and t(h) are incident to the same subtree Ti. Therefore,
the (G, T )-order is such that h0 < l1 < · · · < li < h1 < l′1 < · · · < l′j < h2 < l′′1 < · · · < l′′k
where l′1, . . . , l

′
j, h2 are the half-edges incident with the subtree T2 not containing the root-

vertex v0. Since the subtree T2 does not contain v0 its vertices are the descendants of v2

in T . �

Lemma 6 With the same assumption as in Lemma 5, let e = {h1, h2} with h1 < h2 be
an internal edge and let e′ = {h′

1, h
′
2} with h′

1 < h′
2 be an external edge.

• Then, e is in the fundamental cycle of e′ (equivalently, e′ is in the fundamental cocycle
of e) if and only if h1 < h′

1 < h2 < h′
2 or h′

1 < h1 < h′
2 < h2.

• Suppose that e is in the fundamental cycle of e′ and denote by v1, v2, v
′
1, v

′
2 the endpoints

of h1, h2, h
′
1, h

′
2 respectively. Recall that v1 is the parent of v2 in T (Lemma 5) and that

exactly one of the vertices v′
1, v′

2 is a descendant of v2. If e < e′, then v′
1 is the descendant

of v2, else it is v′
2.

Proof.

• Let V2 be the set of descendants of v2. Recall that the edge e′ is in the fundamental
cocycle of e if and only if it has one endpoint in V2 and the other in V2. By Lemma 5, this
is equivalent to the fact that exactly one of the half-edges h′

1, h
′
2 is in {h′ : h1 < h′ ≤ h2}.

Thus, e′ is in the fundamental cocycle of e if and only if h1 < h′
1 < h2 < h′

2 or
h′

1 < h1 < h′
2 < h2.

• Suppose that e is in the fundamental cycle of e′. By the preceding point, e < e′ im-
plies h1 < h′

1 < h2 < h′
2. In this case, h′

1 is incident to a descendant of v2 by Lemma 5.
Similarly, e′ < e implies h′

1 < h1 < h′
2 < h2, hence h′

2 is incident to a descendant of v2. �

Lemma 7 An external edge e′ = {h′
1, h

′
2} with h′

1 < h′
2 is (G, T )-active if and only if the

endpoint of h′
1 is an ancestor of the endpoint of h′

2.
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Proof. Denote by v′
1 and v′

2 the endpoints of h′
1 and h′

2 respectively.
• Suppose v′

1 is an ancestor of v′
2. We want to prove that e′ is active. Let e = {h1, h2}

with h1 < h2 be an internal edge in the fundamental cycle of e′. The edge e is in the path
of T between v′

1 and v′
2. Denote by v1 and v2 the endpoints of h1 and h2 respectively.

Recall that v1 is the parent of v2 (Lemma 5). Since v′
2 is a descendant of v2, we have

e′ < e by Lemma 6. The edge e′ is less than any edge in its fundamental cycle hence it
is (G, T )-active.
• Suppose that v′

1 is not an ancestor of v′
2. Then the edge e = {h1, h2} with h1 < h2

linking v′
1 to its parent in T is in the fundamental cycle of e′. If we denote by v1 and v2

the endpoints of h1 and h2 respectively, we get v2 = v′
1 by Lemma 5. Since the endpoint

v′
1 of h′

1 is a descendant of the endpoint v2 of h2, we get e < e′ by Lemma 6. Thus, e′ is
not (G, T )-active. �

3.2 A mapping from spanning trees to orientations and some

related bijections

We now take a glimpse at the results to be developed in the following sections. In order
to present these results, we define a mapping Φ from spanning trees to orientations. The
mapping Φ will be extended into a bijection between subgraphs and orientations in Sec-
tion 5. Related to the mapping Φ, we define two other mappings Γ and Λ on the set of
spanning trees. The mapping Γ is a bijection between spanning trees and root-connected
outdegree sequences while Λ is a bijection between spanning trees and recurrent sandpile
configurations.

Consider an embedded graph G = (H, σ, α, h0) and a spanning tree T . Recall that the
tour of T defines a linear order, the (G, T )-order, on H for which the root h0 is the least
element. We associate with the spanning tree T the orientation OT of G defined by:

For any edge e = {h1, h2} with h1 < h2, OT (e) = (h1, h2) if e is internal,
(h2, h1) if e is external.

(5)

This definition is illustrated in Figure 7 (left).
Observe that the spanning tree T is oriented from its root-vertex v0 to its leaves in OT .

Indeed, it is clear from the definitions and Lemma 5 that every internal edge is oriented
from parent to child. This property implies that for every spanning tree T the orientation
OT is v0-connected.

The mapping Φ : T 7→ OT from spanning trees to v0-connected orientations is not bi-
jective. However, it is injective and in Section 5 we will extend it into a bijection between
subgraphs and orientations. For the time being, let us observe (the proof will be given
in Section 5) that the tree T can be recovered from the orientation OT by the following
procedure:
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Figure 7: Left: Orientation OT associated to the spanning tree T (indicated by thick
lines) and active edges (indicated by a star). Middle: outdegree sequence Γ(T ). Right:
recurrent sandpile configuration Λ(T ).

Procedure Construct-tree:

• Initialize the current half-edge h to be the root h0. Initialize the tree T and the set of
visited arcs F to be empty.
• Core:

C1: If the edge e containing h is not in F and h is a tail then add e to F and to T .
C2: Move to the next half-edge around T : if e is in T , then set the current half-edge h
to be σα(h), else set it to be σ(h).
Repeat steps C1 and C2 until the current half-edge h is h0.
• Return the tree T .

In the procedure Construct-tree we keep track of the set F of edges already visited.
The decision of adding an edge e to the tree T or not is taken when e is visited for the
first time. The principle of procedure Construct-tree, which constructs the tree T while
making its tour, will appear again in the next sections.

Building on the mapping Φ : T 7→ OT , we define two mappings Γ and Λ.

Definition 8 Let G be an embedded graph. The mapping Γ associates with any spanning
tree T the outdegree sequence of the orientation OT .

Definition 9 Let G be an embedded graph and let V be the vertex set. The mapping Λ
associates with any spanning tree T the sandpile configuration ST : V 7→ N, where ST (v)
is the number of tails plus the number of external (G, T )-active heads incident to v in the
orientation OT .

The mappings Γ and Λ are illustrated in Figure 7.

As observed above, the orientation OT is always v0-connected hence the image of any
spanning tree by the mapping Γ is a v0-connected outdegree sequence. We shall prove
in Section 6 that Γ is a bijection between spanning tree and v0-connected outdegree se-
quences. We will also show how to extend it into a bijection between forests and outdegree
sequences. Regarding the mapping Λ, we shall prove in Section 7 that it is a bijection
between spanning trees and recurrent sandpile configurations. Moreover, the number of
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external (G, T )-active edges is easily seen to be the level of the configuration Λ(T ). This
gives a new bijective proof of a result by Merino linking external activities to the level of
recurrent sandpile configurations [10, 34].

The two mappings Γ and Λ coincide on internal trees, that is, trees that have external
activity 0. Thus, the mapping Γ ◦ Λ−1 is a bijection between recurrent sandpile config-
urations and v0-connected outdegree sequences that leaves the configurations at level 0
unchanged. This answers a problem raised by Gioan [24]. As an illustration we represent
the 5 spanning trees of a graph in Figure 8 and their image by the mappings Φ, Γ and Λ
(the first two spanning trees are internal).

?
?
?? ??h0 ?

?

13

0

3

1

0

33

1

03

11

3

1

3

1

2

0

2 1 21

0

1

0

2

2 1 2

Φ

Γ

Λ

Figure 8: Spanning trees (embedding-active edges are indicated by a star) and their image
by the mappings Φ, Γ and Λ.

We now highlight a relation (to be exploited in Section 6) between the embedding-
activities of the spanning tree T and the acyclicity or strong connectivity of the associated
orientation OT .

Lemma 10 Let G be an embedded graph ant let T be a spanning tree. The fundamental
cycle (resp. cocycle) of an external (resp. internal) edge e is OT -directed if and only if e
is (G, T )-active.

Lemma 10 is illustrated by Figures 9 and 10. From this lemma we deduce that if OT

is acyclic (resp. strongly connected) then T is internal (resp. external), that is, has no
external (resp. internal) active edge. In fact, we shall prove in Section 6 that the converse
is true: if the tree T is internal (resp. external), then the orientation OT is acyclic (resp.
strongly connected). For instance, in Figure 8 the first two (resp. last two) spanning
trees are internal (resp. external) and the corresponding orientations are acyclic (resp.
strongly connected).
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h0
h0

?

Figure 9: Fundamental cocycles of an active internal edge (left) and of a non-active
internal edge (right).

h0

?

h0

Figure 10: Fundamental cycles of an active external edge (left) and of a non-active external
edge (right).

Proof. Consider an edge e = {h1, h2} with h1 < h2 and denote by v1 and v2 the endpoints
of h1 and h2 respectively.
• Suppose that e is internal. We want to prove that the fundamental cocycle D of e is
directed if and only if e is (G, T )-active. Recall that v1 is the parent of v2 by Lemma 5.
Let V2 be the set of descendants of v2. Recall that D is the cocycle defined by V2. By def-
inition, the arc OT (e) is directed toward v2 ∈ V2. By Lemma 6, for all edge e′ = {h′

1, h
′
2}

with h′
1 < h′

2 in D−e, the arc OT (e′) = (h′
2, h

′
1) is directed toward V2 if and only if e < e′.

Therefore, the fundamental cocycle D is directed if and only if e is minimal in D, that is,
if e is (G, T )-active.
• Suppose that e is external. We want to prove that the fundamental cycle C of e is
directed if and only if e is (G, T )-active. Recall that C − e is the path in T between
v1 and v2. Since OT (e) is directed toward v1, the cycle C is directed if and only if the
path C − e is directed from v1 to v2. Since every edge in C − e ⊆ T is directed from
parent to child (Lemma 5), the cycle C is directed if and only if v1 is an ancestor of v2.
This is precisely the characterization of external (G, T )-active edges given by Lemma 7. �

Up to this point we have considered mappings defined on the set of spanning trees. In
order to extend these mappings to general subgraphs we will associate a spanning tree to
every subgraph. This is the task of the next section.
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4 A partition of the set of subgraphs

In this section we define a partition of the set of subgraphs for any embedded graph. Each
part of this partition is associated with a spanning tree. Our partition is closely related
to the notion of embedding-activities.

Let G be an embedded graph. Given a spanning tree T , we consider the set of sub-
graphs that can be obtained from T by removing some internal (G, T )-active edges and
adding some external (G, T )-active edges. Observe that this set is an interval in the
boolean lattice of the subgraphs of G (i.e. subsets of edges). We call tree-interval and
denote by [T−, T+] the set of subgraphs obtained from a spanning tree T . We represent
the tree-intervals corresponding to each of the 5 spanning trees of the embedded graph in
Figure 11. We now state the main result of this section.

Theorem 11 Let G = (V, E) be a graph and let G be an embedding of G. The tree-
intervals form a partition of the set of subgraphs of G:

2E =
⊎

T spanning tree

[T−, T+],

where the disjoint union is over all spanning trees of G.

?

?

? ?

?

?
?

h0?

Figure 11: The tree-intervals corresponding to each spanning tree. The active edges are
indicated by a ?.

The counterpart of Theorem 11 is known for the notion of (internal and external)
activities defined by Tutte in [43]. This property has been used to extract information
about the Tutte polynomial in [2, 14, 27]. In fact, Theorem 11 and its counterpart are
both consequences of a more general result proved by Gordon and McMahon [26] and
which relies on the notion of a computation tree. We now recall this notion.
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For a graph G and an edge e, we denote by G\e and G/e respectively the graphs
obtained from G by deleting and by contracting the edge e. A computation tree for a
graph G is a tree whose vertices are labeled by some minors of G and which obeys the
following inductive rules. If G has no edge, then the computation tree is made of a single
vertex labelled by G. Otherwise, a computation tree for the graph G is any tree made of
a root-vertex labelled by G and joined to either
- two subtrees, one being a computation tree of G\e and the other being a computation
tree of G/e, where e is any edge of G which is neither a loop nor an isthmus,
- or one subtree which is a computation tree of G\e, where e is any loop of G,
- or one subtree which is a computation tree of G/e where e is any isthmus of G.

It is easy to see that for any computation tree T of a connected graph G, the leaves
of T are in one-to-one correspondence with the spanning trees of G (the leaf l is in
correspondence with the spanning tree made of the edges which are contracted on the
path of the computation tree T from the root to the leaf l). Given a spanning tree T
of G corresponding to a leaf l of T, one says that an internal (resp. external) edge is
(T, T )-active if this edge is contracted as an isthmus (resp. deleted as a loop) on the
path of the computation tree T going from the root-vertex to the leaf l. Proposition 2.7
of [26] states that for any computation-tree T of a graph G = (V, E), the counterpart of
Theorem 11 holds, that is,

2E =
⊎

T spanning tree

[T \ int(T, T ), T ∪ ext(T, T )],

where the disjoint union is over all spanning trees of G and int(T, T ) (resp. ext(T, T )) is
the set of internal (resp. external) (T, T )-active edges.

In order to prove Theorem 11, it only remains to show the following lemma.

Lemma 12 Let G be a connected graph. For any embedding G of G, there exists a
computation tree T(G) of G such that for any spanning tree T of G the (G, T )- and
(T(G), T )-active edges coincide.

Proof. Informally, the computation tree T(G) is obtained by recursively considering
the edge e of G preceding the root-edge around the root-vertex. In order to make this
definition precise, we need to define the deletion and contraction of edges in an embedded
graph. We represent the result of deleting and contracting an edge in Figure 12.

Let G = (H, σ, α, h0) be an embedding of a graph G and let e = {h1, h2} be an edge. We
assume that G has at least two edges (otherwise G\e or G/e is the unique embedding of the
graph made of one vertex and no edge) and consider the set of half-edges H ′ = H\{h1, h2},
the involution α′ which is the restriction of α to H ′, and the permutation σ′ (resp. φ′)
whose cycles are obtained from the cycles of σ (resp. φ = ασ) by erasing h1 and h2. If e is
not an isthmus, then G\e denotes the embedding (H ′, σ′, α′, h′

0) of G\e, where h′
0 = σk(h0)

with k = 0, 1 or 2 the least non-negative integer such that σk(h0) 6= h1, h2. Similarly, if e
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Figure 12: Deletion and contraction of the edge e = {b, b′}.

is not a loop, then G/e denotes the embedding (H ′, σ′, α′′, h′′
0) of G/e, where σ′′ = αφ′ and

h′′
0 = φk(h0) with k = 0, 1 or 2 the least non-negative integer such that φk(h0) 6= h1, h2.

We now define a computation tree T(G) associated to the embedding G = (H, σ, α, h0).
If G has no edge, then the computation tree T(G) is made of a single vertex labelled by
G. Otherwise, we consider the edge e of G containing the half-edge σ−1(h0) and define
the computation T(G) to be the tree made of a root-vertex labelled by G joined to either
- the computation trees T(G\e) and T(G/e), if e is neither a loop nor an isthmus,
- or the computation tree T(G\e), if e is a loop of G,
- or the computation tree T(G/e), if e is an isthmus of G.

We want to show that for any spanning tree T of G, the (G, T )- and (T(G), T )-active
edges coincide. We proceed by induction on the number of edges of the graph G. If G has
no edge, the property holds. Consider now an embedded graph G = (H, σ, α, h0) with at
least one edge. Let e be the edge containing the half-edge σ−1(h0) and let T be a spanning
tree of G. It was shown in [3] that the edge e is (G, T )-active if and only if e is a loop or
an isthmus. Moreover, if e is internal (resp. external), then any other edge of G is (G, T )-
active if and only if it is (G\e, T )-active (resp. (G/e, T/e)-active). The same properties are
obviously true for (T(G), T )-activities: the edge e is (T(G), T )-active if and only if e is
a loop or an isthmus; moreover if e is internal (resp. external), then any other edge is
(T(G), T )-active if and only if it is (T(G\e), T )-active (resp. (T(G/e), T/e)-active). By the
induction hypothesis, the (G\e, T )- and (G/e, T/e)- activities coincide respectively with the
(T(G\e), T )- and (T(G/e), T/e)- activities, therefore (G, T )- and (T(G), T )-activities also
coincide. �

We will now prove some properties of the subgraphs in the tree-interval [T−, T+] and
comment on Theorem 11.

Lemma 13 Let G be an embedded graph and let T be a spanning tree. Let e be an
internal (resp. external) (G, T )-active edge. The fundamental cocycle (resp. cycle) of e is
contained in S + e (resp. S + e) for any subgraph S in [T−, T+].
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Proof. If e is internal and (G, T )-active, no edge in its fundamental cocycle D is (G, T )-
active (since their fundamental cycle contains e). Since no edge of D − e is in T nor is
(G, T )-active, none is in S. Hence, D ⊆ S + e. Similarly, if e is external (G, T )-active, its
fundamental cycle is contained in S + e. �

Lemma 14 Let G be an embedded graph. Let T be a spanning tree and let S be a subgraph
in [T−, T+] having c(S) connected components. Then c(S)− 1, (resp. e(S) + c(S) − |V |)
is the number of edges in S ∩ T (resp. S ∩ T ).

Proof. Consider any subgraph S in [T−, T+]. By Lemma 13, removing an internal (G, T )-
active edge from S increases c(S) by one and leaves e(S) + c(S) unchanged. Similarly,
adding an external (G, T )-active edge to S leaves c(S) unchanged and increases e(S)+c(S)
by one. Moreover, c(T ) − 1 = 0 and e(T ) + c(T ) − |V | = 0. Therefore, Lemma 14 holds
for every subgraph S in [T−, T+] by induction on the number of edges in S M T . �

By Lemma 14, the connected subgraphs in [T−, T+] are the subgraphs in the interval
[T, T+] (the subgraphs obtained from T by adding some external (G, T )-active edges).
Similarly, the forests in [T−, T+] are the subgraphs in the interval [T−, T ] (the subgraphs
obtained from T by removing some internal (G, T )-active edges). These properties are
illustrated in Figure 13.

T+

T

co
n
n
ec

te
d

fo
re

st

T−

Figure 13: The tree-interval [T−, T+], the sub-interval [T, T +] of connected subgraphs and
the sub-interval [T−, T ] of forests.

Theorem 11 constitutes the key link between the subgraph expansion (1) and spanning
tree expansion (2) of the Tutte polynomial. Indeed, given Lemma 14, one gets

∑

S∈[T−,T+]

(x − 1)c(S)−1(y − 1)e(S)+c(S)−|V | = (x − 1 + 1)I(T )(y − 1 + 1)E(T ) = xI(T )yE(T ),
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where I(T ) (resp. E(T )) is the number of internal (resp. external) (G, T )-active edges.
Summing over all spanning trees gives the identity:

∑

S subgraph

(x − 1)c(S)−1(y − 1)e(S)+c(S)−|V | =
∑

T spanning tree

xI(T )yE(T ).

Remark. As observed in [27], the partition of the set of subgraphs gives several other
expansions of the Tutte polynomial. For instance, the tree-intervals can be partitioned
into forest-intervals. The forest-interval of a forest F in [T−, T+] is the set [F, F +] of
subgraphs obtained from F by adding some external (G, T )-active edges. Since

[T−, T+] =
⊎

F forest in [T−,T+]

[F, F+],

the partition into tree-intervals given by Theorem 11 leads to a partition into forest-
intervals:

2E =
⊎

F forest

[F, F+].

Given Lemma 14, we get
∑

S∈[F,F+]

(x − 1)c(S)−1(y − 1)e(S)+c(S)−|V | = (x − 1)c(F )−1(y − 1 + 1)E(T ) = (x − 1)c(F )−1yE(T ),

for any forest in [T−, T+]. Summing up over forests gives the forest expansion

TG(x, y) =
∑

F forest

(x − 1)c(F )−1yE(F ),

where E(F ) is the number of (G, T )-active edges for the spanning tree T such that
F ∈ [T−, T+]. Let us mention that several alternative notions of external activities have
been defined, each of which gives a forest expansion [23, 30] which can be used to obtain
enumerative results about the Tutte polynomial [22, 23].

Before we close this section, we define some families of subgraphs counted by the
evaluations TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial. Consider an embedded graph
G and a spanning tree T . Recall that the spanning tree T is said to be internal (resp.
external) if it has no external (resp. internal) (G, T )-active edge. For instance, among
the spanning trees represented in Figure 11, the two first (resp. last) are internal (resp.
external). We say that a subgraph S in [T−, T+] is internal or external if the spanning tree
T is. The notion of internal subgraph is close to Whitney’s notion of subgraphs without
broken circuit [44]. Observe that by Lemma 14, any internal subgraph is a forest and
any external subgraph is connected (the converse is, of course, false). In Figure 20, we
represent the subgraphs of Figure 11 in each of the categories defined by the four criteria
forest, internal, connected, external. An easy enumerative corollary of Lemma 14 and
Theorem 11 is that the subgraphs in each of these categories are counted by the following
evaluations of the Tutte polynomial:
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General Connected External

General TG(2, 2) = 2|E| TG(1, 2) TG(0, 2)
Forest TG(2, 1) TG(1, 1) TG(0, 1)

Internal TG(2, 0) TG(1, 0) TG(0, 0) = 0

Figure 14: Number of subgraphs in the categories defined by the criteria forest, internal,
connected and external.

5 A bijection between subgraphs and orientations

In this section we define a bijection Φ between subgraphs and orientations. The bijection
Φ is an extension of the correspondence T 7→ OT between spanning trees and orientations
defined in Section 3. For instance, the image by Φ of the spanning tree T and the image
of a subgraph S in [T−, T+] are shown in Figure 15.

Definition 15 Let G be an embedded graph. Let T be a spanning tree and let S be a
subgraph in the tree-interval [T−, T+]. The orientation OS = Φ(S) is defined as follows.
For any edge e = {h1, h2} with h1 < h2 (for the (G, T )-order), the arc OS(e) is (h1, h2) if
and only if - either e is in T and its fundamental cocycle contains no edge in the symmetric
difference S M T - or if e is not in T and its fundamental cycle contains some edges in
S M T ; the arc OS(e) is (h2, h1) otherwise.

Recall that a subgraph S is in the tree-interval [T−, T+] if and only if every edge in
the symmetric difference S M T is (G, T )-active. Let S be a subgraph in [T−, T+] and let
e be any edge of G. We say that the arc OS(e) is reverse if OS(e) 6= OT (e). Observe that
the arc OS(e) is reverse if and only if the fundamental cycle or cocycle of e (with respect
to the spanning tree T ) contains an edge of S M T (compare for instance the orientations
OS and OT in Figure 15). In particular, Definition 15 of the mapping Φ extends the
Definition 5 given for spanning trees in Section 3.

h0

?
?

?
?

h0

M

M

?

Figure 15: Left: the orientation OS associated with a subgraph S in [T−, T+]. Right: the
orientation OT associated with a spanning tree T . The active edges are indicated by a ?.
The edges in the symmetric difference S M T are indicated by a M.

The main result of this section is that the mapping Φ is a bijection between subgraphs
and orientations. For instance, we have represented in Figure 16 the image by Φ of the
subgraphs represented in Figure 11.
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Theorem 16 Let G be an embedded graph. The mapping Φ establishes a bijection between
the subgraphs and the orientations of G.

Figure 16: The image by Φ of the subgraphs in Figure 11.

In order to prove Theorem 16, we define a mapping Ψ from orientations to subgraphs.
We shall prove that Ψ is the inverse of Φ.

Definition 17 Let G be an embedded graph and let O be an orientation. We define the
subgraph S = Ψ(O) by the procedure described below. The procedure Ψ visits the half-edges
in sequential order. The set of visited edges is denoted by F (and the set of unvisited one
by F = E \ F ). If C is a set of edges that intersects the set F of visited edges, we denote
by efirst(C) and hfirst(C) the first visited edge and half-edge of C respectively (efirst(C)
contains hfirst(C)). In this case, C is said to be tail-first if hfirst(C) is a tail and head-first
otherwise.
Procedure Ψ:

• Initialize the current half-edge h to be the root h0. Initialize the subgraph S, the tree T
and the set of visited edges F to be empty.
• Core:

C1: If the edge e containing h is not in F , then decide whether to add e to S and to T :

• If h is a tail, then
(a) If e is in a directed cycle C ⊆ F , then add e to S but not to T .
(b) If e is in a head-first directed cocycle D * F such that for all directed cocycle D ′

with efirst(D
′) = efirst(D) either e ∈ D′ or (D M D′ * F and efirst(D M D′) ∈ D′),

then do not add e to S nor to T .
(c) Else, add e to S and to T .

• If h is a head, then
(a′) If e is in a directed cocycle D ⊆ F , then add e to T but not to S.
(b′) If e is in a tail-first directed cycle C * F such that for all directed cycle C ′ with
efirst(C

′) = efirst(C) either e ∈ C ′ or (C M C ′ * F and efirst(C M C ′) ∈ C ′), then
add e to S and to T .
(c′) Else, do not add e to S nor to T .
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Add e to F .
C2: Move to the next half-edge around T : if e is in T , then set the current half-edge h
to be σα(h), else set it to be σ(h).
Repeat steps C1 and C2 until the current half-edge h is h0.
• Return the subgraph S.

Observe that the conditions (a) and (b) (resp. (a′) and (b′)) in Procedure Ψ are
incompatible. We are now going to prove that Φ and Ψ are inverse mappings.

Proposition 18 Let G be an embedded graph and let S be a subgraph. The mapping Ψ
is well defined on the orientation Φ(S) (the procedure terminates) and Ψ ◦ Φ(S) = S.

Proposition 18 implies that the mapping Φ is injective. Since there are as many sub-
graphs and orientations (2|E|), it implies that Φ is bijective and that Ψ and Φ are inverse
mappings. The rest of this section is devoted to the proof of proposition 18. Observe that
Ψ is a variation on the procedure Construct-tree presented in Section 3. The difference
lies in the extra Conditions (a), (b), (a′), (b′) which are now needed in order to cope with
reverse edges. In Lemmas 19 to 23 we express some properties characterizing reverse edges.

We first need some definitions. Let G be an embedded graph and O be an orientation.
Suppose that the edges and half-edges of G are linearly ordered. For any set of edges C,
we denote by emin(C) and hmin(C) the minimal edge and half-edge of C respectively. We
say that C is tail-min if hmin(C) is a tail and head-min otherwise. A directed cycle (resp.
cocycle) is tight if any directed cycle (resp. cocycle) C ′ 6= C with emin(C

′) = emin(C)
satisfies emin(C M C ′) ∈ C ′. For instance, if the edges of the graph in Figure 17 are
ordered by a < b < c < d < e < f < g, the directed cycles (a, h, g, f, e, c) and (b, g, f, e, c)
are tight whereas (a, h, g, d, c) is not.

bd

f h

e ac

g

Figure 17: The directed cycles (a, h, g, f, e, c) and (b, g, f, e, c) are tight whereas
(a, h, g, d, c) is not.

In Lemmas 19 to 23 we consider an embedded graph G, a spanning tree T and a
subgraph S in the tree-interval [T−, T+]. We consider the orientation OS = Φ(S) and
compare edges and half-edges according to the (G, T )-order.

Lemma 19 The fundamental cycle (resp. cocycle) of any edge in S ∩ T (resp. S ∩ T ) is
OS-directed and tail-min (resp. head-min).
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Lemma 20 Let e be a reverse edge (OS(e) 6= OT (e)). Then, e is in S if an only if it is
in a directed cycle (otherwise it is in a directed cocycle).

The (easy) proofs of Lemmas 19 and 20 are omitted.

Lemma 21 An edge e is in S ∩ T (resp. S ∩T ) if and only if it is minimal in a tail-min
(resp. head-min) directed cycle (resp. cocycle).

In order to prove Lemma 22 we shall use the following classical result.

Lemma 22 Let D be a cocycle and let V1 and V2 be the connected components after
deletion of D. If a directed cycle C contains an arc oriented from V1 to V2 then it also
contains an arc oriented from V2 to V1.

Proof of Lemma 21 We only prove that if an edge is minimal in a tail-min directed
cycle then it is in ∈ S ∩ T . The reverse implication is given by Lemma 19. The proof of
the dual equivalence (e is minimal in a tail-min directed cycle if and only if e is in S ∩ T )
is similar.
Let e = {h1, h2} with h1 < h2 be a minimal edge in a tail-min directed cycle C. We want
to prove that e is in S ∩ T . Observe first that OS(e) = (h1, h2) (since hmin(C) = h1 and
C is tail-min). We now prove successively the following points.
- The edge e is not in S ∩ T . Otherwise, the edge e would be both in a directed cycle C
and in a directed cocycle by Lemma 19.
- The edge e is not in S ∩ T . Suppose the contrary. Since e is in T , the arc OS(e) =
(h1, h2) = OT (e) is not reverse. Let D be the fundamental cocycle of e. Let v1 and v2 be
the endpoints of h1 and h2 respectively and let V2 be set of descendants of v2. Recall that
v1 is the parent of v2 in T (Lemma 5) and that D is the cocycle defined by V2. Since the
cycle C is directed and the arc OS(e) in C ∩D is directed toward V2, there is an edge e′ in
C ∩ D with OS(e′) directed away from V2 by Lemma 22. This situation is represented in
Figure 18. Since e is minimal in the cycle C, we have e < e′. Therefore, the arc OT (e′) is
directed toward V2 by Lemma 6. Thus, e′ is reverse. The edge e′ is reverse and contained
in a directed cycle, therefore it is in S by Lemma 20. We have shown that e′ is in S ∩ T .
But this is impossible since e < e′ is in the fundamental cycle of e′.
- The edge e is in S ∩ T . We know from the preceding points that e is in T . Hence,
OT (e) = (h2, h1) 6= OS(e). Thus, e is reverse in a directed cycle. Therefore, e is in S by
Lemma 20. �

Lemma 23 The fundamental cycle (resp. cocycle) of any edge in S ∩ T (resp. S ∩ T ) is
tight.

Proof. We prove that the fundamental cycle of an edge in S ∩ T is tight. The proof of
the dual property (concerning edges in S ∩ T ) is similar. Let e∗ be in S ∩ T . Recall that
e∗ = emin(C). By Lemma 19, the fundamental cycle C of e∗ is directed. We want to prove

the electronic journal of combinatorics 15 (2008), #R109 24



e

e′

v1

D
v2

C

Figure 18: The directed cycle C, the fundamental cocycle D and the edges e and e′.

that C is tight. Suppose not and consider a directed cycle C ′ with emin(C
′) = emin(C) = e∗

and e = emin(C M C ′) ∈ C. The edge e is in the fundamental cycle C of e∗, hence e∗ is in
fundamental cocycle D of e. This situation is represented in Figure 19. Let v1 and v2 be
the endpoints of e with v1 parent of v2 in T . Let V2 be the set of descendants of v2. Recall
that D is the cocycle defined by V2. The edge e is in the fundamental cycle of e∗ which is
(G, T ) active, hence e∗ < e. Therefore, the arc OT (e∗) is directed away from V2 by Lemma
6. Since e∗ is in S ∩ T , the arc OS(e∗) is reverse, hence is directed toward V2. Since the
cycle C ′ is directed and the arc O(e∗) in C ′∩D is directed toward V2, there is an arc OS(e′)
in C ′∩D oriented away from V2 by Lemma 22. Observe that e′ is not in the fundamental
cycle C since C ⊆ T + e∗ and D ⊆ T + e. Thus, e′ is in C M C ′ and e′ > e. Hence, by
Lemma 6, the arc OT (e′) in the fundamental cocycle D of e is directed toward V2. Thus,
the arc OS(e′) 6= OT (e′) is reverse. Since e′ is reverse and contained in a directed cycle,
it is in S by Lemma 20. We have shown that e′ is in S ∩ T . But this is impossible. In-
deed e′ is not (G, T )-active since its fundamental cycle contains e which is less than e′. �

e′

e

C ′

CD v2

v1
e∗

Figure 19: The directed cycles C and C ′ and the cocycle D.

Proof of Proposition 18. We consider a subgraph S0 in the tree-interval [T−
0 , T+

0 ]
and the orientation OS0

= Φ(S0). We want to prove that the procedure Ψ returns the
subgraph S0. We compare edges and half-edges according to the (G, T0)-order denoted by
<: we say that an edge or half-edge is greater or less than another. We also compare edges
and half-edges according to their order of visit during the algorithm: we say that an edge
or half-edge is before or after another. We denote by t the motion function associated
with T0. We denote by hi = ti(h0) the ith half-edge for the (G, T0)-order. Also, for every
half-edge h, we denote Fh = {e = {h1, h2} such that min(h1, h2) < h}, Th = T0 ∩ Fh and
Sh = S0 ∩ Fh.
We want to prove that at the beginning of the ith core step, h = hi, F = Fh, T = Th,
S = Sh, where h is the current half-edge. We proceed by induction on the number
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of core steps. The property holds for the first (i = 0) core step since h = h0 and
Fh0

= Th0
= Sh0

= ∅. Suppose the property holds for all i ≤ k. By the induction
hypothesis, the (G, T0)-order and the order of visit coincide on the edges and half-edges
of F . In particular, if C is any set not contained in F , then hmin(C) = hfirst(C) and
emin(C) = efirst(C). Suppose the edge e containing the current half-edge h is not in
F = Fh. In this case, the current half-edge h (resp. edge e) is less than any other half-
edge (resp. edge) in F . We consider the different cases (a), (b), (c), (a′), (b′), (c′). We will
prove successively the following properties.

• Condition (a) is equivalent to e ∈ S0 ∩ T0.
- Suppose Condition (a) holds: h is a tail and e is in a directed cycle C ⊆ F . Since,
C ⊆ F , the current half-edge h is minimal in C. Since h is a tail, the directed cycle
C is tail-min. Thus, e is in S0 ∩ T0 by Lemma 21.
- Conversely, if e is in S0 ∩ T0, then e is minimal in a tail-min directed cycle C by
Lemma 21. Therefore, h is a tail and C ⊆ F .

• Condition (a′) is equivalent to e ∈ S0 ∩ T0.
The proof is the similar to the proof of the preceding point.

• Condition (b) is equivalent to e ∈ S0 ∩ T0 and OS0
(e) is reverse.

- Suppose Condition (b) holds: h is a tail and e is in a head-first directed cocycle
D * F such that for all directed cocycle D′ with efirst(D

′) = efirst(D) either e ∈ D′

or D M D′ * F and efirst(D M D′) ∈ D′. Since the (G, T0)-order and the order of
visit coincide on F we have hmin(D) = hfirst(D). Since the cocycle D is head-first,
it is tail-min. The edge e∗ := emin(D) is minimal in a head-min directed cocycle,
hence e∗ is in S0∩T0 by Lemma 21. Let D∗ be the fundamental cocycle of e∗. Recall
that emin(D

∗) = e∗ = emin(D) We want to prove that e is in D∗. Suppose e is not
in D∗. By Condition (b), we have D M D∗ * F and efirst(D M D∗) ∈ D∗. But this
is impossible since emin(D M D∗) = efirst(D M D∗) and D∗ is tight by Lemma 23.
Thus, e is indeed in the fundamental cocycle D∗ of e∗. Since e∗ is in S0 ∩ T0, the
edge e is in T0 and also in S0 by Lemma 13. Moreover the arc OS0

(e) is reverse.
- Conversely, suppose that e is in S0 ∩ T0 and that the arc OS0

(e) is reverse. The
current half-edge h is the least half-edge of e. Since e is external, h is the head of
the arc OT0

(e) and the tail of the reverse arc OS0
(e). Since OS0

(e) is reverse, the
external edge e is in the fundamental cocycle D of an edge e∗ ∈ S0∩T0. The cocycle
D is head-min, directed and tight by Lemmas 19 and 23. Since e∗ = emin(D), the
edge e∗ is less than e. Therefore e∗ is before e and D * F . The cocycle D is
head-first since hfirst(D) = hmin(D). Consider any directed cocycle D′ such that
efirst(D

′) = efirst(D) = e∗ and e /∈ D′. We want to prove that D M D′ * F and
efirst(D M D′) ∈ D′. Since D is tight, the edge e′ = emin(D M D′) is in D′. Since e is
in D M D′, the edge e′ is less than e, hence it is in F . Therefore, D M D′ * F and
efirst(D M D′) = emin(D M D′) = e′ is in D′.

• Condition (b′) is equivalent to e ∈ S0 ∩ T0 and OS0
(e) is reverse.

The proof is the similar to the proof of the preceding point.
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• Condition (c) is equivalent to e ∈ S0 ∩ T0 and is not reverse.
- Suppose Condition (c) holds. In this case, Conditions (a), (a′), (b), (b′) do not
hold. Hence (by the preceding points), the edge e is not in S0 M T0 and the arc
OS0

(e) is not reverse. Since OS0
(e) is not reverse and the half-edge h (which is the

least half-edge of e) is a tail, the edge e is in T0. Since e is not in S0 M T0, it is in S0.
- Conversely, suppose that e is in S0 ∩ T0 and that OS0

(e) is not reverse. By the
preceding points, none of the conditions (a), (a′), (b), (b′) holds. Moreover, the
half-edge h (which is the least half-edge of e) is a tail.

• Condition (c′) is equivalent to e ∈ S0 ∩ T0 and is not reverse.
The proof is the similar to the proof of the preceding point.

By the preceding points, e is added to S (resp. T ) in the procedure Ψ if and only if e is in
S0 (resp. T0). Hence, the next half-edge will be t(h) = σα(h) if h is in T0 and σ(h) oth-
erwise. Thus, all the properties are satisfied at the beginning of the (k+1)th core step. �

This concludes the proof of Theorem 16. We have also proved the following property
that will be useful in the next section.

Lemma 24 During the execution of the procedure Ψ on an orientation O, the half-edges
are visited in (G, T )-order, where T is the spanning tree ∆ ◦ Ψ(O).

6 Specializations of the bijection between subgraphs

and orientations

In this section we study several restrictions of the bijection Φ between subgraphs and
orientations. More precisely we shall look at the restriction of Φ to each family of sub-
graphs defined by combining the four criteria forest, internal, connected, external. In
Figure 20 we have organized the subgraphs according to these criteria. We have also
represented the orientations associated to each subgraph by the mapping Φ. As Figure 20
suggests, there are nice correspondence between the properties of the subgraphs and the
properties of the associated orientations. Recall that the families of subgraphs defined by
combining the criteria forest, internal, connected, external are counted by the evaluations
TG(i, j), 0 ≤ i, j ≤ 2 of the Tutte polynomial. By studying the restriction of Φ to each of
these families we shall obtain a combinatorial interpretation for each of the evaluations
TG(i, j), 0 ≤ i, j ≤ 2 in terms of orientations or outdegree sequences (see Theorem 41).

6.1 Connected subgraphs and external subgraphs

In this subsection we study the restriction of Φ to connected and to external subgraphs.
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Figure 20: Subgraphs in each category defined by the four criteria forest, internal, con-
nected, external and the corresponding orientations. The categories go from the most gen-
eral to the most constrained from left to right and from up to down. The non-connected
subgraphs (resp. non-external connected subgraphs, external subgraphs) are in column 1
(resp. 2, 3). The subgraphs that are not forests (resp. the forests that are not internal,
the internal forests) are in line 1 (resp. 2, 3).
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Proposition 25 Let G be an embedded graph and let v0 be the root-vertex. The orienta-
tion OS is v0-connected if and only if the subgraph S is connected.

Lemma 26 Let G be an embedded graph and let T be a spanning tree. Let D be a cut and
let G0 be the connected component of G containing the root-vertex v0 after D is removed.
Then, the half-edge hmin(D) is incident to G0. Moreover, every half-edge not in G0 is
greater than or equal to hmin(D).

Proof. Let t be the motion function of T . If a half-edge h is incident to G0 and is not in
D then t(h) is incident to G0. Since the root h0 is incident to G0, the half-edge hmin(D) is
also incident to G0 and is less than any half-edge not in G0. �

Lemma 27 An orientation is v0-connected if and only if it has no head-min directed
cocycle.

Proof.

• If there is a head-min directed cocycle, this cocycle is directed toward the component
containing v0 by Lemma 26. Therefore, the vertices in the other components are not
reachable from v0 and the orientation is not v0-connected.
• If the orientation is not v0-connected we consider the cut D defined by the set V0

of vertices reachable from v0. The cut D is directed toward V0, hence is head-min by
Lemma 26. Let v1 be the endpoint of the edge e = emin(D) that is not in V0. Let V1 be
the set of vertices in the connected component containing v1 after the cut D is deleted.
The set of edges D1 with one endpoint in V0 and one endpoint in V1 is a cocycle contained
in D. Since every edge in D1 is directed away from V0 the cocycle D1 directed. Since
hmin(D1) = hmin(D) is a head, the cocycle D1 is head-min. �

Proof of Proposition 25. Let S be a subgraph in [T−, T+]. The orientation OS is
v0-connected if and only if there is no head-min directed cocycle by Lemma 27. An edge
is in S∩T if and only if it is minimal in a head-min directed cocycle by Lemma 21. Thus,
OS is v0-connected if and only if S ∩ T = ∅. And S ∩ T = ∅ if and only if S is connected
by Lemma 14. �

We now study the restriction of the bijection Φ to external subgraphs.

Proposition 28 Let G be an embedded graph and let S be a subgraph. The orientation
OS is strongly connected if and only if S is external.

Lemma 29 Let T be a spanning tree and let e be an edge of T . Let u and v be the
endpoints of e with the convention that u is the parent of v. For any connected subgraph
S in [T−, T+], the vertex v is Os-reachable from its parent u.
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Proof. For any connected subgraph S in [T−, T+], the set S ∩T is empty by Lemma 14.
If the fundamental cocycle of the edge e contains no edge of S ∩ T , then the arc OS(e)
is not reverse. In this case, the arc OS(e) = OT (e) is directed from u to v by Lemma 5.
Suppose now that the fundamental cocycle of e contains an edge e∗ of S ∩T . In this case,
e is in the fundamental cycle C∗ of e∗ which is OS-directed by Lemma 19. Therefore, the
vertex v is Os-reachable from u (and vice-versa). �

Lemma 30 Let G be an embedded graph. Let T be a spanning tree and let S be a con-
nected subgraph in [T−, T+]. An edge e is minimal in an OS-directed cocycle if and only
if e is an internal (G, T )-active edge.

Proof. Since the subgraph S is connected, the subset S ∩ T is empty by Lemma 14 and
the orientation OS is v0-connected by Lemma 25.
• Suppose that the edge e is an internal (G, T )-active edge. The edge e is minimal in its
fundamental cocycle D. We want to prove that D is OS-directed. Note first that e is not
in S M T (since e is in T and S ∩ T = ∅). No other edge of D is in S M T since none is
(G, T )-active. Hence, OS(e) = OT (e). Let e′ 6= e be an edge in the fundamental cocycle
D of e. The fundamental cycle of e′ does not contain any edge of S ∩ T since this edge
is empty. Hence, OS(e′) = OT (e′). Thus, the orientations OS and OT coincide on the
cocycle D. By Lemma 10, the cocycle D is OT -directed, hence it is OS-directed.
• Suppose that e = {h1, h2} with h1 < h2 is minimal in an OS-directed cocycle D. We
want to prove that e is an internal (G, T )-active edge. We prove successively the following
properties:
- The half-edge h1 is a tail. Otherwise, the cocycle D is head-min. (This is impossible by
Lemma 27 since OS is is v0-connected.) - The edge e is in T . If e is not in T , then the
arc OS(e) = (h1, h2) is reverse. Thus, the fundamental cycle C of e contains an edge of
S M T . Since C ⊆ T + e and S ∩ T = ∅, the edge e is in S ∩ T . Thus, the cycle C is
OS-directed by Lemma 19. This is impossible since e cannot be both is a directed cycle
and a directed cocycle.
- The edge e is (G, T )-active. Since the edge e is in T , the arc OS(e) = (h1, h2) = OT (e)
is not reverse. Let v1 and v2 be the endpoints of h1 and h2 respectively. Let G2 be the
connected component of G containing v2 once the cocycle D is removed. The arc OS(e)
is directed toward v2, thus the cocycle D is directed toward G2. By Lemma 29, all the
descendants of v2 are reachable from v2, hence they are all in G2. Let e′ be an edge in
the fundamental cocycle D′ of e. Since one of the endpoints of e′ is a descendant of v2,
the edge e′ is either in D or in G2. Since the minimal half-edge h1 of D is not incident to
G2, every edge in D ∪ G2 is greater than or equal to e by Lemma 26. Thus, e′ is greater
than e. The edge e is minimal in its fundamental cocycle D, that is, e is (G, T )-active. �

Proof of Proposition 28. Let S be a subgraph in [T−, T+].
• Suppose that the subgraph S is external. The subgraph S is connected and there is
no (G, T )-active edge, hence there is no OS-directed cocycle by Lemma 30. Thus, the
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orientation OS is strongly connected.
• Suppose that the orientation OS is strongly connected. The subgraph S is connected
(since OS is v0-connected) and there is no OS-directed cocycle, hence there is no (G, T )-
active edge by Lemma 30. Thus, the subgraph S is external. �

6.2 Forests and internal forests

In this subsection we study the restriction of the bijection Φ to forests and to internal
subgraphs.

Let G be an embedded graph and let O be an orientation. We compare half-edges
according to the (G, T )-order, where T = ∆ ◦ Ψ(O). We say that the orientation O is
minimal if there is no tail-min O-directed cycle. We shall see (Lemma 34) that for any
outdegree sequence δ there is a unique minimal δ-orientation. Recall that for any out-
degree sequence δ of a embedded planar graph, a lattice Lδ can be defined on the set
of δ-orientations [20, 38]. In the planar case, our notion of minimality coincide with the
notion of being minimal in the lattice Lδ.

Proposition 31 The orientation OS is minimal if and only if the subgraph S is a forest.

Proof. Let T = ∆(S). By Lemma 21, an edge is in S ∩ T if and only if it is minimal in
a tail-min directed cycle. Thus, the orientation OS is minimal if and only if S ∩ T = ∅.
And S ∩ T = ∅ if and only if S is a forest by Lemma 14. �

Proposition 32 The orientation OS is acyclic if and only if the subgraph S is internal.

In order to prove Proposition 32 we need to define a linear order, the postfix order,
on the vertex set. For any vertex v 6= v0 we denote by hv the half-edge incident to v and
contained in the edge linking v to its parent in T . The postfix order, denoted by <post, is
defined by v <post v0 for v 6= v0 and v <post v′ if hv < hv′ for v, v′ 6= v0. The postfix order
is illustrated in Figure 21.

Lemma 33 Let T be a spanning tree and let e be an edge. The arc OT (e) is directed
toward its greatest endpoint (for the postfix order) if and only if the edge e is external
(G, T )-active.

Lemma 33 is illustrated by Figure 21.

Proof. Recall from Lemma 6 that a half-edge h is incident to a descendant of v if and
only if h′

v < h ≤ hv, where h′
v = α(hv) is the other half of the edge containing hv.

• Consider an internal edge e. Let u and v be the endpoints of e with u parent of v. By
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Lemma 5, the arc OT (e) is directed toward v. We want to prove that v <post u. If u = v0,
the inequality holds. Else, the half-edges hu and hv exist. Moreover, the half-edge hv is
incident to a descendant of u, hence hv < hu and v <post u.
• Consider an external edge e. We write e = {h1, h2} with h1 < h2 and denote by u and
v the endpoints of h1 and h2 respectively. By definition, the arc OT (e) is directed toward
u. We want to prove that v ≤post u if and only if e is (G, T )-active.
- Suppose the edge e is (G, T )-active. Then, the vertex v is a descendant of u by Lemma 7.
The half-edge hv is incident to a descendant of u, hence hv ≤ hu and v ≤post u.
- Suppose that v ≤post u. If u = v0, the vertex v is a descendant of u and the edge e is
(G, T )-active by Lemma 7. Else, the half-edges hu and hv exist and hv ≤ hu. In this case,
α(hu) < h1 < h2 < hv ≤ hu (indeed, h2 < hv since h2 is incident to v and α(hu) < h1

since h1 is incident to u), hence v is a descendant of u by Lemma 6. Thus, the edge e is
(G, T )-active by Lemma 7. �

h0
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Figure 21: A spanning tree T , the postfix order, the orientation OT and the external
active edges (indicated by a ?).

Proof of Proposition 32. Let S be a subgraph in the tree-interval [T−, T+]. We com-
pare half-edges according to the (G, T )-order.
• Suppose that the subgraph S is internal (i.e. the tree T is internal). Recall that
S ∩ T = ∅. We want to prove that the orientation OS is acyclic. Observe first that the
orientation OT is acyclic since the vertices are strictly decreasing (for the postfix order)
along any OT -directed path by Lemma 33. Suppose now that there is an OS-directed
cycle C. The OS-directed cycle C contains a reverse arc O(e) or C would be OT -directed.
Since S ∩ T = ∅, the reverse edges are in the fundamental cocycle of an edge of S ∩ T .
Thus, the edge e is in the fundamental cocycle D of an edge of S ∩ T . The cocycle D is
directed by Lemma 19. This is impossible since e cannot be both in a directed cycle and
in a directed cocycle.
• Suppose that the orientation OS is acyclic. We want to prove that the subgraph S is
internal (i.e. the tree T is internal). Suppose there is an external (G, T )-active edge e.
Let C be the fundamental cycle of e. Since OS is minimal, we know (by Proposition 31)
that S ∩ T is empty. Therefore, the reverse edges are in the fundamental cocycle of an
edge of S ∩ T . Since e is active, it is not in the fundamental cocycle of an edge of S ∩ T .
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Since the other edges of C are not active (they are less than e) they are not in S ∩ T .
Moreover, since they are in T , they are not in the fundamental cocycle of an edge of S∩T .
Thus, the orientations OS and OT coincide on the cycle C. By Lemma 10, the cycle C is
OT -directed, hence it is OS-directed. This is impossible since OS is acyclic. �

6.3 Minimal orientations and outdegree sequences

In the previous subsection we proved that the bijection Φ induces a bijection between
forests and minimal orientations (Proposition 31). We are now going to link minimal
orientations and outdegree sequences.

Proposition 34 Let G be an embedded graph. For any outdegree sequence δ there exists
a unique minimal δ-orientation.

The rest of this subsection is devoted to the proof of Proposition 34. We first recall
the link between outdegree sequences and the cycle-flips.

Consider an orientation O and an O-directed cycle (resp. cocycle) C. Flipping the
O-directed cycle (resp. cocycle) C means reversing every arc in C. We shall talk about
cycle-flips and cocycle-flips. Observe that flipping a directed cycle does not change the
outdegree sequence. Therefore, any orientation O′ obtained from O by a sequence of
cycle-flips has the same outdegree sequence as O. It was proved in [20] that the converse
is also true.

Lemma 35 [20] Two orientations O and O′ have the same outdegree sequence if and
only if they can be obtained from one another by a sequence of cycle-flips. Moreover, the
flipped cycles can be chosen to be contained in the set {e/O(e) 6= O ′(e)}.

Lemma 35 is a direct consequence of the following result proved in [20].

Lemma 36 [20] Let G be a graph and let O and O′ be two orientations having the same
outdegree sequence. For any edge e in the set K = {e′/O(e) 6= O′(e)}, there is an O-
directed cycle C ⊆ K containing e.

Proof. (Hint) Start from the end v of O(e) and look for an edge e1 in K directed away
from v. This edge exists except if v is also the origin of e (since the number of edges
directed away from v is the same in O and O′). Repeat the process until arriving to the
origin of e. �

Recall that any very arc of an oriented graph is either in a directed cycle or a directed
cocycle but not both. We say that an arc a is cyclic or acyclic depending on a being in
a directed cycle or in a directed cocycle. We call cyclic part (resp. acyclic part) of an
orientation the set of cyclic (resp. acyclic) edges.
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It is well known that the cyclic and acyclic parts are unchanged by a cycle-flip or a
cocycle flip [20, 24, 38]. Indeed, it is easily seen that the cyclic part of an orientation can
only grow when a directed cocycle D is flipped (since no directed cycle intersects with
D). Since we return to the original orientation by flipping D twice, we conclude that the
cyclic and acyclic parts are unchanged by a cocycle-flip. Similarly, the cyclic and acyclic
parts are unchanged by a cycle-flip.

We will also need the following classical result.

Lemma 37 Let O be an orientation and let C and C ′ be two O-directed cycles (resp.
cocycles). Let O′ be the orientation obtained from O by flipping C ′. Then, the symmetric
difference of C and C ′ is a union of O′-directed cycles (resp. cocycles). In particular, any
edge in the O-directed cycle (resp. cocycle) C is in an O′-directed cycle (resp. cocycle)
C ′′ ⊆ C ∪ C ′.

Lemma 37 is illustrated by Figure 22.

Figure 22: The O-directed cycles (resp. cocycles) C and C ′ (thin and thick lines) and
their intersection (dashed lines).

We are now ready to prove Proposition 34. A false proof of the uniqueness of the min-
imal δ-orientation in this proposition is as follows. If there are two different δ-orientations
O and O′, then these orientations differ on a directed cycle C. Hence, the cycle C is
tail-min in either O or O′. A false proof of the existence (of a minimal δ-orientation) is as
follows. Take any δ-orientation and starts flipping cycles until no more tail-min directed
cycle remains. Of course, both the uniqueness and existence proofs are false in this ver-
sion since flipping a cycle changes the associated subgraph, hence the spanning tree and
the order on the half-edges. However being a bit careful, one can make both proofs correct.

We consider the procedure Ψ on orientations (see Definition 17). For an orientation O
we denote by Ψ[O] the execution of Ψ on O. Recall (from Lemma 24) that the half-edges
are visited in (G, T )-order during Ψ[O], where T is the spanning tree ∆◦Ψ(O). Therefore,
the orientation O is minimal if and only if Condition (a) never holds during the execution
Ψ[O].
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Lemma 38 Let O be an orientation. Consider the current half-edge h, the edge e and
the sets F , S and T at the beginning of a given core step of the execution Ψ[O]. Let
Cf ⊆ F + e be an O-directed cycle and let O′ be the orientation obtained from O by
flipping Cf . We want to prove that Condition (a) (resp. (b), (c), (a′), (b′), (c′)) holds for
the orientation O if and only if it holds for the orientation O′. (Let us insist that when
evaluating the Conditions (a), · · · , (c′) for the orientation O′, the symbols F , S, T , hfirst

and efirst continue to refer to the execution of Ψ[O].)

Proof. Note first that the orientations O and O′ coincide on the current half-edge h
since e /∈ Cf . We now study separately the different conditions.
• Recall that O and O′ coincide on their acyclic part: the directed cocycles of O and O′

are the same. Therefore, Condition (b) (resp. (a′)) holds for O if and only if it holds for
O′.
• Suppose now that Condition (a) holds for O: the current half-edge h is a tail and the
edge e is in an O-directed cycle C ⊆ F . By Lemma 37, the edge e is also in an O′-directed
cycle C ′ ⊆ C ∪ Cf ⊆ F . Thus, Condition (a) holds for O′. The same argument proves
that if Condition (a) holds for O′, then it holds for O (O is obtained from O′ by flipping
the O′-directed cycle Cf).
• Suppose now that Condition (b′) holds for O: the current half-edge h is a head and the
edge e is in a tail-first O-directed cycle C * F such that for all O-directed cycle C ′ with
efirst(C

′) = efirst(C) either e ∈ C ′ or (C M C ′ * F and efirst(C M C ′) ∈ C ′). By Lemma
37, the edge e∗ = efirst(C) is in an O′-directed cycle C1 ⊆ C∪Cf . Note that efirst(C1) = e∗.
We want to prove that Condition (b′) holds for O′ by considering the O′-directed cycle
C1. We prove successively the following properties.

• The edge e is in C1.
The edge e∗ is in the O′-directed cycle C1 and not in Cf . By Lemma 37, there is
an O-directed cycle C2 ⊆ C1 ∪ Cf containing e∗ (since O is obtained from O′ by
flipping Cf). Note that efirst(C2) = e∗. Suppose that e is not in C2. By Condition
(b′) on C, we have C M C2 * F and efirst(C M C2) ∈ C2. This is impossible since
C ∩ C2 ⊆ Cf (since C2 ⊆ C1 ∪ Cf ⊆ C ∪ Cf) and the edge e in C ∩ C2 is visited
before any edge in Cf . Thus e ∈ C2. Since e ∈ C2 ⊆ C1 ∪ Cf and e is not in Cf , it
is in C1.

• For all O′-directed cycle C ′
1 with efirst(C

′
1) = efirst(C1) either e ∈ C ′

1 or (C1 M C ′
1 * F

and efirst(C1 M C ′
1) ∈ C ′

1). (This proves that Condition (b′) is satisfied for O′).
Let C ′

1 be an O′-directed cycle not containing e and such that efirst(C
′
1) = efirst(C1) =

e∗. We want to prove that C1 M C ′
1 ⊆ F and efirst(C1 M C ′

1) ∈ C ′
1. The edge e∗ is in

the O′-directed cycle C ′
1 but not in Cf . By Lemma 37, there exists an O-directed

cycle C ′ ⊆ C ′
1 ∪ Cf containing e∗. Note that efirst(C

′) = e∗ and that e /∈ C ′ (since e
is not in Cf nor in C ′

1 by hypothesis). By Condition (b′) on C, we have C M C ′ * F
and eM = efirst(C M C ′) ∈ C ′. We now prove the following properties.
- The edge eM is in C1 ∩ C ′

1.
The edge eM is in C ′

1 since eM /∈ Cf and eM ∈ C ′ ⊆ C ′
1 ∪ Cf . Moreover, eM is not in
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C1 since eM /∈ C, eM /∈ Cf and C1 ⊆ C ∪ Cf . Thus, eM is in C1 ∩ C ′
1.

- Any edge in C1 ∩ C ′
1 is visited after eM during the execution Ψ[O].

Let e′ be an edge in C1 ∩C ′
1. If e′ is in Cf , it is visited after eM. Else, e′ is in C since

e′ ∈ C1, e′ /∈ Cf and C1 ⊆ C ∪ Cf . Moreover, e′ is not in C ′ since e′ /∈ C ′
1, e′ /∈ Cf

and C ′ ⊆ C1 ∪Cf . Since e′ ∈ C M C ′, the edge e′ is visited after eM = efirst(C M C ′)
during the execution Ψ[O].
Since eM is in C1∩C ′

1 and any edge in C1∩C ′
1 is visited after eM, the edge efirst(C1 M

C ′
1) is in C ′

1. Thus, Condition (b′) holds for O′.

We have proved that if Condition (b′) holds for O, then it holds for O′. The same argu-
ment proves that if Condition (b′) holds for O′, then it holds for O.
• Condition (c) holds for O if h is a tail and Conditions (a) and (b) do not hold for O
By the preceding points this is true if and only if h is a tail and Conditions (a) and (b)
do not hold for O′. Therefore, Condition (c) holds for O if and only if it holds for O′.
Similarly, Condition (c′) holds for O if and only if it holds for O′. �

Lemma 39 Let O and O′ be two orientations having the same outdegree sequence. For
all 0 ≤ i < |H|, let hi, Fi, Ti and Si (resp. h′

i, F ′
i , T ′

i and S ′
i) be respectively the current

half-edge and the sets F , T and S at the beginning of the ith core step of the execution
Ψ[O] (resp. Ψ[O′]). If the orientations O and O′ coincide on hi for all i < k (that
is, O(ei) = O′(ei) where ei is the edge containing hi), then the k first core steps of the
executions Ψ[O] and Ψ[O′] are the same. In particular, hi = h′

i, Fi = F ′
i , Si = S ′

i, and
Ti = T ′

i for all i ≤ k.

Proof. We proceed by induction on k. Recall from Lemma 35 that the orientation O ′

can be obtained from O by a sequence of cycle-flips such that the flipped cycles are con-
tained in the set K = {e/O(e) 6= O′(e)}. For k = 0 the property obviously holds. Now
suppose that the property holds for k and suppose that O and O′ coincide on hi, i < k+1.
By the induction hypothesis the current half-edge hk = h′

k and the sets F = Fk = F ′
k,

S = Sk = S ′
k, and T = Tk = T ′

k are the same at the beginning of the (k + 1)th core step
of the procedures Ψ[O] and Ψ[O′]. Moreover, the set K = {e′/O(e′) 6= O′(e′)} of reverse
edges is contained in F + e. Since O′ is obtained from O by a sequence of flips of cycles
contained in F + e, we know by induction on Lemma 38 that Condition (a) (resp. (b),
(c), (a′), (b′), (c′)) holds for the orientation O if and only if it holds for the orientation
O′. Therefore, the (k + 1)th core step is the same for the two executions Ψ[O] and Ψ[O′].
In particular, the sets F , S, and T are modified in the same way in both executions and
hk+1 = h′

k+1. Thus, the property holds by induction. �

Proof of Proposition 34. Recall that an orientation O is minimal if and only if Con-
dition (a) never holds during the execution Ψ[O]. Thus, we need to prove that for any
outdegree sequence δ there exists a unique δ-orientation O such that Condition (a) never
holds during the execution Ψ[O].
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• Uniqueness: Let O and O′ be two (distinct) orientations having the same outdegree
sequence. We take the same notations hi, Fi, Ti, Si, h′

i, F ′
i , T ′

i , S ′
i as in Lemma 39. Let k

be the first index such that O and O′ differ on hk. By Lemma 39, we have hk = h′
k and

Fk = F ′
k, Tk = T ′

k, Sk = S ′
k. We can suppose without loss of generality that hk is a tail

in O and a head in O′. We now prove that Condition (a) holds for O. By hypothesis,
the edge e containing h is such that O(e) 6= O′(e). Hence, by Lemma 36, the edge e is
contained in an O-directed cycle C ⊆ K = {e/O(e) 6= O′(e)}. Since O and O′ coincide
on hi for i < k, the set K is contained in Fi. Since C ⊆ Fi is O-directed, Condition (a)
holds for O.
• Existence: Let δ be an outdegree sequence. We want to find a δ-orientation O such
that Condition (a) never holds during the execution Ψ[O]. Let O0 be any δ-orientation.
We are going to define a set of δ-orientations O0,O1, . . . ,O|H| such that Condition (a)
is not satisfied during the i first core steps of the execution Ψ[Oi]. We prove that Ok

exists by induction on k. Suppose the δ-orientation Ok−1 exists. We consider the current
half-edge h, the edge e and the sets F , S and T at the beginning of the kth core step of
Ψ[Ok−1]. If either e ∈ F or Condition (a) does not hold, we define Ok = Ok−1. Else,
the current half-edge hk is a tail (for the orientation Ok−1) and there is an Ok-directed
cycle C ⊆ F containing e. In this case, we define Ok to be the orientation obtained from
Ok−1 by flipping the cycle C. Observe that Ok is a δ-orientation in which hk is a head.
Moreover, since C ⊆ F the two orientations Ok−1 and Ok coincide on the half-edges hi

for i < k, where hi is the current half-edge at the beginning of the ith core step of the
execution Ψ[Ok−1]. Thus, by Lemma 39, the k first core steps of the executions Ψ[Ok−1]
and Ψ[Ok] are the same. Moreover, the current half-edge h = hk at the beginning of the
kth core step of Ψ[Ok] is a head (for the orientation Ok). Hence, Condition (a) does not
hold at this core step. Thus, Ok is a δ-orientation such that Condition (a) does not hold
during the kth first core steps of the execution Ψ[Ok]. The orientations O0,O1, . . . ,O|H|

exist by induction. In particular, the δ-orientation O|H| is such that Condition (a) never
holds during the execution Ψ[O|H|]. �

From Proposition 31 and 34 one obtains the following bijection between outdegree
sequences and forests.

Proposition 40 Let G be an embedded graph. The mapping Γ which associates with any
subgraph S the outdegree sequence of the orientation OS establishes a bijection between
the forests and the outdegree sequences of G.

Another bijection between outdegree sequences and forests was established in [29] after
Stanley asked for such a bijection [41].

6.4 Summary of the specializations and further refinements

From Propositions 25, 28, 31 and 32 we can characterize the orientations associated with
each class of subgraphs defined by the criteria forest, internal, connected, external. Each
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class of subgraphs is counted by a specialization of the Tutte polynomial given in Table 14.
Our results are summarized in the following theorem.

Theorem 41 Let G be an embedded graph and let v0 be the root-vertex.

1. The v0-connected orientations are in bijection with the connected subgraphs counted
by TG(1, 2).

2. The strongly connected orientations are in bijection with the external subgraphs
counted by TG(0, 2).

3. The outdegree sequences are in bijection with minimal orientations, which are in
bijection with forests counted by TG(2, 1).

4. The acyclic orientations are in bijection with internal forests counted by TG(2, 0).

5. The v0-connected outdegree sequences are in bijection with v0-connected minimal
orientations which are in bijection with spanning trees counted by TG(1, 1).

6. The strongly connected outdegree sequences are in bijection with strongly connected
minimal orientations which are in bijection with external spanning trees counted by
TG(0, 1).

7. The v0-connected acyclic orientations are in bijection with internal spanning trees
counted by TG(1, 0).

The enumerative corollaries of these bijections are not new and precise references
were given in the introduction. We will now consider some refinements of Theorem 41.
For instance, we have proved that the acyclic orientations of a graph G are counted by
TG(2, 0). This is the sum of the coefficients of the polynomial TG(1+x, 0) (which is closely
related to the chromatic polynomial of G). We denote by [xi]P (x) the coefficient of xi in
a polynomial P (x). The identities

∑

i∈N

[xi]TG(1 + x, 0) = TG(2, 0) = |{acyclic orientations}|,

and
∑

i∈N

[xi]TG(x, 0) = TG(1, 0) = |{v0-connected acyclic orientations}|,

make it appealing to look for a partition of the acyclic orientations (resp. root-connected
acyclic orientations) in parts of size [xi]TG(1 + x, 0) (resp. [xi]TG(x, 0)). Such partitions
were defined by Lass in [33] using set functions algebra. The partition defined by Lass
is linked to former constructions by Cartier, Foata, Gessel, Stanley and Viennot (see
references in [33]). More generally, one can try to interpret the coefficients of TG(x, 1),
TG(1 + x, 1), TG(x, 2), TG(1 + x, 2) etc. in terms of orientations in order to interpolate
between the different specializations TG(i, j), 0 ≤ i, j ≤ 2. Observe that the coefficients
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of each of these polynomials can be given an interpretation in terms of subgraphs. For
instance, [xi]TG(1 + x, 0) counts internal forests with i + 1 trees (by Theorem 11 and
Lemma 14) and [xi]TG(x, 0) counts internal spanning trees with i internal embedding-
active edges (by Theorem 4).

We will now give an interpretation of the coefficients [xi]TG(1 + x, j) for i ≥ 0 and
j = 0, 1, 2 in terms of orientations. Let O be an orientation. We define the partition of
the vertex set V into root-components V =

⊎

0≤i≤k Vi as follows. The first root-component
V0 is the set of vertices reachable from the root-vertex v0. If Wk = ∪0≤i≤kVi ( V , we
consider the minimal edge ek with one vertex in Wk and one vertex vk in Wk (the edges
are compared according to the (G, T )-order, where T = ∆(Ψ(O))). Then, the (k + 1)th

root-component is the set of vertices in Wk that are reachable from vk. For instance,
the root-components have been indicated for the orientation in Figure 23 (left). It is
clear that v0-connected orientations have only one root-component. Given a v0-connected
orientation O, we define the partition of the vertex set V into root-strong-components
V =

⊎

0≤i≤k Ui as follows. The first root-strong-component U0 is the set of vertices that
can reach the root-vertex v0. If Wk = ∪0≤i≤kUi ( V , we consider the minimal edge ek

with one vertex in Wk and one vertex vk in Wk. Then, the (k+1)th root-strong-component
is the set of vertices in Wk that can reach vk. For instance, the root-strong-components
have been indicated for the v0-connected orientation in Figure 23 (right).

e2

U1

U0

V0

e1 e2

e3V3

h0 V1

V2 U2

h0

e1

Figure 23: Left: root-components of an orientation. Right: root-strong-components of
a v0-connected orientation. The thick edges correspond to the subgraph associated with
the orientation by the bijection Ψ.

Theorem 42 Let G be an embedded graph and let v0 be the root-vertex. The coefficient
[xi]TG(1 + x, 2) (resp. [xi]TG(1 + x, 1), [xi]TG(1 + x, 0)) counts orientations (resp. min-
imal orientations, acyclic orientations) with i + 1 (non-empty) root-components. The
coefficient [xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts v0-connected orientations
(resp. minimal v0-connected orientations, acyclic v0-connected orientations) with i + 1
(non-empty) root-strong-components.

As mentioned above, the coefficients [xi]TG(1+x, 0) and [xi]TG(x, 0) had already been
interpreted by Lass in [33]. The proof of Theorem 42 uses the following lemma.
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Lemma 43 Let G be an embedded graph and let O be an orientation (resp. v0-connected
orientation). We consider the spanning tree T = ∆(Ψ(O)) and compare the half-edges
and edges according to the (G, T )-order. Let V0, . . . , Vk be the root-components (resp.
root-strong-components). Let ej, j = 1 . . . k be the minimal edge in the cut defined by
Wj = ∪0≤i≤jVi. Then, {e1, . . . , ek} is the set of edges which are minimal in a head-min
directed cocycle (resp. a directed cycle).

The proof of Lemma 43 is omitted.

Proof of Theorem 42.

• We first prove that the coefficient [xi]TG(1+x, 2) (resp. [xi]TG(1+x, 1), [xi]TG(1+x, 0))
counts orientations (resp. minimal orientations, acyclic orientations) with i + 1 root-
components. Let T be a spanning tree with I(T ) internal and E(T ) external (G, T )-active
edges. By Lemma 14, the coefficient [xi](1 + x)I(T )2E(T ) counts the subgraphs S in the
tree-interval [T−, T+] having i edges in S ∩ T . Given that the tree-intervals form a par-
tition of the set of subgraphs, the coefficient [xi]

∑

T spanning tree (1 + x)I(T )2E(T ) counts

the subgraphs S having i edges in S ∩ ∆(S). Moreover, by the characterization (4) of
the Tutte polynomial, the sum

∑

T (1 + x)I(T )2E(T ) is equal to TG(1 + x, 2). Similarly,
the coefficient [xi]TG(1 + x, 1) (resp. [xi]TG(1 + x, 0)) counts the forests (resp. internal
forests) S having i edges in S ∩ ∆(S). By Theorem 41 and Lemma 21, the coefficient
[xi]TG(1+x, 2) (resp. [xi]TG(1+x, 1), [xi]TG(1+x, 0)) counts the orientations (resp. min-
imal orientations, acyclic orientations) having exactly i edges which are minimal in some
head-min directed cocycle. Moreover, by Lemma 43, an orientation has i edges which are
minimal in some head-min directed cocycle if and only if it has i + 1 root-components.
• The proof that the coefficient [xi]TG(x, 2) (resp. [xi]TG(x, 1), [xi]TG(x, 0)) counts v0-
connected orientations (resp. minimal v0-connected orientations, acyclic v0-connected ori-
entations) with i + 1 root-strong-components is similar. �

One interesting specialization of Theorem 42 concerns bipolar orientations. Recall
that, given two vertices u and v, a (u, v)-bipolar orientation is an acyclic orientation such
that u is the unique source and v is the unique sink. Bipolar orientations are well-studied
structures because of their many applications in graph drawing algorithms [16]. It was
shown in [28] that the coefficient [x1]TG(x, 0), known as Crapo’s β invariant [13], counts
the (u, v)-bipolar orientations of G for any fixed pair of adjacent vertices (u, v). The
following proposition, illustrated in Figure 24, gives a bijective proof of this property.

Proposition 44 Let G be an embedded graph, let v0 be the root-vertex and let v1 be the
other endpoint of the root-edge. The mapping Φ induces a bijection between the spanning
trees having embedding-activities (I(T ), E(T )) = (1, 0) (counted by [x1]TG(x, 0)) and the
(v0, v1)-bipolar orientations.

The counterpart of Proposition 44 for the notion of activities defined by Tutte in [43]
was proved by Gioan and Las Vergnas in [25]. They subsequently used this bijection as
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v0 v1

Figure 24: A (v0, v1)-bipolar orientation and the corresponding spanning tree (indicated
by thick lines).

the main building block in order to define a general correspondence between spanning
trees and orientations. Their correspondence explains the link between the activities (of
spanning trees) defined by Tutte in [43] and the activities of orientations defined by Las
Vergnas in [32].

Proof. Observe first that an acyclic orientation O is (v0, v1)-bipolar if and only if any
vertex is reachable from v0 and can reach v1. By Theorem 42 the coefficient [x1]TG(x, 0)
counts acyclic v0-connected orientation having 2 root-strong-components. No vertex
v 6= v0 can reach v0 in an acyclic v0-connected orientation (there would be a directed path
from v0 to v and back). Hence the first root-component U0 of an acyclic v0-connected
orientation is reduced to {v0}. The minimal edge with one endpoint in U0 = {v0} and
one endpoint outside U0 is the root-edge. Hence an acyclic v0-connected orientation has
2 root-strong-components if and only if every vertex can reach v1. Thus, the coefficient
[x1]TG(x, 0) counts (v0, v1)-bipolar orientations. �

7 A bijection between spanning trees and recurrent

sandpile configurations

In Section 3, we defined a mapping Λ : T 7→ ST from spanning trees to sandpile configu-
rations. Recall from Definition 9 that the number of grains ST (v) on the vertex v in the
configuration ST = Λ(T ) is the number of tails plus the number of external (G, T )-active
heads incident to v in the orientation OT = Φ(T ). In this section, we prove that the
mapping Λ is a bijection between spanning trees and recurrent sandpile configurations.

Theorem 45 Let G be an embedded graph. The mapping Λ : T 7→ ST is a bijection
between the spanning trees and the recurrent sandpile configurations of G.

Let G = (V, E) be the graph underlying the embedding G. Observe that the level of
the configuration ST , that is,

∑

v∈V ST (v) − |E|, is the number of external (G, T )-active
edges. Indeed, every edge of G has contribution 1 to the sum

∑

v ST (v) except the external
(G, T )-active edges which have contribution 2.
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Corollary 46 Let G be an embedded graph. The number of recurrent sandpile configura-
tions at level i is the number [yi]TG(1, y) of spanning trees having i external (G, T )-active
edges.

As mentioned above, Corollary 46 is not new. It was first proved recursively in [34]
and then bijectively in [10] (using Tutte’s notion of activity [43]). The Theorem 45 and
Corollary 46 are illustrated by Figure 25.

h0 ? ? ?

?
3 1 0 2 23 3 1 33

11010

Figure 25: The spanning trees (thick lines) and the corresponding sandpile configurations.
The external active edges are indicated by a ?.

We first prove that the image of any spanning tree is a recurrent sandpile configuration.

Proposition 47 Let G be an embedded graph. For any spanning tree T , the sandpile
configuration ST = Λ(T ) is recurrent.

Proof. Let v0 be the root-vertex. We consider the orientation OT and prove successively
the following properties.
• The sandpile configuration ST is stable. Let v be any vertex distinct from v0. We want
to prove that ST (v) < deg(v). Observe that any half-edge incident to v has contribution
at most one to ST (v). Moreover, the half-edge hv incident to v and contained in the edge
of T linking v to its parent is a head by Lemma 5. Thus, hv has no contribution to ST (v),
and ST (v) ≤ deg(v) − 1.
• ST (v0) = deg(v0). We must prove that every half-edge incident to v0 has contribution
1 to ST (v0). By Lemma 5, the internal edges are oriented from parent to child in OT .
Therefore any internal half-edge incident to v0 is a tail, hence has contribution 1 to ST (v0).
Let h be an external half-edge incident to v0. By definition, if the half-edge h is greater
than the half-edge h′ = α(h), then h is a tail. Else, the edge e = {h, h′} is (G, T )-active
by Lemma 7 (since the endpoint v0 of h is an ancestor of the endpoint of h′). Thus, any
external half-edge incident to v0 has contribution 1 to ST (v0).
• The sandpile configuration ST is recurrent. We want to prove that there is a labeling of
the vertices v0, v1, . . . , v|V |−1 such that the sequence of topplings ST

v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S

|V |
T

is valid. Observe that in this case the configuration ST is recurrent. Indeed, the final
configuration S

|V |
T is equal to ST since every vertex v has been toppled once, hence has sent

and received exactly deg(v, ∗) grains during the sequence of topplings (recall that deg(v, ∗)
is the number of non-loop edges incident to v). In Section 6, we defined a linear order,
the postfix order, on the vertex set V (see Lemma 33). The root-vertex v0 is the maximal
element for this order. We want to prove that taking the unique labeling such that v0 >
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v1 > · · · > v|V |−1 for the postfix order, the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · · v|V |−1

99K
S

|V |
T

is valid. From the preceding point, the toppling of v0 is valid. Suppose that the sequence
ST

v0

99K
S1

T
v1

99K
· · · vi−1

99K
Si

T is valid. After these topplings, the number of grains on the vertex
vi is Si

T (vi) = ST (vi) +
∑

j<i deg(vi, vj) (recall that deg(vi, vj) is the number of edges

linking vi and vj). We want to prove that vi can be toppled, that is, S i
T (vi) ≥ deg(vi).

By Lemma 33, any arc OT (e) is directed toward its least endpoint (for the postfix order)
unless e is external (G, T )-active. Let h be an half-edge in an edge linking vi to a vertex
vj, j ≥ i. The vertex vj is less than or equal to vi for the postfix order, hence h is either a
tail or an external (G, T )-active half-edge. In both cases, the half-edge h has contribution
1 to ST (vi). Hence,

ST (vi) ≥
∑

j≥i

deg(vi, vj).

Thus,

Si
T (vi) = ST (vi) +

∑

j≥i

deg(vi, vj) ≥
∑

j≥0

deg(vi, vj) = deg(vi)

and vi can be toppled. By induction, the sequence of topplings ST
v0

99K
S1

T
v1

99K
· · ·

· · · v|V |−1

99K
S

|V |
T is valid. �

It remains to prove that Λ : T 7→ ST is a bijection between the spanning trees and
the recurrent sandpile configurations. For this purpose we define a mapping Υ that we
shall prove to be the inverse of Λ. The mapping Υ is a variant of the burning algorithm
introduced by Dhar in order to distinguish between recurrent and non-recurrent sandpile
configurations [17]. The spanning tree returned by the algorithm can be seen as the path
through which the fire (the sequence of topplings) propagates. The intuitive principle
of the algorithm is to decompose each toppling and consider its effect grain after grain.
When a grain makes another vertex topple, we add the edge by which the grain has trav-
eled into the tree. Different variants of this algorithm have been proposed [10, 8]. These
variants differ by the rule used for choosing the next grain to be sent, and also differ from
the procedure Υ given below. Let us insist that the variants considered in [10, 8] do not
contain our bijection Λ as a special case.

If v is a vertex and F ⊆ E be a subgraph, we denote by degF (v) the degree of v in
the subgraph F .

Definition 48 Let G = (H, σ, α, h0) be an embedded graph. The mapping Υ associates
with a recurrent sandpile configuration S the spanning tree defined by the following pro-
cedure.
Procedure Υ:

• Initialize the current half-edge h to be h′
0 = σ−1(h0). Initialize the tree T and the set

of visited edges F to be empty.
• Core:

C1: Let e be the edge containing h, let u be the vertex incident to h and let v be the other
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endpoint of e. If e is not in F , then add e to F . If in addition u is not connected to v by
T and S(v) + degF (v) ≥ deg(v) then add e to T .
C2: Move to the next half-edge clockwise around T : if e is in T , then set the current
half-edge h to be σ−1α(h), else set it to be σ−1(h).
Repeat steps C1 and C2 until the current half-edge h is h′

0.
• Return the tree T .

We represent the intermediate steps of the procedure Υ in Figure 26.

h0

0

2

0

22

1

3

1

43 5 5 5 5

2

Υ

5

2

6

3 1 4 1 4 1 5 1 15

5

2

6

6 3 36

Figure 26: The mapping Υ. In the middle line, some intermediate steps are represented.
The set F of unvisited edges is indicated by dashed lines. The number associated to
each vertex v is equal to S(v) + degF (v). In the bottom line, the burning algorithm
representation of each of the intermediate steps is given.

Observe that during the procedure Υ our motion (step C2) around the spanning tree
is reverse (compared to our previous algorithms). This way of visiting the half-edges
would be the usual tour of the spanning tree in the embedded graph G ′ = (H, σ−1, α, h′

0).

We will now prove that Υ and Λ are inverse bijections. We first prove that the mapping
Υ is well defined on recurrent configurations and returns a spanning tree.

Proposition 49 The procedure Υ is well defined on recurrent configurations and returns
a spanning tree.

Lemma 50 Let S be a recurrent configuration. Then, at any time of the execution of the
procedure Υ on S, the endpoint u of the current half-edge h is connected to v0 by T .

Proof. The property holds at the beginning of the execution. Clearly, it remains true
each time a step C2 is performed. �
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Proof of Proposition 49. Let S be a recurrent configuration. We denote by Υ[S] the
execution of the procedure Υ on S. We prove successively the following properties on the
execution Υ[S].
• At any time of the execution, the subgraph T is a tree incident to v0. The property holds
at the beginning of the execution. Suppose that it holds at the beginning of a given core
step and consider the edge e with endpoints u and v containing the current half-edge. If
the edge e is added to T , the subgraph T remains acyclic since u is not connected to v by
T . Moreover the subgraph T remains connected and incident to v0 since (by Lemma 50)
the vertex u is connected to v0 by T .
• No half-edge is visited twice, hence the execution terminates. Suppose that a half-edge
h is visited twice during the execution. We consider the first time this situation happens.
First note that h 6= h′

0 or the execution would have stopped just before the second visit
to h. Let h1 and h2 be respectively the current half-edge just before the first and second
visit to h.. Let T1 and T2 be the trees constructed by the procedure Υ at the time of the
first and second visit to h. Let e be the edge containing σ−1(h). For i = 1, 2 we have
h = σ−1α(hi) if e is in Ti and h = σ−1(hi) otherwise. Since h1 6= h2 and T1 ⊆ T2, the
edge e is in T2 but not in T1. This is impossible since after the visit of h1 the edge e is in
F and cannot be added to the tree T anymore.
We denote by T0 the tree returned by the execution Υ[S] and by F0 the set of visited
edges at the end of this execution.
• If e = {h1, h2} is an edge in T0 = Υ(S) and the endpoint of h1 is the parent of the
endpoint of h2, then h1 is visited during the execution Υ[S]. Consider the core step at
which the edge e is added to the tree T . Let h be the current half-edge, let u be the
vertex incident to h and let v be the other endpoint of e. By Lemma 50, the vertex u is
connected to v0 by T ⊆ T0 − e, hence u is the parent of v. Hence h1 = h is visited during
the execution Υ.
• At the end of the execution, any edge adjacent to T0 is in F0. We want to show that any
half-edge incident to T0 is visited during the execution Υ[S]. First observe that no edge
can be added to T after its first visit. Therefore, when a step C2 is performed, the edge
e containing the current half-edge is in T if and only if it is in T0. Let h be a half-edge
incident to T0 which has not been visited during the execution Υ. If the half-edge σ−1(h)
is not in T0 then it has not been visited (or h would have been the next half-edge visited
during the execution). Thus by applying σ−1 repeatedly we find an unvisited half-edge h
such that σ−1(h) is in T0. Then, the half-edge ασ−1(h) has not been visited during the
execution Υ (or h would have been the next half-edge visited during the execution). Thus
(by the preceding point) the endpoint of ασ−1(h) is the child of the endpoint of σ−1(h).
We have proved that if there is an unvisited half-edge h incident to T0, then there is an
unvisited half-edge incident to one of its children in T0. We reach a contradiction.
• The tree T0 = Υ(S) is spanning. Let v0, v1, . . . , v|V |−1 be a labeling of the vertices such
that the sequence S v0

99K
S1 v1

99K
· · · v|V |−1

99K
S |V | is valid. In the configuration Si, the number

of sand grains on the vertex vi is Si(vi) = S(vi) +
∑

j<i deg(vj, vi) and is more than
the degree of vi. Suppose now that the tree T0 is not spanning and consider the least
index i such that vi is not connected to v0 by T . Each vertex vj for j < i is incident to
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T , hence (by the preceding point) every edge joining vj and vi is in F0. Moreover vi is
adjacent to at least one of the vertices vj, j < i since S(vi) is less than its degree and
Si(vi) is not. Consider the last edge e (in order of visit) joining vi to a vertex vj, j < i.
When the edge e is visited, we have degF (vi) ≥

∑

j<i deg(vi, vj). Therefore, the condition
S(vi) + degF (vi) ≥ deg(vi) holds and the edge e should have been added to the tree T .
We reach a contradiction. �

We proceed to prove that Λ and Υ are inverse mappings.

Lemma 51 Consider a given core step of the procedure Υ. Let e be the edge containing
the current half-edge h and let v be the endpoint of α(h). If the edge e is added to T , then
the inequality S(v) + degF (v) ≥ deg(v) (tested in the procedure Υ) is an equality.

Proof. Observe first that the vertex v is distinct from v0, otherwise adding e to the
tree T would create a cycle by Lemma 50. While v is not connected to v0 by T , it is
not the endpoint of the current half-edge h (Lemma 50). Thus, each time the quantity
degF (v) increases, that is, each time an edge incident to v is added to F , the condition
S(v) + degF (v) ≥ deg(v) is tested and the edge is added to T if the condition holds. �

Lemma 52 Let G = (H, σ, α, h0) be an embedded graph and let T be a spanning tree. We
consider the (G, T )-order on half-edges. Let v be a vertex distinct from v0 and let hv be the
half-edge incident to v in the edge of T linking v to its parent. Any half-edge h incident
to v and such that α(h) > hv is external. Moreover, there are deg(v) − ST (v) − 1 such
half-edges.

Proof. We consider the orientation OT . Recall from Lemma 5 that α(hv) < hv and that
the half-edges h incident to a descendant of v are characterized by α(hv) < h ≤ hv. In
particular, the inequalities α(hv) < h ≤ hv hold for the half-edges incident to v. We now
prove successively the following properties.
• Any half-edge h incident to v and such that α(h) > hv is external. Suppose that the
half-edge h is internal and consider the edge e containing h. If e links v to its parent, then
h = hv and α(h) = α(hv) < hv. If e links v to one of its children, then α(h) is incident
to a descendant of v and α(h) ≤ hv. In either cases, the hypothesis α(h) > hv does not
hold.
• An external half-edge h incident to v is a non-active head if and only if α(h) > hv. The
three following properties are sufficient to prove the equivalence:
- If h is a tail then α(h) < hv. Indeed, we have α(h) < h since h is a tail and h ≤ hv

since h is incident to v.
- If h is a head and α(h) < hv then h is (G, T )-active. Since h is a head, we have h < α(h)
hence, α(hv) < h < α(h) < hv. Thus, α(h) is incident to a descendant of v and the edge
e = {h, α(h)} is (G, T )-active by Lemma 7.
- If h is a head and α(h) > hv then h is not (G, T )-active. Since h is a head we have
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h < α(h). Since α(h) > hv, the half-edge α(h) is not incident to a descendant of v and
the edge e = {h, α(h)} is not (G, T )-active by Lemma 7.
• There are deg(v) − ST (v) − 1 half-edges h incident to v and such that α(h) > hv. By
definition, ST (v) is the number of tails plus the number of external (G, T )-active heads
incident to v. Hence, deg(v) − ST (v) is the number of heads incident to v which are not
external (G, T )-active. By Lemma 5, internal edges are oriented from parent to child.
Hence, the vertex v is incident to exactly one internal head. Thus deg(v) − ST (v) − 1
is the number of external non-active heads. By the preceding point, these half-edges are
characterized by the condition α(h) > hv. �

We now define the clockwise-tour of a tree. Let G = (H, σ, α, h0) be an embedded
graph. Given a spanning tree T , we define the clockwise-motion function τ on half-edges
by

τ(h) = σ−1α(h) if h is internal and τ(h) = σ−1(h) otherwise.

As observed above, the clockwise-motion function τ is the usual motion function for the
embedded graph G−1 = (H, σ−1, α, σ−1(h0)). This defines the (G−1, T )-order on the half-
edge set H for which h′

0 = σ−1(h0) is the least element. The (G, T )-order denoted by <
and the (G−1, T )-order denoted by <−1 are closely related.

Lemma 53 Let G be an embedded graph and let T be a spanning tree. The (G, T )-order
and (G−1, T )-order are related by h < h′ if and only if β(h′) <−1 β(h), where β is the
involution defined by β(h) = h if h is external and β(h) = α(h) otherwise.

Proof. Let t be the usual motion function and let τ be the clockwise-motion func-
tion. Observe that tβ = σ and τβ = σ−1. Thus, τ = βt−1β. Let us write t =
(h0, h1, . . . , h|H|−1) in cyclic notation. Then t−1 = (h|H|−1, . . . , h1, h0) and τ = βt−1β =
(β(h|H|−1), . . . , β(h1), β(h0)). Moreover, σβ(h|H|−1) = t(h|H|−1) = h0, hence β(h|H|−1) =
h′

0 = σ−1(h0). Therefore, hi < hj if and only if i < j if and only if β(hj) <−1 β(hi). �

Lemma 54 Let S be a recurrent configuration and let T0 = Υ(S) be the spanning tree
returned by the procedure Υ. The half-edges of G are visited in (G−1, T0)-order during the
procedure Υ.

Proof. During the procedure Υ, no edge can be added to the tree T after its first visit.
Therefore, when a step C2 is applied, the edge e containing the current half-edge is in T
if and only if it is in T0. Hence, a step C2 corresponds to an application of the clockwise-
motion function τ of the spanning tree T0. Since the first visited half-edge is h′

0 = σ−1(h0),
the half-edges are visited in (G−1, T0)-order. �

Lemma 55 Let G be an embedded graph and let T be a spanning tree. Let v be a vertex
distinct from v0 and let ev be the edge of T linking v to its parent. There are deg(v) −
ST (v) − 1 edges incident to v and less than ev for the (G−1, T )-order.
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Proof. Let hv be the half-edge of ev incident to v. Let h 6= hv be a half-edge incident to
v and let e be the edge containing h. We prove successively the following properties.
• The edge e is less than ev if and only if α(h) <−1 α(hv). Moreover, in this case e is
not a loop. By Lemma 5 applied to the embedded graph G−1, the half-edges h incident
to v are such that α(hv) <−1 h ≤−1 hv. Hence, the edge containing h is less than ev for
the (G−1, T )-order if and only if α(h) <−1 α(hv). In this case, α(h) is not incident to v
by Lemma 5, that is, e is not a loop.
• The conditions α(h) <−1 α(hv) and α(h) > hv are equivalent. Moreover, there are
deg(v) − ST (v) − 1 half-edges satisfying this condition. Suppose α(h) <−1 α(hv). In this
case, h external. Indeed, h is not in ev and is not incident to a child of v by Lemma 5
applied to the embedded graph G−1. Hence, by Lemma 53, we get α(h) > hv. Conversely,
if α(h) > hv, the edge e is external by Lemma 52, hence α(h) <−1 α(hv) by Lemma 53.
By Lemma 52, there are deg(v) − ST (v) − 1 half-edges satisfying this condition. �

Proposition 56 The mapping Λ ◦ Υ is the identity on recurrent configurations.

Proof. Let S be a recurrent configuration and let T = Υ(S). We want to prove
that the recurrent configuration ST = Λ(T ) is equal to S. We already know that
ST (v0) = deg(v0) = S(v0) since ST and S are recurrent configurations. Let v be a
vertex distinct from v0 and let ev be the edge of T linking v to its parent. Let F be
the set of visited edges when ev is added to T during the execution Υ[S]. We know that
S(v) = deg(v)−degF (v) by Lemma 51. It remains to prove that ST (v) = deg(v)−degF (v).
By Lemma 54, the half-edges are visited in (G−1, T )-order during the execution Υ[S].
Therefore, the value degF (v) is the number of edges incident to v which are less or equal
to ev for the (G−1, T )-order. There are deg(v) − ST (v) such edges by Lemma 55. We
obtain degF (v) = deg(v) − ST (v), or equivalently, ST (v) = deg(v) − degF (v). Thus,
ST (v) = S(v). �

Proposition 57 The mapping Υ ◦ Λ is the identity on spanning trees.

Proof. Let T0 be a spanning tree. We denote by T1 = Υ(ST0
) the image of T0 by Υ ◦ Λ

and want to prove that T1 = T0. Recall that every edge of G is visited during the ex-
ecution Υ[ST0

]. Hence, it is sufficient to prove that at the beginning of any core step
of the execution Υ[ST0

], the tree T constructed by the procedure Υ is T0 ∩ F , where F
denotes the set of visited edges. We proceed by induction on the number of core steps.
The property holds at the beginning of the first core step. Suppose that it holds at the
beginning of the kth core step. If the edge e containing the current half-edge is already in
the set F of visited edges, then the set F and the tree T are unchanged during this core
step and the property holds at the beginning of the k + 1th core step. Suppose now that
the edge e is not in F at the beginning of the kth core step. By the induction hypothesis,
the tree T constructed by the procedure Υ is T0 ∩ F . Moreover, no edge is added to
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the tree T after its first visit, hence T = T1 ∩ F . In other words, the spanning trees T0

and T1 coincide on F . By Lemma 54, the half-edges are visited in (G−1, T1)-order during
the execution Υ[ST0

], hence the edges visited before e during the execution Υ[ST0
] have

been visited in (G−1, T0)-order. Thus, the edges visited before e during the execution
Υ[ST0

] are the edges which are less than e for the (G−1, T0)-order. Suppose now that the
edge e is in the tree T0. In this case the endpoints u and v of e are not connected by
T ⊆ T0 − e. Moreover, the value degF+e(v) which corresponds to the number of edges
incident to v and visited before e during the execution Υ[ST0

], that is, the edge which
are less or equal to e for the (G−1, T0)-order, is deg(v) − ST0

(v) by Lemma 55. Thus, the
condition ST0

(v) + degF+e(v) ≥ deg(v) (tested by the procedure Υ) holds and the edge
e is added to the tree T . Suppose now that e is not in T0. In this case, the edge ev

linking v to its father in T0 is greater than e for the (G−1, T0)-order. Hence, the value
degF+e(v) is less or equal to the number of edges incident to v which are less than ev for
the (G−1, T0)-order. Thus, degF+e(v) < deg(v)−ST0

(v)− 1 by Lemma 55. The condition
ST0

(v) + degF+e(v) ≥ deg(v) (tested by the procedure Υ) does not hold, hence the edge e
is not added to the tree T . In any case, the property holds at the beginning of the k +1th

core step. �

This concludes our proof of Theorem 45. �

8 Concluding remarks

8.1 The cycle and cocycle reversing systems

We consider the cycle reversing system and the cocycle reversing system. A transition
in the cycle (resp. cocycle) reversing system consists in flipping a directed cycle (resp.
cocycle). The cycle and cocycle reversing systems appear implicitly or explicitly in many
works (e.g. [20, 15, 24, 38, 6]).

It is known from [38] that there is a unique v0-connected orientation (equivalently,
orientation without head-min directed cocycle by Lemma 27) in each equivalence class
of the cocycle reversing system. The counterpart of this property for the cycle reversing
system is given by Proposition 34. Indeed, the equivalence classes of the cycle reversing
system are in one-to-one correspondence with outdegree sequences [20]. Thus, Proposi-
tion 34 proves that there is a unique minimal orientation (that is, orientation without
tail-min directed cycle) in each equivalence class of the cycle reversing system.

The cycle-cocycle reversing system in which a transition consists in flipping either a
directed cycle or a directed cocycle was introduced in [24]. It was observed in this paper
that the cycle and cocycle flips are really independent since they act on the cyclic part
and acyclic part respectively and do not modify the other part. As a consequence it was
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shown that the equivalence classes of the cycle-cocycle reversing system are in one-to-one
correspondence with root-connected outdegree sequences. Since the cycle and cocycle
flips are independent, the uniqueness of the v0-connected orientation in the classes of the
cocycle reversing system ([38]) and the uniqueness of minimal orientation in the classes
of the cycle reversing system (Proposition 34) proves that there is a unique v0-connected
minimal orientation in each equivalence class of the cycle-cocycle reversing system.

As observed in [24], the enumerative results of Theorem 41 can be expressed in terms
of cycle/cocycle reversing systems. For instance, the equivalence classes of the cocycle
reversing system (in bijection with minimal orientations) are counted by TG(1, 2), the
equivalence classes of the cocycle reversing system reduced to one element (equivalently,
the strongly connected orientations) are counted by TG(0, 2) etc.

8.2 The planar case and duality

In this subsection we restrict our attention to planar graphs. Our goal is to highlight
some nice properties of our bijections with respect to duality. Therefore we will handle
simultaneously a planar embedding and its dual. In order to avoid confusion we shall
indicate the implicit embedding G for the tree-intervals and the mapping Φ by writing
[T−, T+]G and ΦG.

Let G = (V, E) be a planar graph. The graph G can be embedded in the sphere,
that is, drawn in such a way the edges only intersect at their endpoints. An embedding
of G in the oriented sphere defines a combinatorial embedding G = (H, σ, α) where the
permutation σ corresponds to the counterclockwise order around each vertex. There is a
one-to-one correspondence between the embedding of graphs in the oriented sphere and
combinatorial embeddings having Euler characteristic 0, where the Euler characteristic is
the number of vertices (cycles of σ) plus the number of faces (cycles of σα) minus the num-
ber of edges (cycles of α) minus 2. We call these embeddings planar. If G = (H, σ, α, h0)
is a (combinatorial) planar embedding, then G∗ = (H, σα, α, h0) correspond to the graph-
ical dual of G in the reverse-oriented sphere (the graphical dual of a graph embedded in
the sphere is obtained by putting a vertex in each face and an edge across each edge).
Observe, by the way that G∗∗ = G.

Consider a planar embedding G. Observe that the edges, subgraphs and orientations
of G can also be considered as edges, subgraphs and orientations of G∗. Given a subgraph
S of G we denote by S

∗
the co-subgraph, that is, the complement of S considered as a

subgraph of G∗. Given an orientation O of G we denote by O
∗

the co-orientation, that is,
the orientation obtained from O by reversing all arcs considered as an orientation of G∗.

Observe that for any subgraph S and any orientation O, we have S
∗∗

= S and O
∗∗

= O.
From the Jordan Lemma, a subgraph S is connected if and only if the co-subgraph S

∗
is

acyclic. This implies the well known property (see [37]) that a subgraph T is a spanning
tree of G if and only if the co-subgraph T

∗
is a spanning tree of G∗. From this property,
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it follows that the fundamental cycle (resp. cocycle) of an internal (resp. external) edge
e with respect to G and T is the fundamental cocycle (resp. cycle) of e with respect to
G∗ and T

∗
. Moreover, it follows directly from the definitions that the motion function

of the spanning tree T of G and the motion function of the spanning tree T
∗

of G∗ are
equal. In particular, the (G, T )-order and the (G∗, T

∗
)-order are the same. Hence, an edge

is (G, T )-active if and only if it is (G∗, T
∗
)-active. Thus, the mapping S 7→ S

∗
induces a

bijection between the tree-intervals [T−, T+]G and [T
∗−

, T
∗+

]G∗. It follows directly from
this property and the definitions that the mappings ΦG and ΦG∗ are related by :

for any subgraph S of G, ΦG(S)
∗

= ΦG∗(S
∗
).
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