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Abstract

Many sequences of binomial coefficients share various unimodality properties. In
this paper we consider the unimodality problem of a sequence of binomial coefficients
located in a ray or a transversal of the Pascal triangle. Our results give in particular
an affirmative answer to a conjecture of Belbachir et al which asserts that such a
sequence of binomial coefficients must be unimodal. We also propose two more
general conjectures.

1 Introduction

Let ag,ay,as,... be a sequence of nonnegative numbers. It is called unimodal if ay <
a; < < o1 < Ay > Gper > -+ for some m (such an integer m is called a mode of
the sequence). In particular, a monotone (increasing or decreasing) sequence is known as
unimodal. The sequence is called concave (resp. convez) if for ¢ > 1, a;_1 + a;41 < 2q;
(resp. a;j—1 + a;41 > 2a;). The sequence is called log-concave (resp. log-convex) if for all
12> 1, a;q10;41 < a? (resp. a;_1Gi11 > a?). By the arithmetic-geometric mean inequality,
the concavity implies the log-concavity (the log-convexity implies the convexity). For
a sequence {a;} of positive numbers, it is log-concave (resp. log-convex) if and only if
the sequence {a;y1/a;} is decreasing (resp. increasing), and so the log-concavity implies
the unimodality. The unimodality problems, including concavity (convexity) and log-
concavity (log-convexity), arise naturally in many branches of mathematics. For details,
see [3, 4, 13, 17, 18, 19, 21, 22| about the unimodality and log-concavity and [7, 10] about
the log-convexity.

*Partially supported by the National Science Foundation of China under Grant No.10771027.
fCorresponding author.

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #R113 1



Many sequences of binomial coefficients share various unimodality properties. For
example, the sequence {(Z) }Z:o is unimodal and log-concave in k. On the other hand,

the sequence {(Z)}::]; is increasing, log-concave and convex in n (see Comtet [5] for

example). As usual, let (}) = 0 unless 0 < k < n. Tanny and Zuker [14, 15] showed the
unimodality and log-concavity of the binomial sequences {("Oi_i) }Z and {("Ozid) }Z Very
recently, Belbachir et al [1] showed the unimodality and log-concavity of the binomial

sequence {("‘Z;Z) }Z They further proposed the following.

Conjecture 1 ([1, Conjecture 1]). Let (}) be a fized element of the Pascal triangle
crossed by a ray. The sequence of binomial coefficients located along this ray is unimodal.

()
) G
)

0 6 6
0 G

Figure 1: a ray with d = 3 and ¢ = 2.

() (@)

The object of this paper is to study the unimodality problem of a sequence of bino-

mial coefficients located in a ray or a transversal of the Pascal triangle. Let {(Z’)} be
i’ Ji>0

such a sequence. Then {n;},., and {k;},., form two arithmetic sequences (see Figure 1).
Clearly, we may assume that the common difference of {n;},., is nonnegative (by chang-

R
ing the order of the sequence). For example, the sequence {("Oi_’)}iL:QOJ coincides with

no—| " |+i 15
) except for the order. On the other hand, the sequence

7LO .
13— i=0

{(Z)} is the same as the sequence {( " )} by the symmetry of the binomial
i7)i>0 i>0

the sequence {(

n;—k;
coefficients. So we may assume, without loss of generality, that the common difference
of {ki};>¢ is nonnegative. Thus it suffices to consider the unimodality of the sequence

{(Zg:gl) }iso for nonnegative integers d and J. The following is the main result of this

paper, which in particular, gives an affirmative answer to Conjecture 1.

Theorem 1. Let ng, kg, d, § be four nonnegative integers and ng > ko. Define the sequence

i — . ; - ,1,2,....
¢ <k:0+25) =0
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Then

(i) ifd =06 >0 or §d =0, the sequence is increasing, convex and log-concave;
(i) of d < 6, the sequence is log-concave and therefore unimodal;

(iii) if d > d > 0, the sequence is increasing, convezx, and asymptotically log-convez (i.e.,
there ezists a nonnegative integer m such that Cyp,, Cppi1, Crasa, - . . 18 log-convez).

This paper is organized as follows. In the next section, we prove Theorem 1. In
Section 3, we present a combinatorial proof of the log-concavity in Theorem 1 (ii). In
Section 4, we show more precise results about the asymptotically log-convexity for certain
particular sequences of binomial coefficients in Theorem 1 (iii). Finally in Section 5, we
propose some open problems and conjectures.

Throughout this paper we will denote by |x] and [z] the largest integer < x and the
smallest integer > x respectively.

2 The proof of Theorem 1

The following result is folklore and we include a proof of it for completeness.

Lemma 1. If a sequence {a;}i>o of positive numbers is unimodal (resp. increasing, de-
creasing, concave, convetz, log-concave, log-convex), then so is its subsequence {any+ida}i>o
for arbitrary fixed nonnegative integers ng and d.

Proof. We only consider the log-concavity case since the others are similar. Let {a;};>0 be
a log-concave sequence of positive numbers. Then the sequence {a;_1/a;},-, is increasing.
Hence a;_1/a; < ag/ap41 for 1 < j <k, ie., aj_1a541 < ajai. Thus

2
p—dlnid < Upd410n+d—1 < Qp_di20nid—2 < - < Ap10py1 < A,

which implies that the sequence {ay,+ia}i>0 is log-concave. O

The proof of Theorem 1. (i) 1f § =0, then C; = ("Oktid). The sequence (k’o) is increasing,

convex and log-concave in i, so is the sequence C; by Lemma 1. The case d = ¢ is similar
since C; = (ng;ﬁ )
(ii)) To show the log-concavity of {C;} when d < ¢, it suffices to show that

n+d\ (n—d < (" 2
kK+0)\k—6) — \k
for n > k. Write

n+d\ (n—d\ (n+d)l(n—d)!
<k+5)(k—5) o n—k+d-0)k+0)(n—k+6—d)(k—23)

(8

o—d 0—d
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Now (370) < (75707, (o) < (2) and (250 (20 < (,7))° by (). Hence

n+d\(n—d < n o\ _(n 2
k+6)\k—6) ~ \n—k) \k)’
as required.
(iii) Assume that d > § > 0. By Vandermonde’s convolution formula, we have

(5= 2, 00) = ()6) =2()

which implies that (ZI?) > (Z) and (ZI?) + (Z:?) > 2(2) Hence the sequence {C;} is

increasing and convex.
It remains to show that the sequence {C;} is asymptotically log-convex. Denote

AG) = no+ (i+1)d\ (no + (i — 1)d\  (ng+id)”
 \ko+ (i +1)5) \ko+ (i —1)8 ko +id)
Then we need to show that A(i) is positive for all sufficiently large i. Write
(ng + id)![ng + (i — 1)d]!

Al = (ko + i0)![ko + (i + 1)5]‘[n0 — ko +i(d—9)'[ng — ko + (¢ +1)(d — 0)]!
{H (no + id + 7) H[no—k0+(i_1)(d—5)+j]n[ko+(i_1)5+j]
H[no + (Z — 1)d+]} 1:[[710 — k’o +Z(d — 5) +]} H(k’o +i5 +])}
B (no + id)![ng + (i — 1)d]1d?s®(d — &)= PG
(ko +i0)[ko + (i + 1)) [ng — ko +i(d — 8)]![no — ko + (i + 1)(d —0)]!"
where

ﬁ( n0+j>1i[< no—kod—_d6+6+j>1—[<Z,+k:0—65+j)

]:1 =1

d 4 . é .
no—d‘l'] .o no—ko+ . kot
‘H< )HG* a5 )U(* 5 )

J=1

.

Then it suffices to show that P(7) is positive for sufficiently large . Clearly, P(7) can be
viewed as a polynomial in i. So it suffices to show that the leading coefficient of P(i) is
positive.

Note that P(i) is the difference of two monic polynomials of degree 2d. Hence its
degree is less than 2d. Denote

P(Z) :agd_122 + Qoq—2 Z2d 2+ LR
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By Vieta’s formula, we have

. d—é
_|_

Mg_

A2q—1 =

[y

J=1

+
|l

d

1 7j=1

ng — d+] ot
d
5

d—o

/\(\

M=

no—d+j+§no—ko+j+z

5 ko+j>
- 1)

J]=

7j=1
d—
ng—ko+j mnog—ko—d+0+]
-3 (M
j=1
s . .
k‘o+] k0—5+]
+Z ) )
7j=1
d d—6 s
= > (-D+> 1+ 1
7j=1 7j=1 7j=1
= —d+(d—=9)+0

Using the identity

N —

E Ty =

5
ng — d+6+j Zk0—6+j
_I_ - v

)

o

i=1

)

n 2 n
2
Tj = E T —E T,
1<i<j<n i=1 i=1

we obtain again by Vieta’s formula

2

d d—6
1 no +J ng — k —d+5+]
A24—2 = 2|:<E 0 +E 0 0
J=1

=1

=1

d A 2 -
no + 7 ng—ko—d+9
_<Z d ) _<Z d—o

J=1

_|_
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) 2
+j>

2
i k0—5+j>




But asy_1 = 0 implies

d d—6 P A 2
no—l-] 7’Lo—k‘0—d+5+] k0—5+]
(e 3o

Jj=1 j=1
d . d-§ ) 5 N 2

_ nog—d+j ng — ko + J ko+J
= (; d +; i—0 +; 5 )

so we have

d -\ 2 -\ 2
o 1 no—d—l—] ng +J
A2d—2 = 22[( d ) < d
5

< k’o—l—] (no—kﬁo—d—l—é—i—j)

) - (et
%2‘53 _<k:0+j) <k:0 5+])

1 2n0—d+23+1d62 —(d - 5)+2g+122k0—5+2j
24 2 d 5 2 4 )
Jj=1 j=1 j=1
1 1

1

2
Thus P(i) is a polynomial of degree 2d — 2 with positive leading coefficient, as desired.
This completes the proof of the theorem. O

3 Combinatorial proof of the log-concavity

In Section 2 we have investigated the unimodality of sequences of binomial coefficients
by an algebraic approach. It is natural to ask for a combinatorial interpretation. Lattice
path techniques have been shown to be useful in solving the unimodality problem. As an
example, we present a combinatorial proof of Theorem 1 (ii) following Béna and Sagan’s
technique in [2].

Let Z? = {(z,y) : x,y € Z} denote the two-dimensional integer lattice. A lattice path
is a sequence Py, P, ..., P, of lattice points on Z2. A southeastern lattice path is a lattice
path in which each step goes one unit to the south or to the east. Denote by P(n, k) the
set of southeastern lattice paths from the point (0,n — k) to the point (k,0). Clearly, the
number of such paths is the binomial coefficient (Z)

Recall that, to show the log-concavity of C; = (”O“d) where ng > ko and d < 9, it

ko+id
suffices to show (Zig) (Z:?) < (2)2 for n > k. Here we do this by constructing an injection

¢:Pn+d,k+06)x Pln—d,k—3§) — P(n,k) x P(n, k).
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Consider a path pair (p,q) € P(n+d,k +6) x P(n —d,k — ). Then p and ¢ must
intersect. Let I; be the first intersection. For two points P(a,b) and Q(a,c) with the
same z-coordinate, define their vertical distance to be d, (P, Q) = b—c. Then the vertical
distance from a point of p to a point of ¢ starts at 2(6 —d) for their initial points and ends
at 0 for their intersection I;. Thus there must be a pair of points P € p and () € ¢ before
I with d,(P,Q) = § — d. Let (P1,Q;) be the first such pair of points. Similarly, after
the last intersection I, there must be a last pair of points P, € p and ()3 € ¢ with the
horizontal distance dj, (P, QQ2) = —0 (the definition of dj, is analogous to that of d,). Now
p is divided by two points Py, P; into three subpaths py, p2, p3 and ¢ is divided by @1, Q>
into three subpaths ¢, g2, ¢g3. Let p) be obtained by moving p; down to @); south § —d units
and p5 be obtained by moving ps right to (2 east § units. Then we obtain a southeastern
lattice path pjgops in P(n,k). We can similarly obtain the second southeastern lattice
path ¢|pa2gs in P(n, k), where ¢ is ¢ moved north 6 — d units and ¢3 is g3 moved west 0
units. Define ¢(p, q) = (p|q2ps, ¢1p2q5)- It is not difficult to verify that ¢ is the required
injective. We omit the proof for brevity.

D1
@ |pi
CERERTS P u--p-qy---
P
iq.{.......pl.)? ----- 9-2. . ' =p2 q2
Q1 L : o Q1 L )

: 93
| [ EErG L) . . . Lenn @ iad ]
P2|p3 QQ E P2 Q%pé

Figure 2: the constructing of ¢.

4 Asymptotic behavior of the log-convexity

Theorem 1 (iii) tells us that the sequence C; = (Zgizg) is asymptotically log-convex when

d > 0 > 0. We can say more for a certain particular sequence of binomial coefficients.
For example, it is easy to verify that the central binomial coefficients (2;) is log-convex
for ¢ > 0 (see Liu and Wang [10] for a proof). In this section we give two generalizations
of this result. The first one is that every sequence of binomial coefficients located along a
ray with origin (8) is log-convex.

Proposition 1. Let d and ¢ be two positive integers and d > 6 > 0. Then the sequence
{(zg) }i>0 is log-conver.

Before showing Proposition 1, we first demonstrate two simple but useful facts.
Let o = (ay,a9,...,a,) and B = (by, by, ..., b,) be two n-tuples of real numbers. We
say that a alternates left of 3, denoted by o <X 3, if

aG<b<ay <ty <ay<b,

where a} and 0} are the jth smallest elements of o and (3, respectively.
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Fact 1 Let f(x) be a nondecreasing function. If (ai,as,...,a,) =< (b1,ba,...,b,), then

H?:1 fla;) < H?:1 f(bi).

Fact 2 Let xq, x9,y1,y2 be four positive numbers and ”“ < . Then mi < Ziig < Z;

Proof of Proposition 1. By Lemma 1, we may assume, without loss of generality, that d
and ¢ are coprime. We need to show that

o= (L2 (75) - () =
for all ¢ > 1. Write

G = D)6 (d = 6) I TT5, i+ 3) T i+ DTG5 4+ %)
0 (@0)![(i + 1)a)li(d — )'[(i + 1)(d — 0)]! Q).

5 L 4 d
M0 T 1)
Then we only need to show that Q(i) > 0 for ¢ > 1. We do this by showing
(1 Ec_l){(l i—14 1 d—od—1 d—é)
A7 d d) —\ T s T8d=¢6 7 d=§ Td—9d)’

or equivalently,

1 d—1 - 1 0—1 1 al—(5—11
7 g )3\ s s s L)

Note that (d,d) = 1 implies all fractions {%}j;i, {%}ji and {d%(g}j:ls_l are different.

where

—

v

: - o d—o—1 . : :
Hence it suffices to show that every term of {%}jzi U {ﬁ}jzl b s precisely in one of

d — 2 open intervals (g, %), where k = 1,...,d— 2. Indeed, neither two terms of {%}ji

P d—o— . . . - :
nor two terms of {ﬁ} " are in the same interval since their difference is larger than
. On the other hand, 1f 9 and ] — are in a certain interval (k kjgl) then so is j“/ by

Fact 2, which is 1mp0881ble Thus there exists precisely one term of {%} U { - }d -t

in every open interval (k kzlrl) as desired. This completes our proof. O

For the second generalization of the log-convexity of the central binomial coefficients,
we consider sequences of binomial coefficients located along a vertical ray with origin ("0)
in the Pascal triangle.

Proposition 2. Let ng > 0 and V;(ng)

= (noj%) . Then Vb(no), ‘/1(710), ey V, (n0> 18
log-concave and Vi,—1(no), Vi (o), Vins1(no), . . . is log-convez, where m =n2 — |

m
o
2
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Proof. The sequence V;(0) = (25) is just the central binomial coefficients and therefore
log-convex for ¢ > 0. It implies that the sequence V;(1) = (1t2i) is log-convex for ¢ > 0
since V;(1) = $V;11(0). Now let ng > 2 and define f(i) = Vi11(no)/Vi(no) for i > 0. Then,

to show the statement, it suffices to show that
f(O)>f(1)>-->flm—1) and f(m—1)< f(m)< fim+1)<--- (1)

for m = nd — [2].
By the definition we have

(Y (ng + 204 1) (g + 20 + 2)
1) = (moF2) n (i 4+ 1)(ng+i+1) )

The derivative of f(i) with respect to i is

212 — 2(ng — 2)(ng + 1)i — (ng + 1)(ng — 2)
(14 1)%(no+1i+ 1)2

f1i) =

The numerator of f’(i) has the unique positive zero

2(ng — 2)(ng + 1) + /4(no — 2)2(ng + 1)2 + 8(ng + 1)(nZ — 2)
4
(no—2)(ng+1)  ngy/ng —1
2 + 2 '

It implies that f'(i) < 0 for 0 < ¢ < r and f'(¢) > 0 for ¢ > r. Thus we have

fO) > f(1) >--->f([r]) and f([r]) <f(Ir]+1) <f(rT+2)<---. )

It remains to compare the values of f(|r]) and f([r]). Note that

ng —noy/ng—1 no <1
2 Ang+/n2—1) 2
Hence ,
noy/n2 —1 % if ng is even;
— 5 [T ma
2 0, if ng is odd,
and so
(no —2)(ng + 1) noy/ng — 1 ng — % —1, if ng is even;
= 2 * 2 T\ n2—E ifng s odd
0 2 9 0 1S O .
If ng is even, then by (2) we have
16n2 — 8 4
A =g —1 =4~ @1

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #R113 9



and 16 4 40 2 16 4( 2 2)

ng — 40ng + o —
_ 1) = 0 0 — 40 =
f(lr]) = f(Ir] ) 4ng —9n2 +4 4ng — 9Ing + 4

Thus f(|r]) > f([r]) since f(|r]) — f([r]) = (4n3_1)(4:g_9n3+4) > 0. Also, [r] =m — 1.
Combining (3) we obtain (1).
If ng is odd, then

_ Amg+ 1)
4ng + 3nd + 1

f(rl) =

and A2 — 1)
4 W —
flrl) = dng —5nk +1°
It is easy to verify that f(|r]) < f([r]). Also, |r| = [r] —1=m — 1. Thus (1) follows.
This completes our proof. O

5 Concluding remarks and open problems

In this paper we show that the sequence C; = (ZSIZ?) is unimodal when d < 0. A fur-

ther problem is to find out the value of 7 for which C}; is a maximum. Tanny and Zuker (14,
15, 16] considered such a problem for the sequence ("Oi_’d). For example, it is shown that

the sequence ("') attains the maximum when i = {(5710 + 7 —/5n + 100 + 9)/ 10J.

Let r(ng, d) be the least integer at which (”O;id) attains its maximum. They investigated
the asymptotic behavior of r(ng, d) for d — 0o and concluded with a variety of unsolved
problems concerning the numbers r(ng,d). An interesting problem is to consider ana-
logue for the general binomial sequence C; = (Zg:?) when d < §. It often occurs that
unimodality of a sequence is known, yet to determine the exact number and location of
modes is a much more difficult task.

A finite sequence of positive numbers ag,aq,...,a, is called a Pdlya frequency se-
quence if its generating function P(x) = > ;2" has only real zeros. By the Newton’s

inequality, if ag,ay, ..., a, is a Pdlya frequency sequence, then

1 1
a? Z ;10441 <1 + _,) (1 + )
] n-—1t

for 1 <i <n—1, and the sequence is therefore log-concave and unimodal with at most
two modes (see Hardy, Littlewood and Pdlya [9, p. 104]). Darroch [6] further showed
that each mode m of the sequence aq, aq,...,a, satisfies

P'(1) P'(1)
<m< .
Py~ T [P
We refer the reader to [3, 4, 8, 11, 12, 13, 20] for more information.
For example, the binomial coefficients ("), ("), o (") is a Pdlya frequency sequence

0 1 n
with the unique mode n/2 for even n and two modes (n £ 1)/2 for odd n. On the other
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hand, the sequence (g), ("Il), (";2), o ({Z@) is a Pdlya frequency sequence since its
generating function is precisely the matching polynomial of a path on n vertices. Hence
we make the more general conjecture that every sequence of binomial coefficients located

in a transversal of the Pascal triangle is a Pélya frequency sequence.

Conjecture 2. Let C; = (Zg:?) where ng > ko and 6 > d > 0. Then the finite sequence

{C;}i is a Pdlya frequency sequence.

In Proposition 2 we have shown that the sequence V;(ng) = ("Oj%) is first log-concave
and then log-convex. It is possible that an arbitrary sequence of binomial coefficients
located along a ray in the Pascal triangle has the same property as the sequence V;(ny).
We leave this as a conjecture to end this paper.

Conjecture 3. Let C; = (Zg:g) where ng > ko and d > 6 > 0. Then there is a nonneg-

ative integer m such that Cy, Cy,...,Ch_1,Cy, is log-concave and Cp,_1,Cpy, Croiq,y - - - 1S
log-convez.
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