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Abstract

For the set of graphs with a given degree sequence, consisting of any number of
2′s and 1′s, and its subset of bipartite graphs, we characterize the optimal graphs
who maximize and minimize the number of m-matchings.

We find the expected value of the number of m-matchings of r-regular bipar-
tite graphs on 2n vertices with respect to the two standard measures. We state
and discuss the conjectured upper and lower bounds for m-matchings in r-regular
bipartite graphs on 2n vertices, and their asymptotic versions for infinite r-regular
bipartite graphs. We prove these conjectures for 2-regular bipartite graphs and for
m-matchings with m ≤ 4.

Keywords and phrases: Partial matching and asymptotic growth of average match-
ings for r-regular bipartite graphs, asymptotic matching conjectures.

1 Introduction

Let G = (V,E) be an undirected graph with the set of vertices V and the set of edges E.
An m-matching M ⊂ E, is a set of m distinct edges in E, such that no two edges have a
common vertex. We say that M covers U ⊆ V,#U = 2#M , if the set of vertices incident
to M is U . Denote by φ(m,G) the number of m-matchings in G. If #V is even then
#V

2
-matching is called a perfect matching, or 1-factor of G, and φ(#V

2
, G) is the number

of 1-factors in G. For an infinite graph G = (V,E), a match M ⊂ E is a match of density
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p ∈ [0, 1], if the proportion of vertices in V covered by M is p. Then the p-matching
entropy of G is defined as

hG(p) = lim sup
k→∞

log φ(mk, Gk)

#Vk

,

where Gk = (Ek, Vk), k ∈ N is a sequence of finite graphs converging toG, and lim
k→∞

2mk

#Vk
= p.

See [4] for details.
The object of this paper is twofold. First we consider the family Ω(n, k), the set of

simple graphs on n vertices with 2k vertices of degree 1 and n − 2k vertices of degree
2. Let Ωbi(n, k) ⊂ Ω(n, k) be the subset of bipartite graphs. For each m ∈ [2, n] ∩ N

we characterize the optimal graphs which maximize and minimize φ(m,G), m ≥ 2 for
G ∈ Ω(n, k) and G ∈ Ωbi(n, k). It turns out the optimal graphs do not depend on m
but on n and k. Furthermore, the graphs with the maximal number of m-matchings, are
bipartite.

Second, we consider G(2n, r), the set of simple bipartite r-regular graphs on 2n vertices,
where n ≥ r. Denote by Cl a cycle of length l and by Kr,r the complete bipartite graph
with r-vertices in each group. For a nonnegative integer q and a graph G denote by qG
the disjoint union of q copies of G. Let

λ(m,n, r) := min
G∈G(2n,r)

φ(m,G), Λ(m,n, r) := max
G∈G(2n,r)

φ(m,G), (1.1)

m = 1, . . . , n.

Our results on 2-regular graphs yield.

λ(m,n, 2) = φ(m,C2n), (1.2)

Λ(m, 2q, 2) = φ(m, qK2,2), Λ(m, 2q + 3, 2) = φ(m, qK2,2 ∪ C6), (1.3)

for m = 1, . . . , n.

The equality Λ(m, 2q, 2) = φ(m, qK2,2) inspired us to conjecture the Upper Matching
Conjecture, abbreviated here as UMC:

Λ(m, qr, r) = φ(m, qKr,r) for m = 1, . . . , qr. (1.4)

For the value m = qr the UMC follows from Bregman’s inequality [1]. For the value r = 3
the UMC holds up to q ≤ 8. The results of [4] support the validity of the above conjecture
for r = 3, 4 and large values of n = qr. As in the case r = 2 we conjecture that for any
nonbipartite r-regular graph on 2n vertices φ(m,G) ≤ Λ(m,n, r) for m = 1, . . . , n.

It is useful to consider Gmult(2n, r) ⊃ G(2n, r), the set of r-regular bipartite graphs on
2n vertices, where multiple edges are allowed. Observe that Gmult(2, r) = {Hr}, where Hr

is the r-regular bipartite multigraph on 2 vertices. Let

µ(m,n, r) := min
G∈Gmult(2n,r)

φ(m,G), M(m,n, r) := max
G∈Gmult(2n,r)

φ(m,G), (1.5)

m = 1, . . . , n, 2 ≤ r ∈ N.
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It is straightforward to show that

M(m,n, r) = φ(m,nHr) =

(

n

m

)

rm, m = 1, . . . , n. (1.6)

Hence for most of the values of m, Λ(m,n, r) < M(m,n, r). On the other hand, as in the
case of Ω(n, k), it is plausible to conjecture that λ(m,n, r) = µ(n,m, r) for all allowable
values m,n and r ≥ 3.

It was shown by Schrijver [10] that for r ≥ 3

φ(n,G) ≥
(

(r − 1)r−1

rr−2

)n

, for all G ∈ Gmult(2n, r). (1.7)

This lower bound is asymptotically sharp, and in [11] Wanless proved that the bound is
sharp when restricted to 0/1-matrices as well. In the first version of this paper we stated
the conjectured lower bound

φ(m,G) ≥
(

n

m

)2 (

nr −m

nr

)rn−m
(mr

n

)m

, (1.8)

for all G ∈ Gmult(2n, r) and m = 1, . . . , n.
Note that for m = n the above inequality reduces to (1.7). Our computations suggest

a slightly stronger version of the above conjecture (7.1).
Recently Gurvits [6] improved (1.7) to

φ(n,G) ≥ r!

rr

(

r

r − 1

)r(r−1) (

(r − 1)r−1

rr−2

)n

, G ∈ Gmult(2n, r). (1.9)

In [3] the authors were able to generalize the above inequality to partial matching, which
are very close to optimal results asymptotically, see [4] and below.

The next question we address is the expected value of the number of m-matchings in
Gmult(2n, r). There are two natural measures µ1,n,r, µ2,n,r on Gmult(2n, r), [7, Ch.9] and [8,
Ch.8]. Let Ei(m,n, r) be the expected value of φ(m,G) with respect to the measure µi,n,r

for i = 1, 2. In this paper we show that

lim
k→∞

logEi(mk, nk, r)

2nk

= ghr(p), for i = 1, 2, (1.10)

if lim
k→∞

nk = lim
k→∞

mk = ∞, and lim
k→∞

mk

nk

= p ∈ [0, 1], (1.11)

ghr(p) :=
1

2

(

p log r − p log p− 2(1 − p) log(1 − p) + (r − p) log(1 − p

r
)
)

. (1.12)

In view of (1.10) the inequalities (1.7) and (1.9) give the best possible exponential term
in the asymptotic growth with respect to n, as stated in [10]. Similarly, the conjectured
inequality (1.8), if true, gives the best possible exponential term in the asymptotic growth
with respect to n, and p = m

n
.
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For p ∈ [0, 1] let lowr(p) be the infimum of lim infk→∞
log µ(mk ,nk,r)

2nk
over all sequences

satisfying (1.11). Hence hG(p) ≥ lowr(p) for any infinite bipartite r-regular graph. Clearly
lowr(p) ≤ ghr(p). We conjecture

lowr(p) = ghr(p). (1.13)

(1.2) implies the validity of this conjecture for r = 2. The results of [3] imply the validity
of this conjecture for each p = r

r+s
, s = 0, 1, . . . and any r ≥ 3. In [4] we give lower bounds

on lowr(p) for each p ∈ [0, 1] and r ≥ 3 which are very close to ghr(p).
We stated first our conjectures in the first version of this paper in Spring 2005. Since

then the conjectured were restated in [3, 4] and some progress was made toward validations
of these conjectures.

We now survey briefly the contents of this paper. In §2 we give sharp bounds for the
number of m-matchings for general and bipartite 2-regular graphs. In §3 we generalize
these results to Ω(n, k). In §4 we find the average of m-matchings in r-regular bipartite
graphs with respect to the two standard measures. We also show the equality (1.10). In
§5 we discuss the Asymptotic Lower Matching Conjecture. In §6 we discuss briefly upper
bounds for matchings in r-regular bipartite graphs. In §7 we bring computational results
for regular bipartite graphs on at most 36 vertices. We verified for many of these graphs the
LMC and UMC. Among the cubic bipartite graphs on at most 24 vertices we characterized
the graphs with the maximal number of m-matching in the case n is not divisible by 3.
In §8 we find closed formulas for φ(m,G) for m = 2, 3, 4 and any G ∈ G(2n, r). It turns
out that φ(2, G) and φ(3, G) depend only on n and r. φ(4, G) = p1(n, r) + a4(G), where

a4(G) is the number of 4 cycles in G. a4(G) ≤ nr(r−1)2

4
and equality holds if and only if

G = qKr,r.

2 Sharp bounds for 2-regular graphs

In this section we find the maximal and the minimal numbers of m-matchings of 2-regular
bipartite and non-bipartite graphs on n vertices. For the bipartite case this problem was
studied, and in fact solved, in [12]. First we introduce the following partial order on the
algebra of polynomials with real coefficients, denoted by R[x]. By 0 ∈ R[x] we denote the
zero polynomial.

For any two polynomials f(x), g(x) ∈ R[x] we let g(x) � f(x), or g � f , if and
only if all the coefficients of g(x) − f(x) are nonnegative. We let g � f if g � f and
g 6= f . Let R+[x] be the cone of all polynomial with nonnegative coefficients in R[x].
Then R+[x] + R+[x] = R+[x]R+[x] = R+[x]. Furthermore, if g1 � f1 � 0, g2 � f2 � 0
then g1g2 � f1f2 unless g1 = f1 and g2 = f2.

Denote 〈n〉 := {1, . . . , n}. Let G = (V,E) be a graph on n vertices. We will identify
V with 〈n〉. We agree that φ(0, G) = 1. Denote by ΦG(x) the generating matching
polynomial

ΦG(x) :=

bn
2 c

∑

m=0

φ(m,G)xm =
∞

∑

m=0

φ(m,G)xm. (2.1)
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It is straightforward to show that for any two graphs G = (V,E), G′ = (V ′, E ′) we have
the equality

ΦG∪G′(x) = ΦG(x)ΦG′(x). (2.2)

Denote by Pk a path on k vertices: 1 − 2 − 3 − · · · − k. View each match as an edge.
Then an m-matching of Pk is composed of m edges and k−2m vertices. Altogether k−m
objects. Hence the number of m-matchings is equal to the number of different ways to
arrange m edges and k − 2m vertices on a line. Thus

φ(Pk, m) =

(

k −m

m

)

for m = 1, . . . ,

⌊

k

2

⌋

, (2.3)

pk(x) := ΦPk
(x) =

b k
2c

∑

m=0

(

k −m

m

)

xm =

∞
∑

m=0

(

k −m

m

)

xm. (2.4)

It is straightforward to see that pk(x) satisfy the recursive relation

pk(x) = pk−1(x) + xpk−2(x), k = 2, . . . , (2.5)

where p1(x) = 1, ΦP0(x) := p0(x) = 1.

Indeed, p2(x) = 1 + x = p1(x) + xp0(x). Assume that k ≥ 3. All matchings of Pk, where
the vertex k is not in the matching, generate the polynomial pk−1(x). All matchings of
Pk, where the vertex k is in the matching, generate the polynomial xpk−2(x). Hence the
above equality holds. Observe next

qk(x) := ΦCk
(x) = pk(x) + xpk−2(x), k = 3, . . . (2.6)

Indeed, pk(x) is the contribution from all matching which does not include the matching
1−k. The polynomial xpk−2(x) corresponds to all matchings which include the matching
1 − k.

Use (2.5) to deduce

qk(x) = qk−1(x) + xqk−2(x), k = 3, . . . , (2.7)

where ΦC2 := q2(x) = 1 + 2x, ΦC1 := q1(x) = 1.

Note that we identify C2 with the 2-regular bipartite multigraph H2. It is useful to
consider (2.5) for k = 1, 0 and (2.6) for k = 2. This yields the equalities:

ΦP−1(x) = p−1 = 0, ΦP−2(x) = p−2 =
1

x
, ΦC0(x) = q0 = 2. (2.8)

Clearly

p−1 = 0 ≺ p0 = p1 = q1 = 1 ≺ q0 = 2, p2 = 1 + x ≺ q2 = p3 = 1 + 2x, (2.9)

pn ≺ qn ≺ pn+1 for all integers n ≥ 3. (2.10)
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Theorem 2.1 Let i ≤ j be nonnegative integers. Then

ΦCi
(x)ΦCj

(x) − ΦCi+j
(x) = (−1)ixiΦCj−i

(x). (2.11)

In particular, ΦCi
(x)ΦCj

(x) � ΦCi+j
(x) if i is even, and ΦCi

(x)ΦCj
(x) ≺ ΦCi+j

(x) if i is
odd.

Proof. We use the notation qk = ΦCk
for k ≥ 0. The case i = 0 follows immediately

from q0 = 2. The case i = 1 follows from q1 = 1 and the identity (2.7) for k ≥ 2:
1qj − qj+1 = qj − (qj + xqj−1) = −xqj−1. We prove the other cases of the theorem by
induction on i. Assume that the theorem holds for i ≤ l, where l ≥ 1. Let i = l+1. Then
for j ≥ l + 1 use (2.7) for k ≥ 2 and the induction hypothesis for i = l and i = l − 1 to
obtain:

ql+1qj − ql+1+j = (ql + xql−1)qj − (ql+j + xql−1+j) = qlqj − ql+j + x(ql−1qj − ql−1+j)

= (−1)l+1xl(−qj−l + qj−l+1) = (−1)l+1xl+1qj−l−1.

Hence (2.11) holds. Since qk � 0 for k ≥ 0 (2.11) implies the second part of the theorem.
2

Theorem 2.2 Let G be a 2-regular graph on n ≥ 4 vertices. Then

ΦG(x) � ΦC4(x)
n
4 if 4|n (2.12)

ΦG(x) � ΦC4(x)
n−5

4 ΦC5(x) if 4|n− 1, (2.13)

ΦG(x) � ΦC4(x)
n−6

4 ΦC6(x) if 4|n− 2, (2.14)

ΦG(x) � ΦC4(x)
n−7

4 ΦC7(x) if 4|n− 3, (2.15)

ΦG(x) � ΦC3(x)
n
3 if 3|n (2.16)

ΦG(x) � ΦC3(x)
n−4

3 ΦC4(x) if 3|n− 1, (2.17)

ΦG(x) � ΦC3(x)
n−5

3 ΦC5(x) if 3|n− 2. (2.18)

Equalities in (2.12-2.15) hold if and only if G is either a union of copies of C4, or a union
of copies of C4 and a copy of Ci for i = 5, 6, 7, respectively. Equalities in (2.16-2.18) hold
if and only if G is either a union of copies of C3, or a union of copies of C3 and a copy
of Ci for i = 4, 5, respectively.

Assume that n is even and G is a bipartite 2-regular multigraph. Then ΦG(x) �
ΦCn

(x). Equality holds if and only if G = Cn.

Proof. Recall that any 2-regular graph G is a union of cycles of order 3 at least.
Use (2.2) to deduce that the matching polynomial of G is the product of the matching
polynomials of the corresponding cycles.

We discuss first the upper bounds on ΦG. If Ci and Cj are two odd cycles Theorem
2.1 yields that qiqj ≺ qi+j, where Ci+j is an even cycle. To find the upper bound on ΦG
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we may assume that G contains at most one odd cycle. For all cycles Cl, where l ≥ 8
Theorem 2.1 yields the inequality ql ≺ q4ql−4. Use repeatedly this inequality, until we
replaced the products of different ql with products involving q4,q6 and perhaps one factor
of the form qi where i ∈ {3, 5, 7}. Use (2.11) to obtain the inequality:

q3
4 = q4(q8 + 2x4) = q12 + 3x4q4 � q12 + 2x6 = q2

6 .

Hence we may assume that G contains at most one cycle of length 6. If n is even we
deduce that we do not have a factor corresponding to an odd cycle, and we obtain the
inequalities (2.12) and (2.14). Assume that n is odd. Use (2.11) to deduce

q3q4 ≺ q7, q3q6 ≺ q9 ≺ q4q5, q5q6 ≺ q11 ≺ q4q7,

q2
4q5 = q4(q9 + x4) = q13 + x4q5 + x4q4 � q13 + x6 = q6q7.

These inequalities yield (2.13) and (2.15). Equality in (2.12-2.15) if and only if we did
not apply Theorem 2.1 at all.

We discuss second the lower bounds on ΦG. If l ≥ 6 then we use the inequality
ql � q3ql−3. Use repeatedly this inequality, until we replaced the products of different ql

with products involving q3,q4 and q5. As

q2
4 � q8 � q3q5, q4q5 � q9 � q3

3, q2
5 = q10 − 2x5 = q3q7 + x3q4 − 2x5 � q3q7 � q2

3q4,

we deduce (2.16-2.18). Equalities hold if we did not apply Theorem 2.1 at all.
Assume finally that G is a 2-regular bipartite multigraph on n vertices. Then G is a

union of even cycles C2i for i ∈ N. Assume that Ci and Cj are even cycles. Then Theorem
2.1 yields that qiqj � qi+j. Continue this process until we deduce that ΦG � qn. Equality
holds if and only if G = Cn. 2

Use Theorem 2.2 and Theorem 2.1 for i = 2 to deduce.

Corollary 2.3

• Let G be a simple 2-regular graph on 4q vertices. Then ΦG � ΦqK2,2 . Equality holds
if and only if G = qK2,2.

• Let G be a 2-regular multigraph on 2n vertices. Then ΦG � ΦnH2 . Equality holds if
and only if G = nH2.

Note that the above results verify all the claims we stated about 2-regular bipartite
graphs in the Introduction.

3 Graphs of degree at most 2

Denote by Ω(n, k) ⊂ Ωmult(n, k) the set of simple graphs and multigraphs on n vertices
respectively, which have 2k vertices, (k > 0), of degree 1 and the remaining vertices have
degree 2. The following proposition is straightforward.
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Proposition 3.1

• Each G ∈ Ω(n, k) is a union of k paths and possibly cycles Ci for i ≥ 3.

• Each G ∈ Ωmult(n, k) is a union of k paths and possibly cycles Ci for i ≥ 2.

Ωmult(n, k)\Ω(n, k) 6= ∅ if and only if n− 2k ≥ 2.

Denote by Π(n, k) ⊆ Ω(n, k) the subset of graphs G on n vertices which are union
of k-paths. Note that Π(2k, k) = kP2. As in §2 we study the minimum and maximum
m-matchings in Π(n, k),Ω(n, k),Ωmult(n, k).

We first study the case where G ∈ Π(n, 4), i.e. G is a union of two paths with the
total number of vertices equal to n.

Lemma 3.2 Let n ≥ 4. Then

• If n = 0, 1 mod 4 then

pn−1 = p1pn−1 ≺ p3pn−3 ≺ · · · ≺ p2bn
4 c−1pn−2bn

4 c+1 (3.1)

≺ p2bn
4 cpn−2bn

4 c ≺ p2bn
4 c−2pn−2bn

4 c+2 ≺ · · · ≺ p2pn−2 ≺ p0pn = pn.

• If n = 2, 3 mod 4 then

pn−1 = p1pn−1 ≺ p3pn−3 ≺ · · · ≺ p2bn
4 c+1pn−2bn

4 c−1 (3.2)

≺ p2bn
4 cpn−2bn

4 c ≺ p2bn
4 c−2pn−2bn

4 c+2 ≺ · · · ≺ p2pn−2 ≺ p0pn = pn.

Proof. Let 0 ≤ i, j and consider the path Pi+j. By considering the generating
matching polynomial without the match (i, i + 1) and with match (i, i + 1) we get the
identity

pi+j = pipj + xpi−1pj−1 (3.3)

Hence pi+j = pi−1pj+1+xpi−2pj. Subtracting from this equation (3.3) we obtain pi−1pj+1−
pipj = −x(pi−2pj − pi−1pj−1). Assume that i ≤ j− 2. Continuing this process i− 1 times,
and taking in account that p−1 = 0, p−2 = 1

x
we get

pi−1pj+1 − pipj = (−1)i−1xipj−i for 0 ≤ i ≤ j − 2. (3.4)

Hence pi−2pj+2 − pi−1pj+1 = (−1)i−2xi−1pj−i+2. Add this equation to the previous one
and use (2.5) to obtain

pi−2pj+2 − pipj = (−1)i−2xi−1pj−i+1 for 1 ≤ i ≤ j − 2. (3.5)

We now prove (3.1-3.2). In (3.5) assume that i ≥ 3 is odd and j ≥ i. So (−1)i−2 = −1.
Hence pi−2pj+2 − pipj ≺ 0. This explains the ordering of the polynomials appearing in
the first line of (3.1-3.2). Assume now that i ≥ 2 is even and j ≥ i. So (−1)i−2 = 1.
Hence pi−2pj+2 − pipj � 0. This explains the ordering of the polynomials appearing in
the second line of (3.1-3.2).

The last inequality in the first line of (3.1-3.2) is implied by (3.4). 2
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Theorem 3.3 Let k ≥ 2, n ≥ 2k. Then for any G ∈ Π(n, k)

ΦJ � ΦG � ΦK . (3.6)

Equality in the left-hand side and right-hand side holds if and only if G = J and G = K
respectively. Here K = (k − 1)P2 ∪ Pn−2k+2 and J is defined as follows:

1. If n ≤ 3k then J = (3k − n)P2 ∪ (n− 2k)P3.

2. If n > 3k then J = (k − 1)P3 ∪ Pn−3k+3.

Proof. For k = 2 the theorem follows from Lemma 3.2. For k > 2 apply the
theorem for k = 2 for any two paths in G ∈ Π(n, k) to deduce that K and J are the
maximal and the minimal graphs respectively. 2

We extend the result of Lemma 3.2 for cycles.

Lemma 3.4 Let n ≥ 4. Then

• If n = 0, 1 mod 4 then

qn−1 = q1qn−1 ≺ q3qn−3 ≺ · · · ≺ q2bn
4 c−1qn−2bn

4 c+1 (3.7)

≺ q2bn
4 cqn−2bn

4 c ≺ q2bn
4 c−2qn−2bn

4 c+2 ≺ · · · ≺ q2qn−2 ≺ qn+1.

• If n = 2, 3 mod 4 then

qn−1 = q1qn−1 ≺ q3qn−3 ≺ · · · ≺ q2bn
4 c+1qn−2bn

4 c−1 (3.8)

≺ q2bn
4 cqn−2bn

4 c ≺ q2bn
4 c−2qn−2bn

4 c+2 ≺ · · · ≺ q2qn−2 ≺ qn+1.

Proof. The equality (2.7) implies

qn+1 = qn + xqn−1 = qn−1 + xqn−2 + xqn−2 + x2qn−3 � qn−2 + 2xqn−2 = q2qn−2.

Hence the last inequality in (3.7) and (3.8) holds. By (2.11) we have qiqj − qi+j =
(−1)ixiqj−i. Using this, it is easy to see that

qi−1qj+1 − qiqj = (−1)i−1xi−1qj−i+2 − (−1)ixiqj−i = (−1)i−1xi−1(qj−i+2 + xqj−i),

as well as

qi−2qj+2 − qiqj = (−1)i−2xi−2qj−i+4 − (−1)ixiqj−i

= (−1)i−2xi−2(qj−i+4 − x2qj−i)

= (−1)i−2xi−2(qj−i+3 + xqj−i+2 − x2qj−i)

= (−1)i−2xi−2(qj−i+3 + xqj−i+1).

Comparing these equalities with (3.4) and (3.5) we obtain all other inequalities in (3.7)
and (3.8). 2

Next, we study graphs composed of a path and a cycle of the form piqj.
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Lemma 3.5 Let n ≥ 4. Then

• If n = 0, 1 mod 4 then

qn−1 = p1qn−1 ≺ q3pn−3 ≺ p3qn−3 ≺ q5pn−5 ≺ p5qn−5 ≺ . . .

≺ q2bn
4 c−1pn−2bn

4 c+1 ≺ p2bn
4 c−1qn−2bn

4 c+1 ≺ p2bn
4 cqn−2bn

4 c � q2bn
4 cpn−2bn

4 c
≺ p2bn

4 c−2qn−2bn
4 c+2 ≺ q2bn

4 c−2pn−2bn
4 c+2 ≺ . . .

≺ p4qn−4 ≺ q4pn−4 ≺ p2qn−2 ≺ q2pn−2 ≺ p0qn = qn. (3.9)

(If n = 0 mod 4 then � is =, and otherwise � is ≺.)

• If n = 2, 3 mod 4 then

qn−1 = p1qn−1 ≺ q3pn−3 ≺ p3qn−3 ≺ · · · ≺ q2bn
4 c+1pn−2bn

4 c−1

� p2bn
4 c+1qn−2bn

4 c−1 ≺ p2bn
4 cqn−2bn

4 c ≺ q2bn
4 cpn−2bn

4 c
≺ p2bn

4 c−2qn−2bn
4 c+2 ≺ q2bn

4 c−2pn−2bn
4 c+2 ≺ . . .

≺ p4qn−4 ≺ q4pn−4 ≺ p2qn−2 ≺ q2pn−2 ≺ p0qn = qn. (3.10)

(If n = 2 mod 4 then � is =, and otherwise � is ≺.)

Proof. Assume that 0 ≤ i, 2 ≤ j. Use (2.6) to obtain

piqj − qi+2pj−2 = pi(pj + xpj−2) − (pi+2 + xpi)pj−2 = pipj − pi+2pj−2.

(3.5) implies

piqj − qi+2pj−2 = (−1)ixi+1pj−i−3 if i ≤ j − 3, (3.11)

piqj − qi+2pj−2 = (−1)j−1xj−1pi−j+1 if i ≥ j − 2 (3.12)

Assume that 0 ≤ i ≤ j − 3. Hence, if i is odd we get that piqj ≺ qi+2pj−2. If i is even
then qi+2pj−2 ≺ piqj. These inequalities yield slightly less than the half of the inequalities
in (3.9) and (3.10).

Assume that 1 ≤ i < j. Use (2.6) and (3.5) to deduce

piqj − qipj = pipj − pipj + x(pipj−2 − pi−2pj) = (−1)i−1xipj−i−1. (3.13)

Therefore, if i is odd then qipj ≺ piqj. If i is even then piqj ≺ qipj. These inequalities
yield slightly less than the other half of the inequalities in (3.9) and (3.10).

Assume that 0 ≤ i ≤ j. Use (2.6) and (3.4) to deduce

pi−1qj+1 − piqj = pi−1pj+1 − pipj + x(pi−1pj−1 − pipj−2) (3.14)

= (−1)i−1xi(pj−i + xpj−i−2) = (−1)i−1xiqj−i.
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If i is even then pi−1qj+1 ≺ piqj. This shows the first inequality in the second line of (3.9).
If i is odd then piqj ≺ pi−1qj+1. This shows the inequality between the last term of the
first line and the first term in the second line of (3.10). 2

For graphs consisting of more than two cycles or paths there is no total ordering
by coefficients of matching polynomials. In particular, we computed that p8p6p3 is not
comparable with p7p5p5. The same holds true for the same parameters with cycles instead
of paths. To show that this is not due solely to the mixed parity of path/cycle length, we
also showed that p4p4p16p28 is incomparable with p6p6p6p34.

To extend the results of Theorem 3.3 to graphs in Ω(n, k) we need the following lemma.

Lemma 3.6 Let 5 ≤ i ∈ N. Then

pi − q3pi−3 = x2pi−6, (3.15)

pi − p2qi−2 = −x3pi−6, (3.16)

pi+1 − p3qi−2 = x4pi−7. (3.17)

p2i−3 − q4p2i−7 = −x4p2i−11. (3.18)

Hence

ΦP5 = ΦC3∪P2, ΦP7 = ΦP3∪C4 , and ΦPi
� ΦC3∪Pi−3

,

ΦPi
≺ ΦP2∪Ci−2

, ΦPi+2
� ΦP3∪Ci−1

, ΦP2i−3
≺ ΦP2i−7∪C4 for i ≥ 6.

Furthermore,
p2i+2j ≺ p2iq2j for any nonnegative integers i, j. (3.19)

In particular, ΦP2i+2j
≺ ΦP2i∪C2j

for i, j ∈ N.

Proof. Use (2.7) and (3.4-3.5) to obtain

pi − q3pi−3 = p0pi − p2pi−2 + p2pi−2 − p3pi−3 − xpi−3 = xpi−3 + x2pi−6 − xpi−3

= x2pi−6,

pi − p2qi−2 = p0pi − p2pi−2 − xp2pi−4 = x(p1pi−3 − p2pi−4) = −x3pi−6,

pi+1 − p3qi−2 = p0pi+1 − p2pi−1 + p2pi−1 − p3pi−2 − xp3pi−4 = xpi−2 + x3pi−5 − xp3pi−4

= x(p1pi−2 − p3pi−4) + x3pi−5 = x3(pi−5 − pi−6) = x4pi−7,

p2i−3 − q4p2i−7 = p0p2i−3 − p4p2i−7 − xp2p2i−7

= (p0p2i−3 − p2p2i−5) + (p2p2i−5 − p4p2i−7) − xp2p2i−7

= xp2i−6 + x3p2i−10 − xp2p2i−7 = x(p1p2i−6 − p2p2i−7) + x3p2i−10

= −x3p2i−9 + x3p2i−10 = −x4p2i−11.

These equalities imply (3.15-3.18). Recall that p−1 = 0, p0 = p1 = 1 and pi � 0 for
i ≥ 0 to deduce the implications of the above identities.
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To prove (3.19) recall that p0 = 1, q0 = 2, qi � 0. Hence it is enough to consider the
cases i, j ≥ 1. In view of Lemma 3.5 it is enough to assume that 1 ≤ i ≤ j ≤ i + 1. Use
(2.6) and (3.3) to obtain

p2iq2j − p2i+2j = xp2ip2j−2 − xp2i−1p2j−1 = −x(p2i−1p2j−1 − p2ip2j−2).

Use (3.4) and the equalities p0 = 1, p2 = 1
x

to obtain

p2iq2j − p2i+2j = x2i+1p2j−2i−2 � 0.

2

Theorem 3.7 Let G be a simple graph of order n with degree sequence d1 = · · · =
d2k = 1 and d2k+1 = · · · = dn = 2, 2 ≤ 2k ≤ n, i.e. G ∈ Ω(n, k). Set n − 2k = l and
assume that l ≥ 2. (Otherwise Ω(n, k) consists of one graph.) Then

ΦF � ΦG � ΦH , (3.20)

where the graphs F and H depend on n and k as follows.

1. When l − k ≤ 0 then F = lP3 ∪ (k − l)P2.

2. When l − k > 0

(a) If l − k ≡ 0 (mod 3), then F = kP3 ∪ 1
3
(l − k)C3.

(b) If l − k ≡ 1 (mod 3), then F = (k − 1)P3 ∪ P4 ∪ 1
3
(l − k − 1)C3.

(c) If l − k ≡ 2 (mod 3), then either F = F1 = (k − 1)P3 ∪ P5 ∪ 1
3
(l − k − 2)C3 or

F = F2 = (k − 1)P3 ∪ P2 ∪ 1
3
(l − k + 1)C3.

3. If l = 2 then H = (k − 1)P2 ∪ P4.

4. If l = 3 then either H = (k − 1)P2 ∪ P5 or H = kP2 ∪ C3.

5. If l ≥ 4 and l ≡ 0 (mod 4), then H = kP2 ∪ 1
4
lC4.

6. If l ≥ 5 and l ≡ 1 (mod 4), then H = kP2 ∪ 1
4
(l − 5)C4 ∪ C5.

7. If l ≥ 6 and l ≡ 2 (mod 4), then H = kP2 ∪ 1
4
(l − 6)C4 ∪ C6.

8. If l ≥ 7 and l ≡ 3 (mod 4), then H = kP2 ∪ 1
4
(l − 7)C4 ∪ C7.

Furthermore, if G 6= F then ΦF ≺ ΦG and if G 6= H then ΦG ≺ ΦH .
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Proof. Consider a partial order on Ω(n, k) induced by the partial order � on
R+[x]. Thus G1 � G2 ⇐⇒ ΦG1 � ΦG2 . It is enough to show that any minimal and
maximal element in Ω(n, k) with respect to this order is of the form F and H respectively.

Assume that G is a minimal element with respect to this partial order. Hence there
is no G′ ∈ Ω(n, k) such that ΦG′ ≺ ΦG. Suppose that G has at least one cycle. Theorem
2.2 implies that G contains at most one cycle Ci 6= C3, where i ∈ [4, 5]. We now rule
out such Ci. Since k ≥ 1 G must contain a path Pj for j ≥ 2. Lemma 3.5 yields that
q3pi+j−3 ≺ pjqi. Hence if we replace Ci ∪ Pj with C3 ∪ Pi+j−3 we will obtain G′ ∈ Ω(n, k)
such that ΦG′ ≺ ΦG. This contradicts the minimality of G. Hence G can contain only
cycles of length 3.

In view of Lemma 3.6 G does not contain Pi with i ≥ 6. Denote by B2,B3 and B4 the
set of paths with 2, 3 and at least 4 vertices in G respectively. We claim that #B4 ≤ 1.
Otherwise, let Q,R ∈ B4 be two different paths. Lemma 3.2 yields that ΦP3∪Pi−1

≺ ΦQ∪R.
This contradicts the minimality of G. Next we observe that that min(#B2,#B4) = 0. If
not, choose Q ∈ B2, R ∈ B4. Lemma 3.2 yields that ΦP3∪Pi−1

≺ ΦQ∪R, which contradicts
the minimality of G.

We claim that G has to be of the form F . Suppose first that G does not have cycles. If
B4 = ∅ then we are in the case 1. If B2 = ∅ then we have either the case 2b with l = k+ 1
or the case 2c with l = k + 2 and F = F1.

Assume now that G has cycles. If B2 = B4 = ∅ then we have the case 2a. Assume
now that B2 = ∅ and #B4 = 1. Then we have either the case 2b with l > k + 1 or the
case 2c with l > k + 2 and F = F1.

Assume finally that B4 = ∅ and #B2 ≥ 1. We claim that #B2 = 1. Assume to the
contrary that B2 contains at least two P2. Since G contains at least one cycle C3 we
replace P2 ∪ C3 with P5 to obtain another minimal G′. As G′ contains P2 and P5 it is
not minimal, contrary to our assumption. Hence #B2 = 1 and we have the case 2c and
G = F2.

We now assume that G is a maximal element in Ω(n, k). Thus, there is no G′ ∈ Ω(n, k)
such that ΦG ≺ ΦG′ .

Observe first G does not contain two distinct paths Q,R with i, j ≥ 3 vertices. Indeed,
Lemma 3.2 implies that ΦQ∪R ≺ ΦP2∪Pi+j−2

. This shows that G = H in the cases 3 and
4. (In the case 4 we use the identity ΦP5 = ΦP2∪C3 .)

In what follows we assume that l ≥ 4. Observe next that G cannot contain Pi, where
i ≥ 6. Otherwise replace Pi with P2 ∪ Ci−2 and use (3.16).

Also G cannot contain a cycle Ci, i ≥ 3 and a path Pj for j ≥ 3. Indeed, in view of
Lemma 3.5 we have the inequality ΦPj∪Ci

≺ ΦP2∪Ci+j−2
.

Since l ≥ 4 it follows that G has at least one cycle and all paths in G are of length
2. Theorem 2.2 implies that G contains at most one cycle Ci 6= C4, where i ∈ [5, 6, 7]. It
now follows that G = H, where H satisfies one of the conditions 5-8. 2

We now a give the version of Theorem 3.7 for the subset Ωbi(n, k) ⊂ Ω(n, k) of bipartite
graphs.
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Theorem 3.8 Let G be a simple bipartite graph of order n with degree sequence d1 =
· · · = d2k = 1 and d2k+1 = · · · = dn = 2, where 2 ≤ 2k ≤ n, i.e. G ∈ Ωbi(n, k). Set
n− 2k = l, and assume that l ≥ 2. Then (3.20) holds, where the graphs F and H depend
on n and k as follows.

1. When l − k ≤ 0 then F = lP3 ∪ (k − l)P2.

2. When l − k > 0

(a) If l − k = 1, 2 then F = (k − 1)P3 ∪ Pl−k+3.

(b) If 4 ≤ l − k even then either F = F1 = kP3 ∪ Cl−k or if l − k = 4 then
F = F2 = (k − 1)P3 ∪ P7.

(c) If 3 ≤ l − k is odd, then F = (k − 1)P3 ∪ Pl−k+3.

3. If l = 2 then H = (k − 1)P2 ∪ P4.

4. If l = 3 then H = (k − 1)P2 ∪ P5.

5. If l ≥ 4 and l ≡ 0 (mod 4), then H = kP2 ∪ 1
4
lC4.

6. If l ≥ 5 and l ≡ 1 (mod 4), then H = H1 = (k − 1)P2 ∪ 1
4
(l − 1)C4 ∪ P3 or

H = H2 = (k − 1)P2 ∪ 1
4
(l − 5)C4 ∪ P7 .

7. If l ≥ 6 and l ≡ 2 (mod 4), then H = kP2 ∪ 1
4
(l − 6)C4 ∪ C6.

8. If l ≥ 7 and l ≡ 3 (mod 4), then H = H1 = (k − 1)P2 ∪ 1
4
(l − 3)C4 ∪ P5.

Furthermore, if G 6= F then ΦF ≺ ΦG and if G 6= H then ΦG ≺ ΦH .

Proof. The proof of this theorem is similar to the proof of Theorem 3.7, and we
briefly point out the different arguments one should make. First, recall that G ∈ Ω(n, k)
is bipartite, if and only if G contains only even cycles.

We first assume that G is minimal. Lemma 3.2 implies that G cannot contain two
paths, such that either each at least length 4, or one of length 2 and one of length at least
4. Use (3.17) to deduce that G cannot contain Pi for i ≥ 9. Also note that ΦP7 = ΦP3∪C4 .
By Theorem 2.2 G can contain at most one even cycle. Furthermore (3.19) yields that G
cannot contain an even cycle and an even path. This show that the minimal G must be
equal to F .

Assume now that G is maximal. Note that in view of Theorem 3.7 we need only to
consider the cases 6 and 8, i.e. l ≥ 5, l ≡ 1 mod 4 and l ≥ 7, l ≡ 3 mod 4.

In view of Theorem 2.2 can have at most one cycle of length 6, while all the other are
of length 4. Lemma 3.2 implies that one out of any two paths in G is P2. (3.16) implies
that G does not contain an even path of length greater than 5. Lemma 3.5 implies that
if G contains an even path and a cycle then the length of the even path is 2. (3.18) yields
that G does not contain an odd path of length greater than 8. Also one has the equality
ΦP7 = ΦP3∪C4 (Lemma 3.6).
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Thus, if an odd path appears in G then we may assume it is one of the following: P3,
P5 or P7. First we compare p3q6 with p5q4. (3.9) yields p3q6 ≺ q4p5. This establishes the
case 8. Next we compare p7q4 with p5q6. Use (3.11) to obtain p4q7 − q6p5 = x5. Next
use (3.13) to show that p4q7 − q4p7 = −x4p2. Hence q4p7 − q6p5 = x4p2 + x5. Hence
ΦP7∪C4 � ΦP5∪C6 . This establishes 6. 2

4 Expected values of number of m-matchings

4.1 First measure

For a set A ⊂ R denote by Ap×q the set of p × q matrices A = [aij]
p,q
i,j=1, where each

entry aij is in A. For A = [aij] ∈ R
n×n denote by permA the permanent of A, i.e.

permA =
∑

σ∈Sn

∏n

i=1 aiσ(i), where Sn is the permutation group on 〈n〉. Let A ∈ R
p×q

and m ∈ 〈min(p, q)〉. Denote by permmA the sum of permanents of all m×m submatrices
of A.

Denote by G(p, q) and Gmult(p, q) the set of simple bipartite graphs and bipartite multi-
graphs on p and q vertices in each class, respectively. W.L.O.G., we can assume that
1 ≤ p ≤ q. We identify the two classes p and q vertices with 〈p〉 and 〈q〉. (Sometimes
we identify the second class with q vertices with 〈q〉 + p := {p + 1, . . . , p + q}.) For
G ∈ G(p, q) let A(G) = [aij]

p,q
i,j=1 ∈ {0, 1}p×q be the (0, 1) matrix representing G. Vice

versa, any A ∈ {0, 1}p×q represents a unique graph G ∈ G(p, q). Let G1, . . . , Gr ∈ G(p, q).
Let G be a bipartite multigraph on the vertices 〈p〉 ∪ 〈q〉, whose set of edges is the
union of the set of edges in Gi. I.e., e ∈ 〈p〉 × 〈q〉, appears l times in G, if and only
exactly l graphs from G1, . . . , Gr contain the edge e. We denote G by ∨r

i=1Gi. So
A(G) = [aij] =

∑r

i=1A(Gi) ∈ 〈r〉p×q. Vice versa, any A ∈ 〈r〉p×q corresponds to a
bipartite multigraph G on the vertices 〈p〉, 〈q〉, such that G = ∨r

i=1Gi, where Gi ∈ G(p, q).
(Usually there would be many such decompositions of G.)

In what follows we need the following lemma.

Lemma 4.1 Let p, q, r ∈ N and assume that G1, . . . , Gr ∈ G(p, q). Let Ai := A(Gi) ∈
{0, 1}p×q, and denote A :=

∑r
i=1Ai. Let m ∈ 〈min(p, q)〉. Then permmA is the number

of m-matchings of G := ∨r
i=1Gi, which is equal to the number of m-matchings obtained

in the following way. Consider m1, . . . , mr ∈ Z+ such that m1 + . . . + mr = m. In each
Gi choose an mi-matching Mi such that ∪r

i=1Mi is an m-matching, i.e., Mi ∩Mj = ∅ for
each i 6= j.

Proof. Notice that A is the incidence matrix for the multigraph G := ∨r
i=1Gi.

The permanent of the incidence matrix of a multigraph can be viewed as the number
of m-matchings of the same graph with multiple edges merged and each edge chosen as
many times as its multiplicity but not in the same m-matching. 2
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Let Sn be the set of all n× n permutation matrices and set

Sr
n = Sn × · · · × Sn := {(P1, . . . , Pr) : P1, . . . , Pr ∈ Sn}.

Denote by G(2n, r) ⊂ Gmult(2n, r) the set of simple and bipartite multigraphs on 〈n〉, 〈n〉
vertices, where each vertex has degree r. Denote by ∆(n, r) ⊂ {0, 1, . . . , r}n×n the set of
matrices with nonnegative integer entries such that the sum of each row and column of A
is equal to r. That is each A ∈ ∆(n, r) is the incidence matrix of G ∈ Gmult(2n, r). G is
simple if and only if A ∈ {0, 1}n×n. Birkhoff-König theorem implies that each A ∈ ∆(n, r)
is a sum of r-permutation matrices.

A = P1 + · · · + Pr, P1, . . . , Pr ∈ Sn, (4.1)

Let φ : Sr
n → ∆(n, r) is given by (4.1). Then for A ∈ ∆(n, r) φ−1(A) is the set of all r

tuples (P1, . . . , Pr) which present A. Let #φ−1(A) be the cardinality of the set φ−1(A).
View Sr

n as a discrete probability space where each point (P1, . . . , Pr) has the equal
probability (n!)−r. Then φ : Sr

n → ∆(n, r) induces the following probability measure on
∆(n, r):

P (Xn,r = A ∈ ∆(n, r)) =
#φ−1(A)

(n!)r
. (4.2)

Here Xn,r is a random variable on the set ∆(n, r).

Lemma 4.2 Let 1 ≤ r ∈ N, 1 ≤ m ≤ n ∈ N . Assume that the random variable
Xn,r ∈ ∆(n, r) has the distribution given by (4.2). Then

E1(m,n, r) := E(permmXn,r) =

1

(n!)r

(

n

m

)2

m!
∑

m1,...,mr∈Z+,m1+···mr=m

m!(n−m1)! · · · (n−mr)!

m1! · · ·mr!
. (4.3)

Proof. We first observe the following equality:

∑

P1,...,Pr∈Sn

P1 + . . .+ Pr =
∑

A∈∆(n,r)

(#φ−1(A))A.

(Just group P1 + . . .+ Pr to A ∈ ∆(n, r).) Hence

E(permmXn,r) =
1

(n!)r

∑

P1,...,Pr∈Sn

permm(P1 + . . .+ Pr). (4.4)

We now compute the right-hand side of (4.4). Each A = P1 + . . .+ Pr we interpret as
a regular r-multigraph G := ∨r

i=1Gi. So permmA is the number of total m-matchings of
G. It is given by Lemma 4.1. We now consider in the right-hand side of (4.4) all terms
which contribute to a matching (1, n + 1), . . . , (m,n + m). (Here V1 = {1, . . . , n}, V2 =
{n+ 1, . . . , 2n}).
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To achieve that we choose an r partition U1, . . . , Ur of the set {1, . . . , m}, so that Ui has
mi ≥ 0 elements. So m1 + · · ·+mr = m. The choice of all such U1, . . . , Ur is m!

m1!···mr !
. Now

once we choose Ui, it means that we assumed that we choose the edges (j, n + j), j ∈ Ui

from the graph Gi for i = 1, . . . , r. This is possible if and only if Pi fixes the elements of
Ui. Then there are exactly (n−mi)! permutations Pi each of which fixes Ui. This gives the
summand inside the summation in the right-hand side of (4.3). Next observe that after
we decided that the m-matches are chosen from the sets {1, . . . , m}× {n+ 1, . . . , n+m}
then the total possible set of m-matches for this choice is m!. This gives the m! factor
outside the summation in the right-hand side of (4.3). In general we should choose two

subsets of size m from V1 and V2. This gives the factor
(

n

m

)2
. Finally the factor 1

(n!)r is

the probability of choosing r-tuple (P1, . . . , Pr). 2

Lemma 4.3 Let 2 ≤ r ≤ m be integers. Let µ1, . . . , µr be r unique integers satisfying
the conditions

µi =
⌊m

r

⌋

, i = 1, . . . , k < r, µi =
⌈m

r

⌉

, i = k + 1, . . . , r,

r
∑

i=1

µi = m. (4.5)

Then
(

m+ r − 1

r − 1

)

1

(n!)r−2((n−m)!)2

r
∏

i=1

(n− µi)!

µi!
≥

E1(m,n, r) ≥ 1

(n!)r−2((n−m)!)2

r
∏

i=1

(n− µi)!

µi!
. (4.6)

Proof. If r divides m then µ1 = . . . = µr = m
r

and (4.5) trivially holds for any
integer k ∈ [1, r − 1]. Assume that r does not divide. Then

k = r
⌈m

r

⌉

−m. (4.7)

Since the right-hand side of the inequality (4.6) is one of the nonnegative summands
appearing in the definition (4.3) of E1(m,n, r) we immediately deduce the lower bound
in (4.6).

We next claim the inequality

(n−m1)! · · · (n−mr)!

m1! · · ·mr!
≤ (n− µ1)! · · · (n− µr)!

µ1! · · ·µr!
(4.8)

for any r nonnegative integers such that m1 + . . . + mr = m. To show this inequality
we start with the case r = 2. Suppose that 0 ≤ a < b − 1 and a + b = m ≤ n. A
straightforward calculation shows:

(n− a)!(n− b)!

a!b!
≤ (n− (a+ 1))!(n− (b− 1))!

(a+ 1)!(b− 1)!
.
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(Equality holds if and only if a + b = n.) Hence the maximum of the left-hand side
of (4.8) on all possible nonnegative integers m1, . . . , mr whose sum is m is achieved for
(m1, . . . , mr) such that |mi −mj | ≤ 1 for all i 6= j. This implies that the maximum of the
left-hand side of (4.8) is achieved for any permutation of µ1, . . . , µr, which implies (4.8).
It is well known that the number of nonnegative integers m1, . . . , mr which sum to m is
(

m+r−1
r−1

)

. Hence the equality (4.3) combined with (4.8) yields the upper bound in (4.6). 2

Theorem 4.4 Let 2 ≤ r ∈ N. Assume that 1 ≤ mk ≤ nk, k = 1, . . . , are two
strictly increasing sequences of integers such that the sequence mk

nk
, k = 1, . . . converges to

p ∈ [0, 1]. Then

lim
k→∞

logE1(mk, nk, r)

2nk

=
1

2
(p log r − p log p− 2(1 − p) log(1 − p) + (r − p) log(1 − p

r
)).

Proof. Recall Stirling’s formula [2, p. 52]:

n! =
√

2πn nne−ne
θn
12n for some θn ∈ (0, 1) and any positive integer n. (4.9)

We will use the following version of Stirling’s formula

√
2πn nne−n < n! < 2

√
2πn nne−n.

Let µ1, . . . , µr be defined by (4.5). We now estimate from above and below the terms
appearing in (4.6) using Stirling’s formula.

m− r

r
< µi <

m+ r

r
for i = 1, . . . , r,

(

2π(m− r)

r

)
r
2
(

m− r

r

)m−r

e−m <

r
∏

i=1

µi! < 2r

(

2π(m+ r)

r

)
r
2
(

m+ r

r

)m+r

e−m,

(

2π(rn−m− r)

r

)
r
2
(

rn−m− r

r

)rn−m−r

e−(rn−m) <

r
∏

i=1

(n− µi)! < 2r

(

2π(rn−m+ r)

r

)
r
2
(

rn−m + r

r

)rn−m+r

e−(rn−m),

(2πn)
r−2
2 (2π(n−m))n(r−2)n(n−m)2(n−m)e−((r−2)n+2(n−m)) <

(n!)r−2((n−m)!)2 < 2r(2πn)
r−2
2 (2π(n−m))n(r−2)n(n−m)2(n−m)e−((r−2)n+2(n−m)),

1 ≤
(

m+ r − 1

r − 1

)

< (m + r − 1)r−1.

We now use these inequalities in (4.6) to estimate the ratio 1
2nk

logE1(mk, nk, r) where

lim
k→∞

mk = lim
k→∞

nk = ∞, lim
k→∞

mk

nk

= p ∈ [0, 1].
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First note that for any polynomial p(x) and any a ∈ R limk→∞
log p(mk+a)

nk
= 0. Next

observe that log(x + a) = log x + O( 1
x
) for a fixed a and x � 1. Let mk

nk
= pk. Our

assumptions yield that limk→∞ pk = p. Then

log(nk − mk±r
r

)rnk−mk±r

e(rnk−mk)nk

= (r − pk +O(
1

nk

))
(

lognk + log(1 − pk

r
) +O(

1

nk

)
)

− (r − pk)

= (r − pk)(log nk + log(1 − pk

r
)) − (r − pk) + o(1),

log(mk±r
r

)mk±r

emknk

= (pk +O(
1

nk

))(log nk + log pk − log r +O(
1

nk

)) − pk

= pk(log nk + log pk − log r) − pk + o(1),

log n
(r−2)nk

k (nk −mk)2(nk−mk)

e((r−2)nk+2(nk−mk))nk

= (r − 2) lognk + 2(1 − pk)(lognk + log(1 − pk)) − r + 2pk.

Subtract the second and the third term from the first one. Note first that the coefficient
of log nk is (r − pk) − pk − (r − 2) − 2(1 − pk) = 0. Hence

logE1(mk, nk, r)

nk

= (r − pk) log(1 − pk

r
) − (r − pk)

− pk log pk + pk log r + pk − 2(1 − pk) log(1 − pk) + r − 2pk + o(1)

= (r − pk) log(1 − pk

r
) − pk log pk + pk log r − 2(1 − pk) log(1 − pk) + o(1).

Finally use the continuity of log x to deduce (1.10). (Here 0 log 0 = 0.) 2

4.2 Second measure

We now deduce (1.10) for a standard probabilistic model on Gmult(2n, r) as given in [8].
Let µ ∈ Snr be a permutation on nr elements. Let e1, . . . , enr be nr edges going from
vertices {1, . . . , n} in the group A to vertices {1, . . . , n} to the group B. We then assume

that ei connects the vertex
⌈

i
r

⌉

in group A to
⌈

µ(i)
r

⌉

in group B for i = 1, . . . , rn. Note

that the vertex i in group A has r edges labeled r(i− 1) + 1, . . . , ri. It is straightforward
to see that each vertex j in the group B has r different edges connected to it, i.e. the

equation j =
⌈

µ(i)
r

⌉

has exactly r integer solutions µ−1({j(r − 1) + 1, . . . , jr}). Then the

probability of such graph is given by 1
(rn)!

. Note if we do not care to label the edges, then
an r-regular bipartite graph, where each two vertices are connected by at most one edge,
is represented by (r!)n such permutations µ. Indeed any vertex i in the first group has
r edges labeled r(i − 1) + 1, . . . , ri which are connected to it. These edges connect to a
set of r vertices T ⊂ {1, . . . , n}. Permuting these r edges out of vertex i between the
vertices in the group T has r! choices, which are all equivalent. Repeat this argument for
i = 1, . . . , n to obtain (r!)n choices which gives rise to the same simple graph. Denote by
ν(n, r) the probability measure on G(2n, r) induced by these method.
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Lemma 4.5 Let ν(n, r) be the probability measure defined above. Then

E2(m,n, r) := Eν(n,r)(φ(m,G)) =

(

n

m

)2
r2mm!(rn−m)!

(rn)!
. (4.10)

Proof. We adopt the arguments of [10] to our case. First choose subset α ⊂ {1, . . . , n}
of m vertices in the group A. There are

(

n

m

)

choices like that. α induces the set
I = ∪i∈α{r(i−1)+1, . . . , ir} of edges of cardinality rm. From I choose a set J of m edges,
so that ej, j ∈ J corresponds to the choice of one element in the group {r(i−1)+1, . . . , ir},
for each i ∈ α. There are rm of the choices of J . Now we want to choose µ so that
⌈

µ(j)
r

⌉

, j ∈ J will be a subset of m distinct elements β = ∪j∈J{βdµ(j)
r e} ⊂ {1, . . . , n}.

There are m!
(

n

m

)

such choices of β. Then µ(j) ∈ {βdµ(j)
r e(r − 1) + 1, . . . , βdµ(j)

r er} for

each j ∈ J . Again there are rm such choices. Thus we chose µ by determining the image
of the elements in J in {1, . . . , nr}, which is denoted by µ(J). The rest of the elements
{1, . . . , rn}\J are mapped to {1, . . . , rn}\µ(J). The number of choices here is (nr−m)!.
Multiply all these choices to get the numerator of the right-hand side of (4.10). Divide
this number of choices by the number of permutations of {1, . . . , rn} to deduce the lemma.

2

Using the methods in the proof of Theorem 4.4 we get the

Corollary 4.6

lim
k→∞

logE2(mk, nk, r)

2nk

=
1

2
(p log r − p log p− 2(1 − p) log(1 − p) + (r − p) log(1 − p

r
)),

if lim
k→∞

nk = lim
k→∞

mk = ∞, and lim
k→∞

mk

nk

= p ∈ [0, 1].

5 Asymptotic Lower Matching Conjecture

For integers 2 ≤ r, 1 ≤ m ≤ n let µ(m,n, r) be defined by (1.5). Fix p ∈ (0, 1] and consider
two increasing sequences {mk}, {nk} as in Theorem 4.4. Let lowr(p) be the largest real
number (possibly ∞) for which one always has the inequality

lim inf
k→∞

log µ(mk, nk, r)

nk

≥ lowr(p), p ∈ (0, 1]. (5.1)

So lowr(p) is the limit infimum over all possible values given by the left-hand side of (5.1).
Hence ghr(p) ≥ lowr(p) for all p ∈ [0, 1].

The equality (1.11) and (1.7) imply the equality

lowr(1) = log
(r − 1)r−1

rr−2
. (5.2)

(See for details [3, §5] and [4, §3].) Hence, in the first version of this paper in 2005 we
conjectured the Asymptotic Lower Matching Conjecture, abbreviated here as ALMC.
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Conjecture 5.1 (ALMC) For any 2 ≤ r ∈ N, p ∈ (0, 1) lowr(p) is equal to the right-
hand side of (1.10):

lowr(p) = p log r − p log p− 2(1 − p) log(1 − p) + (r − p) log(1 − p

r
)

Theorem 5.2 low2(p) = gh2(p) for all p ∈ [0, 1], where gh2(p) is defined by (1.12).

Proof. Theorem 2.2 yields that

µ(m,n, 2) = φ(m,C2n) =

(

2n−m

m

)

+

(

2n−m− 1

m− 1

)

.

Use Stirling’s formula as in the proof of Theorem 4.4 to deduce the equality low2(p) =
gh2(p). 2

Friedland and Gurvits [3, §5] have proved the following theorem

Theorem 5.3 Let r ≥ 3, s ≥ 1 be integers. Let Bn, n = 1, 2, . . . be a sequence of n×n
doubly stochastic matrices, where each column of each Bn has at most r-nonzero entries.
Let kn ∈ [0, n], n = 1, 2, . . . be a sequence of integers with limn→∞

kn

n
= p ∈ (0, 1]. Then

lim inf
n→∞

log permkn
Bn

2n
≥ 1

2
(−p log p− 2(1 − p) log(1 − p)) + (5.3)

1

2

(

(r + s− 1) log(1 − 1

r + s
) − (s− 1 + p) log(1 − 1 − p

s
)

)

.

Also, the Asymptotic Lower Matching Conjecture 5.1 holds for ps = r
r+s

, s = 0, 1, 2, . . ..

Small lower bounds for lowr(p) − ghr(p) for all values of p ∈ [0, 1] are given in [4, §3].
Use Stirling’s formula, as in the proof of Theorem 4.4 to deduce:

Proposition 5.4 Assume that the inequality (1.8) holds for all m ∈ [2, n] ∩ N, 3 ≤
r ∈ N and all n ≥ N(r). Then ALMC holds.

6 Maximal matchings in Gmult(2n, r) and G(2n, r)

Proposition 6.1 Let G = (V1 ∪ V2, E) be a bipartite multigraph where V1, V2 are the
two groups of the set of vertices. Let #V1 = n and assume that the degree of each vertex
in V1 is r ≥ 2. Then

φ(m,G) ≤
(

n

m

)

rm for each m = 1, . . . , n. (6.1)

Assume that #V2 = n. Then for m ≥ 2 equality holds if and only if G = nHr, i.e.
A(G) = rIn. In particular (1.6) holds.
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Proof. Let M ⊂ E be an m-matching. Then M covers exactly U ⊂ V1 vertices of
cardinality m. Then number of choices of U is

(

n

m

)

. Let v ∈ U . Then v can be covered
by r edges. Hence (6.1) holds.

Suppose that m ≥ 2 and #V2 = n. Let w ∈ V2 and assume that w is connected to
two distinct vertices v1, v2 ∈ V1 by the edges e1, e2. Then these two edges cannot appear
together in any m-matchings. Hence for this G one has a strict inequality in (6.1). Thus,
if #V2 = n and m ≥ 2 equality holds in (6.1) if and only if G = nHr. 2

The inequality (6.1) for G ∈ G(2n, r) was used in [4]. In the first version of this paper
we conjectured that Λ(m,n, r) := maxG∈G(2n,r) φ(m,G) is achieved for the maximal graph
qKr,r , i.e. disjoint unions of q complete bipartite graphs on 2r vertices, if n ≡ 0 mod 4.

We state a generalization of the conjecture (1.4) for G(2n, r) when n is not divisible
by r:

φ(m,G) ≤ φ(m,
⌊n

r

⌋

Kr,r ∪ (n− r
⌊n

r

⌋

)Hr) for any G ∈ G(2n, r). (6.2)

Theorem 2.2 yields that the validity of the conjecture (6.2) for r = 2. See [4] for the
asymptotic version of the conjectured inequality (6.2).

7 Computational results

7.1 The Lower Matching Conjecture for finite graphs

For small r-regular bipartite graphs on 2n vertices we have tested the following finite
analogue of the lower matching conjecture.

φ(G,m) ≥ ϕ(n, r,m) =

(

1 +
1

rn

)rn−1
(

1 − m

rn

)rn−m (mr

n

)m
(

n

m

)2

(7.1)

Note that as n grows this bound is asymptotically exact for 1-edge matchings, and the
convergence is faster for larger r.

In order to test the conjecture we computed the matching generating polynomials for
all bipartite regular graphs on 2n ≤ 20 vertices and compared with the bound. The bound
held for all such graphs.

For 2n ≥ 21 the number of bipartite regular graphs is too large for a complete test
of all graphs, the computing time for each graph also grows exponentially, so we instead
tested the conjecture for graphs of higher girth. The combinations of degree and girth are
given in Figure 7.1. Again the conjecture held for all such graphs.

7.2 The Upper Matching Conjecture for Cubic graphs

We have checked the upper matching conjecture for r = 3 and 2n up to 24 by computing
the matching generating polynomials for all connected bipartite cubic graphs, up to iso-
morphism, in this range. For 2n = 6 and 2n = 8 there is only one cubic bipartite graph of
the given size: K3,3 and the 3-dimensional hypercube Q3 respectively. For 2n = 10 there
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2n 22 24 26 28 30 32 34 36
r = 3 6 6 6 6 6 8 8 8
r = 4 6 6 6 6 6

Figure 1: Lower bound for the girth of the regular bipartite graphs of order greater than
20 used in our tests. An empty entry means that no graphs of that order and degree were
used.

Figure 2: G1

are two graphs to consider and they turn out to have incomparable matching generating
functions. The first graph G1 is shown in Figure 2 and the second graph is the 10 vertex
Möbius ladder M10. (M10 consists of two copies of path of length 5: 1 − 2 − 3 − 4 − 5,
denoted by (P5, 1) and (P5, 2), where first one connects (i, 1) and (i, 2) by an edge for
i = 1, . . . , 5, and then one connects (1, 1) with (5, 2) and (1, 2) with (5, 1).)

Their matching generating polynomials are:

ψ(x,G1) := 1 + 15x+ 75x2 + 145x3 + 96x4 + 12x5,

ψ(x,M10) := 1 + 15x+ 75x2 + 145x3 + 95x4 + 13x5.

For 2n from 12 to 24 the extremal graphs, with the maximal φ(l, G), are for the form

2n
6
K3,3 if 6|2n

2n−8
6
K3,3

⋃

Q3 if 6|(2n− 2)
2n−10

6
K3,3

⋃

(G1 or M10) if 6|(2n− 4)
(7.2)

So for 2n = 10, 22 we do not have a unique extremal graph, which maximizes all
φ(l, G). It seems natural to conjecture that the three graph families given here together
make up all the extremal graphs for all n.

8 Exact values for small matchings

In this section we derive exact expressions for φ(G,m) for m ≤ 4 and compare the results
with our conjectured bounds. After this paper was accepted for publication Ian Wanless
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contacted us to point out that in fact these expressions were derived in [12] for m ≤ 5. The
upcoming paper [14] further explores an algorithmic method for computing expressions
of this type.

Theorem 8.1 Assume that G is a bipartite r-regular graph on 2n vertices and that
G contains a4(G) 4-cycles, then

1. φ(G, 1) = rn

2. φ(G, 2) =
(

nr

2

)

− 2n
(

r

2

)

= rn(rn−(2r−1))
2

3. φ(G, 3) =
(

nr

3

)

− 2n
(

r

3

)

− nr(r − 1)2 − 2n
(

r

2

)

(nr − 2r − (r − 2))

4. φ(G, 4) = p1(n, r) + a4(G) where

p1(n, r) =
n4r4

24
+
n3r3

4
(1 − 2r) +

n2r2

24

(

19 − 60r + 52r2
)

+ nr

(

5

4
− 5r + 7r2 − 7r3

2

)

.

(8.1)

Proof.

1. This is just the number of edges in G.

2. There are
(

nr

2

)

2-edge subsets of E(G). Such a subset is not a matching if it forms a
three vertex path P3. Given a P3 ⊂ G we call the vertex of degree 2 the root. The
number of P3’s in G is 2n

(

r

2

)

, since there are 2n choices for the root vertex and at
that vertex there are

(

r

2

)

ways of choosing two edges.

3. As in the previous case three edges in G can be chosen in
(

nr

3

)

ways. There are three
three-edge subgraphs which are not a matching, depicted in Figure 3. The number
of 4-vertex stars, 2n

(

r

3

)

, is counted as in the previous case. The number of P4’s is
nr(r − 1)2, since the middle edge can be chosen in nr ways and the two remaining
edges in r−1 ways each. The number of subgraphs P3∪K2 is 2n

(

r

2

)

(nr−2r−(r−2)),
since the P3 can be chosen as in the previous case, and the K2 can be chosen among
the (nr − 2r − (r − 2)) edges which are not incident with any of the vertices in the
P3.

4. Let E4(G) be the subset of all subgraphs of G ∈ G(2n, r) consisting of 4 edges. Then
#E4(G) =

(

nr

4

)

. For H ∈ E4(G) let l(H) ≥ 0 be the number of P3 subgraphs of

H. H ∈ E4(G) is a matching if and only l(H) = 0. There are 2n
(

r

2

)(

nr−2
2

)

graphs
H ∈ E4(G) which contain at least one P3 with a specified root vertex, since there
are 2n ways to place the root of a P3 and

(

nr−2
2

)

ways to choose the remaining two

edges. Note that 2n
(

r

2

)(

nr−2
2

)

=
∑

H∈E4(G),l(H)≥1 l(H). Thus, the correct number of
4-matches is

(

nr

4

)

− 2n

(

r

2

)(

nr − 2

2

)

+
∑

H∈E4,l(H)>1

(l(H) − 1). (8.2)
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Figure 3: The 3 edge subgraphs

In Figure 4 we display all subgraphs H with l(H) > 1. The number of copies of
each graph and its number of P3’s is

S1 Number: 2n
(

r

4

)

, P3’s
(

4
2

)

S2 Number: 2n
(

r

3

)

3(r − 1), P3’s 1 +
(

3
2

)

S3 Number: 2n
(

r

3

)

(nr − 4r + 3)), P3’s
(

3
2

)

S4 Number: 2n
(

r

2

)

(r − 1)2 − 4a4(G), P3’s 3

S5 Number: a4(G), P3’s 4

S6 Number: n(n− 2)
(

r

2

)2 − 1
2
(#S2), P3’s 2

S7 Number: 2
(

n

2

)(

r

2

)2 − 2a4(G) − (#S4), P3’s 2

S8 Number: (nr(r − 1)2 − 4a4(G))(nr − 4r + 3) + 4a4(G)(nr − 4r + 4), P3’s 2

Use the above formulas in (8.2) to obtain a rather messy expression for φ(G, 4).
After some simplification we obtain the formula we have in the theorem. 2

If we compute the limits of φ(G,m)
ϕ(n,r,m)

for the values of m used in Theorem 8.1 we find
that

lim
n→∞

φ(G, 1)

ϕ(n, r, 1)
= 1

lim
n→∞

φ(G, 2)

ϕ(n, r, 2)
=
e

2
= 1.359

lim
n→∞

φ(G, 3)

ϕ(n, r, 3)
=

2e2

9
= 1.642 . . .

lim
n→∞

φ(G, 4)

ϕ(n, r, 4)
=

3e3

32
= 1.883 . . .

This indicates that there exists some stronger form of the lower bound for finite graphs,
but if the ALMC is true this additional factor will be subexponential in n, possibly just
a function of m.

In the expression for φ(G, 4) the number of 4-cycles appeared as the first structure in
the graph, apart from n and r, which affects the number of matchings. The maximum
possible value of a4(G) can be found.
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Figure 4: The 4 edge subgraphs

Lemma 8.2 Let G be an r-regular bipartite graph on 2n vertices, with r ≥ 2. Then

a4(G) ≤ nr(r − 1)2

4
. (8.3)

Equality holds if and only if n = qr and G is the disjoint union of q Kr,r.

In [13] a conjecture regarding the structure of graphs with maximal values of a4(G) for
general n is given.

Proof. Given an edge e in G, the largest number of 4-cycles which can contain e
as the central edge is (r−1)2. Indeed, the number of P4’s which contain e is (r−1)2. Each
P4 can be completed to a 4 cycle if and only if e is an edge in a connected component of
G equal to Kr,r. Since G has nr edges and each 4 cycle consists of 4 edges we deduce the
inequality (8.3). Assume equality in (8.3). Then every edge belongs to a Kr,r component
of G. Hence G = qKr,r. 2

This has some simple but nice corollaries.

Corollary 8.3 The upper and lower matching conjectures are true for m ≤ 4.

In [15] the distribution of the number of short cycles in a bipartite random regular graph
was determined, and applying that result here we find that,
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Corollary 8.4 For random graphs from G(2n, r) we have that φ(4, G)− p1(n, r) con-

verges in distribution to a Poisson random variable with expectation (r−1)4

4
.

This means that the expected number of 4-edge matchings in a random graph is only a
fixed constant larger than the minimum possible, and also only a fixed constant larger
than the lower matching conjecture.
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