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Abstract

Let G be an additive finite abelian group with exponent exp(G) = n. For a
sequence S over G, let f(S) denote the number of non-zero group elements which
can be expressed as a sum of a nontrivial subsequence of S. We show that for every
zero-sum free sequence S over G of length |S| = n + 1 we have f(S) ≥ 3n − 1.

1 Introduction and Main results

Let G be an additive finite abelian group with exponent exp(G) = n and let S be a
sequence overG (we follow the conventions of [5] concerning sequences over abelian groups;
details are recalled in Section 2). We denote by Σ(S) the set of all subsums of S, and by
f(G, S) = f(S) the number of nonzero group elements which can be expressed as a sum
of a nontrivial subsequence of S (thus f(S) = |Σ(S) \ {0}|).

In 1972, R.B. Eggleton and P. Erdős (see [2]) first tackled the problem of determining
the minimal cardinality of Σ(S) for squarefree zero-sum free sequences (that is for zero-
sum free subsets of G), see [7] for recent progress. For general sequences the problem was
first studied by J.E. Olson and E.T. White in 1977 (see Lemma 2.5). In a recent new
approach [16], the fourth author of this paper proved that every zero-sum free sequence
S over G of length |S| = n satisfies f(S) ≥ 2n − 1. A main result of the present paper
runs as follows.

Theorem 1.1. Let G = Cn1
⊕ . . .⊕Cnr

be a finite abelian group with 1 < n1 | . . . |nr. If
r ≥ 2 and nr−1 ≥ 3, then every zero-sum free sequence S over G of length |S| = nr + 1
satisfies f(S) ≥ 3nr − 1.
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This partly confirms a former conjecture of B. Bollobás and I. Leader, which is outlined
in Section 6. All information on the minimal cardinality of Σ(S) can successfully applied
to the investigation of a great variety of problems in combinatorial and additive number
theory. In the final section of this paper we will discuss applications to the study of
Σ|G|(S), a topic which has been studied by many authors (see [14], [3], [13], [12], [10],
[11] and the surveys [5, 8]). In particular, Theorem 1.1 and a result of B. Bollobás and I.
Leader (see Theorem A in Section 6) has the following consequence.

Corollary 1.2. Let G be a finite abelian group with exponent exp(G) = n, and let S be a

sequence over G of length |S| = |G|+n. Then, either 0 ∈
∑

|G|(S) or |
∑

|G|(S)| ≥ 3n−1.

This paper is organized as follows. In Section 2 we fix notation and gather the necessary
tools from additive group theory. In Section 3 we prove a crucial result (Theorem 3.2)
whose corollary answers a question of H. Snevily. In Section 4 we continue to present some
more preliminary results which will be used in the proof of the main result 1.1, which will
finally be given in Section 5. In Section 6 we briefly discuss some applications.

Throughout this paper, let G denote an additive finite abelian group.

2 Notation and some results from additive group the-

ory

Our notation and terminology are consistent with [5] and [9]. We briefly gather some
key notions and fix the notation concerning sequences over abelian groups. Let N denote
the set of positive integers and let N0 = N ∪ {0}. For real numbers a, b ∈ R, we set
[a, b] = {x ∈ Z | a ≤ x ≤ b}.

Throughout, all abelian groups will be written additively. For n ∈ N, let Cn denote a
cyclic group with n elements.

Let A, B ⊂ G be nonempty subsets. Then A+B = {a+ b | a ∈ A, b ∈ B} denotes
their sumset. The stabilizer of A is defined as Stab(A) = {g ∈ G | g + A = A}, A is
called periodic if Stab(A) 6= {0}, and we set −A = {−a | a ∈ A}.

An s-tuple (e1, . . . , es) of elements of G is said to be independent if ei 6= 0 for all
i ∈ [1, s] and, for every s-tuple (m1, . . . , ms) ∈ Zs,

m1e1 + . . .+mses = 0 implies m1e1 = . . . = mses = 0 .

An s-tuple (e1, . . . , es) of elements of G is called a basis if it is independent and G =
〈e1〉 ⊕ . . .⊕ 〈es〉.

Let F(G) be the multiplicative, free abelian monoid with basis G. The elements of
F(G) are called sequences over G. We write sequences S ∈ F(G) in the form

S =
∏

g∈G

gvg(S) , with vg(S) ∈ N0 for all g ∈ G .
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We call vg(S) the multiplicity of g in S, and we say that S contains g if vg(S) > 0. A
sequence S1 is called a subsequence of S if S1 |S in F(G) (equivalently, vg(S1) ≤ vg(S)
for all g ∈ G). Given two sequences S, T ∈ F(G), we denote by gcd(S, T ) the longest
subsequence dividing both S and T . If a sequence S ∈ F(G) is written in the form
S = g1 · . . . · gl, we tacitly assume that l ∈ N0 and g1, . . . , gl ∈ G.

For a sequence

S = g1 · . . . · gl =
∏

g∈G

gvg(S) ∈ F(G) ,

we call
|S| = l =

∑

g∈G

vg(S) ∈ N0 the length of S ,

h(S) =max{vg(S) | g ∈ G} ∈ [0, |S|]

the maximum of the multiplicities of S ,

supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S ,

σ(S) =

l
∑

i=1

gi =
∑

g∈G

vg(S)g ∈ G the sum of S ,

Σk(S) =
{

∑

i∈I

gi

∣

∣

∣
I ⊂ [1, l] with |I| = k

}

the set of k-term subsums of S , for all k ∈ N ,

Σ≤k(S) =
⋃

j∈[1,k]

Σj(S) , Σ≥k(S) =
⋃

j≥k

Σj(S) ,

and
Σ(S) = Σ≥1(S) the set of (all) subsums of S .

The sequence S is called

• zero-sum free if 0 /∈ Σ(S),

• a zero-sum sequence if σ(S) = 0,

• a minimal zero-sum sequence if 1 6= S, σ(S) = 0, and every S ′|S with 1 ≤ |S ′| < |S|
is zero-sum free.

We denote by A(G) ⊂ F(G) the set of all minimal zero-sum sequences over G. Every
map of abelian groups ϕ : G→ H extends to a homomorphism ϕ : F(G) → F(H) where
ϕ(S) = ϕ(g1) · . . . · ϕ(gl). If ϕ is a homomorphism, then ϕ(S) is a zero-sum sequence if
and only if σ(S) ∈ Ker(ϕ).

Let D(G) denote the smallest integer l ∈ N such that every sequence S ∈ F(G) of
length |S| ≥ l has a zero-sum subsequence. Equivalently, we have D(G) = max{|S| | S ∈
A(G)}), and D(G) is called the Davenport constant of G.

We shall need the following results on the Davenport constant (proofs can be found
in [9, Proposition 5.1.4 and Proposition 5.5.8.2.(c)]).
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Lemma 2.1. Let S ∈ F(G) be a zero-sum free sequence.

1. If |S| = D(G) − 1, then Σ(S) = G \ {0}, and hence f(S) = |G| − 1.

2. If G is a p-group and |S| = D(G) − 2, then there exist a subgroup H ⊂ G and an
element x ∈ G \H such that G \

(

Σ(S) ∪ {0}
)

⊂ x +H.

Lemma 2.2. Let G = Cn1

⊕

Cn2
with 1 ≤ n1 |n2, and let S ∈ F(G).

1. D(Cn1

⊕

Cn2
) = n1 + n2 − 1.

2. If S has length |S| = 2n1 + n2 − 2, then S has a zero-sum subsequence T of length
|T | ∈ [1, n2].

3. If S has length |S| = n1 + 2n2 − 2, then S has a zero-sum subsequence W of length
|W | ∈ {n2, 2n2}.

Proof. 1. and 2. follow from [9, Theorem 5.8.3].
3. See [5, Theorem 6.7].

Proofs of the two following classical addition theorems can be found in [9, Theorem
5.2.6 and Corollary 5.2.8].

Lemma 2.3. Let A,B ⊂ G be nonempty subsets.

1. (Cauchy-Davenport ) If G is cyclic of order |G| = p ∈ P, then |A+B| ≥ min{p, |A|+
|B| − 1}.

2. (Kneser) If H = Stab(A + B) denotes the stabilizer of A + B, then |A + B| ≥
|A+H| + |B +H| − |H|.

We continue with some crucial definitions going back to R.B. Eggleton and P. Erdős.
For a sequence S ∈ F(G) let

f(G, S) = f(S) = |Σ(S) \ {0}| be the number of nonzero subsums of S .

Let k ∈ N. We define

F(G, k) = min
{

|Σ(S)|
∣

∣ S ∈ F(G) is a zero-sum free and

squarefree sequence of length |S| = k} ,

and we denote by F(k) the minimum of all F(A, k) where A runs over all finite abelian
groups A having a squarefree and zero-sum free sequence of length k. Furthermore, we
set

f(G, k) = min
{

|Σ(S)|
∣

∣ S ∈ F(G) is zero-sum free of length |S| = k} .
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By definition, we have f(G, k) ≤ F(G, k). Since there is no zero-sum sequence S of length
|S| ≥ D(G), we have f(G, k) = 0 for k ≥ D(G). The following simple example provides an
upper bound for f(G, ·) which will be used frequently in the sequel (see also Conjecture
6.2).

Example 1. Let G = Cn1
⊕ . . .⊕ Cnr

with r ≥ 2, 1 < n1 | . . . |nr and let (e1, . . . , er)
be a basis of G with ord(ei) = ni for all i ∈ [1, r]. For k ∈ [0, nr−1 − 2] we set

S = enr−1
r ek+1

r−1 ∈ F(G) .

Clearly, S is zero-sum free, |S| = nr+k and f(S) = (k+2)nr−1. Thus we get f(G, nr+k) ≤
(k + 2)nr − 1.

Lemma 2.4. [9, Theorem 5.3.1] If t ∈ N and S = S1 · . . . · St ∈ F(G) is zero-sum free,
then

f(S) ≥ f(S1) + . . .+ f(St) .

Lemma 2.5. [15] Let S ∈ F(G) be zero-sum free. If 〈supp(S)〉 is not cyclic, then

|Σ(S)| ≥ 2|S| − 1 .

Lemma 2.6. [7, Lemma 2.3] Let S = S1S2 ∈ F(G), H = 〈supp(S1)〉 and let ϕ : G →
G/H denote the canonical epimorphism. Then we have

f(S) ≥
(

1 + f(ϕ(S2))
)

f(S1) + f
(

ϕ(S2)
)

.

Lemma 2.7.

1. F(1) = 1, F(2) = 3, F(3) = 5 and F(4) = 8.

2. If S ∈ F(G) is squarefree, zero-sum free of length |S| = 3 and contains no elements
of order 2, then f(S) ≥ 6.

3. F(5) = 13 and F(6) = 19.

Proof. 1. See [9, Corollary 5.3.4.1].
2. See [9, Proposition 5.3.2.2].
3. See [7].

The proof of the following lemma follows the lines of the proof of [7, Theorem 1.3].

Lemma 2.8. Let S ∈ F(G) be zero-sum free of length |S| ≥ 2. If f(S) ≤ 3|S| − 5, then

h(S) ≥ max{2, 3|S|+5
17

}.

the electronic journal of combinatorics 15 (2008), #R117 5



Proof. Let q ∈ N0 be maximal such that S has a representation in the form S = S0S1 ·
. . . · Sq with S0 ∈ F(G) and squarefree, zero-sum free sequences S1, . . . , Sq ∈ F(G) of
length |Sν| = 6 for all ν ∈ [1, q]. Among all those representations of S choose one for
which d = | supp(S0)| is maximal, and set S0 = gr1

1 · . . . · grd

d , where g1, . . . , gd ∈ G are
pairwise distinct, d ∈ N0 and r1 ≥ · · · ≥ rd ∈ N. Since q is maximal, we have d ∈ [0, 5].

Assume to the contrary that r1 ≤ 1. Then either d = 0 or r1 = . . . = rd = 1, and for
convenience we set F(0) = 0. By Lemmas 2.4 and 2.7, we obtain that

f(S) ≥ f(S1) + . . .+ f(Sq) + F(d) ≥ 19q + F(d) = 3|S| − 4 + q + F(d)− 3d+ 4 ≥ 3|S| − 4 ,

a contradiction.
Therefore, h(S) ≥ r1 ≥ 2, and we set g = g1. We assert that vg(Si) ≥ 1 for all i ∈ [1, q].

Assume to the contrary that there exists some i ∈ [1, q] with g - Si. Since |Si| = 6 > d,
there is an h ∈ supp(Si) with h - S0. Since S may be written in the form

S = (hg−1S0)S1 · . . . · Si−1(gh
−1Si)Si+1 · . . . · Sq ,

and | supp(hg−1S0)| > | supp(S0)|, we get a contradiction to the maximality of | supp(S0)|.
Therefore, h(S) ≥ vg(S) = q + r1 ≥ 2.

Clearly, S0 allows a product decomposition

S0 =
5

∏

i=1

T qi

i ,

where, for all i ∈ [1, 5], Ti = g1 · . . . · gi and qi = ri − ri+1, with r6 = 0. Thus we get
q1 + . . .+ q5 = r1 = vg(S0), q1 + 2q2 + 3q3 + 4q4 + 5q5 = |S0| and

q1 + 2q2 + 3q3 + 4q4 + 5q5 + 6q = |S| .

By Lemma 2.4 and Lemma 2.7 we obtain that

q1 + 3q2 + 5q3 + 8q4 + 13q5 + 19q ≤ f(S) ≤ 3|S| − 5 .

Using the last two relations we infer that

17q + 17q5 + 16q4 + 13q3 + 9q2 + 5q1 =

6(q1 + 2q2 + 3q3 + 4q4 + 5q5 + 6q) − (q1 + 3q2 + 5q3 + 8q4 + 13q5 + 19q) ≥ 3|S| + 5 ,

and therefore

h(S) ≥ vg(S) = q + r1 = q + q1 + . . .+ q5 ≥
3|S| + 5

17
.
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3 Sums and Element Orders

Theorem 3.2 in this section will be used repeatedly to deduce Theorem 1.1 and it also has
its own interest. Moreover, its corollary answers a question of H. Snevily. We first prove
a lemma.

Lemma 3.1. Let A ⊂ G be a finite nonempty subset.

1. If x + A = A for some x ∈ G, then |A|x = 0.

2. Let r ∈ N, y1, . . . , yr ∈ G and k = min{ord(yi) | i ∈ [1, r]}. Then |
∑

(0y1 · . . . · yr)+
A| ≥ min{k, r + |A|}.

Proof. 1. Since x + A = A, we have that

|A|x+
∑

a∈A

a =
∑

a∈A

(x + a) =
∑

a∈A

a.

Therefore, |A|x = 0.

2. We proceed by induction on r. Let r = 1. If |
∑

(0y1) + A| ≥ 1 + |A| then we are
done. Otherwise,

∑

(0y1)+A = (y1 +A)∪A = A. This forces that y1 +A = A. By 1., we
have |A|y1 = 0. Therefore, k ≤ ord(y1) ≤ |A|, and thus |

∑

(0y1)+A| = |A| ≥ ord(y1) ≥ k.
So, |

∑

(0y1) + A| ≥ min{k, 1 + |A|}.
Suppose that r ≥ 2 and that the assertion is true for r − 1. Let B =

∑

(0y1 · . . . ·
yr−1) + A. If |

∑

(0y1 · . . . · yr) + A| ≥ 1 + |B|, then by induction hypothesis, we have
that |

∑

(0y1 · . . . · yr) + A| ≥ 1 + |B| ≥ 1 + min{k, r − 1 + |A|} ≥ min{k, r + |A|}
and we are done. So, we may assume that |

∑

(0y1 · . . . · yr) + A| ≤ |B|. Note that
∑

(0y1·. . .·yr)+A = (yr+(
∑

(0y1·. . .·yr−1)+A))∪(
∑

(0y1·. . .·yr−1)+A) = (yr+B)∪B. We
must have yr +B = B. By 1., we have |B|yr = 0, and thus k ≤ ord(yr) ≤ |B|. Therefore,
|
∑

(0y1 · . . . · yr) + A| ≥ |B| ≥ k. This completes the proof.

Theorem 3.2. Let S = a1 · . . . · ak ∈ F(G \ {0}) be a sequence of length |S| = k ≥ 2, and
set q = |{0} ∪

∑

(S)|.

1. If T is a proper subsequence of S such that |{0} ∪
∑

(U)| = |{0} ∪
∑

(T )| for every
subsequence U of S with T |U and |U | = |T | + 1, then {0} ∪

∑

(T ) = {0} ∪
∑

(S).

2. For any nontrivial subsequence V0 of S, there is a subsequence V of S with V0|V ,
such that |{0}∪

∑

(V )|− |V | ≥ |{0}∪
∑

(V0)|− |V0| and {0}∪
∑

(V ) = {0}∪
∑

(S).

3. Suppose that q ≤ |S|. Then there is a proper subsequence W of S such that {0} ∪
∑

(W ) = {0}∪
∑

(S) and |W | ≤ q−1. Moreover, qx = 0 for every term x ∈ SW−1.

4. If q ≤ |S| and ai 6∈ {a1,−a1} for some i ∈ [2, k], then we can find a W with all
properties stated in (3) such that |W | ≤ q − 2.

5. Suppose that q ≤ |S|. There is a subsequence T of S with |T | ≥ |S| − q + 2 such
that |〈supp(T )〉| | q.
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Proof. 1. Let ST−1 = g1 · . . . · gl. By the assumption,

{0} ∪
∑

(giT ) = {0} ∪
∑

(T )

holds for every i ∈ [1, l], or equivalently,

{0} ∪ {gi} + {0} ∪
∑

(T ) = {0} ∪
∑

(T )

for every i ∈ [1, t]. Therefore,

{0} ∪
∑

(S) = {0} ∪ {g1}+ {0} ∪ {g2}+ . . .+ {0} ∪ {gt}+ {0} ∪
∑

(T ) = {0} ∪
∑

(T ).

2. Let V be a subsequence of S with maximal length such that V0|V and |{0} ∪
∑

(V )| − |V | ≥ |{0} ∪
∑

(V0)| − |V0|. If V = S, then clearly the result holds. Next, we
may assume that V is a proper subsequence. It is not hard to show that V satisfies the
assumption in 1.. By 1. we conclude that {0} ∪

∑

(V ) = {0} ∪
∑

(S).

3. LetW be a subsequence of S with maximal length such that |{0}∪
∑

(W )| ≥ |W |+1.
Then |W | ≤ |{0} ∪

∑

(W )| − 1 ≤ |{0} ∪
∑

(S)| − 1 = q − 1 < |S|. Therefore, W is a
proper subsequence of S.

Using the maximality of W , we can easily verify that W satisfies the assumption in
1.. It follows from 1. that {0} ∪

∑

(W ) = {0} ∪
∑

(S). Since for each x ∈ SW−1,
|x+ {0}∪

∑

(S)| = |{0}∪
∑

(S)| and x+ {0} ∪
∑

(S) = x+ {0} ∪
∑

(W ) ⊂ {0} ∪
∑

(S),
we obtain that x+{0}∪

∑

(S) = {0}∪
∑

(S). It now follows from Lemma 3.1 that qx = 0
holds for every x ∈ SW−1.

4. Let V0 = a1ai. Then |{0} ∪
∑

(V0)| − |V0| = 4 − 2 = 2. By 2., there exists a
subsequence W such that |{0}∪

∑

(W )|− |W | ≥ 2 and {0}∪
∑

(W ) = {0}∪
∑

(S). Thus
|W | ≤ q − 2 ≤ |S| − 2, and therefore, clearly W is a proper subsequence of S. As in 3.,
we can prove that qx = 0 holds for every x ∈ SW−1.

5. If ai ∈ {a1,−a1} holds for every i ∈ [2, k], then by 3. we have that qai = 0 for
some i. Since ai = ±a1, we have qa1 = 0 and ord(a1) divides q. Let T = S. Then
|〈supp(T )〉| = |〈a1〉| = ord(a1) divides q. Next we assume that ai 6∈ {a1,−a1} for some
i ∈ [2, k], by 4. there is a proper subsequence W of S with {0} ∪

∑

(W ) = {0} ∪
∑

(S)
and |W | ≤ q − 2. Let T = SW−1. Then,

|T | = |S| − |W | ≥ |S| − q + 2.

For every term y in T , as shown in 3. we have that

y + {0} ∪
∑

(U) = {0} ∪
∑

(U).

Therefore,

〈supp(T )〉 + {0} ∪
∑

(W ) = {0} ∪
∑

(W ).

Since the left hand side is a union of some cosets of 〈supp(T )〉, we conclude that |〈supp(T )〉|
divides |{0} ∪

∑

(U)| = q as desired. �

The following result answers a question of H. Snevily, formulated in a private commu-
nication to the first author.
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Corollary 3.3. Let S = a1 · . . . ·ar ∈ F(G), and suppose that ord(ai) ≥ r holds for every

i ∈ [1, r]. Then, |{ai} ∪ (ai +
∑

(Sa−1
i ))| ≥ r holds for every i ∈ [1, r].

Proof. Let q = |0 ∪
∑

(Sa−1
i )|. If q ≤ r − 1, then by Theorem 3.2.3, qaj = 0 for some

j 6= i. Thus q ≥ ord(aj) ≥ r, giving a contradiction. Therefore, q ≥ r and thus
|{ai} ∪ (ai +

∑

(Sa−1
i ))| = |0 ∪

∑

(Sa−1
i )| ≥ r as desired.

4 Zero-sum free sequences over groups of rank two

Lemma 4.1. Let G = Cm ⊕ Cn with 1 < m |n. Suppose that f(Cm ⊕ Cm, m + k) =
(k+2)m− 1 for every positive integer k ∈ [1, m− 2] and n ≥ m(1+ km+3

f(N,m+k+1)+1−(k+2)m
).

Then f(G, n+ k) = (k + 2)n− 1.

Proof. Clearly, we have n ≥ 2m. Let k ∈ [1, m− 2] and let S ∈ F(G) be zero-sum free of
length

|S| = n+ k = (
n

m
− 3)m+ (3m− 2) + 2 + k . (∗)

By Example 1, we obtain that f(G, n+ k) ≤ (k+ 2)n− 1, and so we need only show that
f(S) = |

∑

(S)| ≥ (k + 2)n − 1. Let ϕ : G → N be an epimorphism with N ∼= Cm ⊕ Cm

and Ker(ϕ) ∼= C n
m

.
By (∗) and Lemma 2.2.1 (for details see [9, Lemma 5.7.10]), S allows a product

decomposition S = S1 · . . . · Sn/m−2T , where S1, . . . , Sn/m−2, T ∈ F(G) and, for every
i ∈ [1, n/m − 2], ϕ(Si) has sum zero and length |Si| ∈ [1, m]. Note that |T | ≥ 2m + k.
We distinguish two cases.

Case 1: |T | ≥ 3m− 2.
Applying Lemma 2.2.1 to ϕ(T ), we can find a subsequence of T , say S n

m
−1, such that

1 ≤ |S n
m
−1| ≤ m and σ(S n

m
−1) ∈ Ker(ϕ) .

We claim that ϕ(TS−1
n
m
−1) is zero-sum free. Otherwise, if ϕ(TS−1

n
m
−1) is not zero-sum

free, or equivalently, if TS−1
n
m
−1 has a nontrivial subsequence S n

m
(say) such that σ(S n

m
) ∈

Ker(ϕ), then the sequence
∏

n
m

i=1 σ(Si) of n
m

elements in Ker(ϕ) is not zero-sum free.
Therefore, S is not zero-sum free, giving a contradiction. Hence, ϕ(TS−1

n
m
−1) is zero-sum

free as claimed. Note that |ϕ(TS−1
n
m
−1)| ≥ 2m+ k−m = m+ k. By the hypothesis of the

lemma,
f(ϕ(TS−1

n
m
−1)) ≥ f(N,m+ k) ≥ (k + 2)m− 1.

Let R1 =
∏

n
m
−1

i=1 σ(Si). Then |R1| = n
m

− 1 and R1 is zero-sum free. Therefore,
|〈supp(R1)〉| ≥ f(R1) + 1 ≥ |R1| + 1 = n

m
= |Ker(ϕ)| and then 〈supp(R1)〉 = Ker(ϕ). Let

R2 = TS−1
n
m
−1. Now applying Lemma 2.6 to the sequence R1R2, we obtain that

f(S) ≥ f(R1R2) ≥ (1 + f(ϕ(R2)))f(R1) + f(ϕ(R2))

≥ (1 + f(ϕ(TS−1
n
m
−1)))(

n

m
− 1) + f(ϕ(TS−1

n
m
−1)) ≥ (k + 2)n− 1 .

the electronic journal of combinatorics 15 (2008), #R117 9



Case 2: |T | ∈ [2m+ k, 3m− 3].
If ϕ(T ) has a nontrivial zero-sum subsequence of length not exceeding m, then by repeating
the argument used in the above case we can prove the result, i.e. f(S) ≥ (k+2)n− 1. So,
we may assume that ϕ(T ) has no nontrivial zero-sum subsequence of length not exceeding
m.

Next, consider the sequence T03m−2−|T | of 3m−2 elements in G. Then ϕ(T03m−2−|T |) is
a sequence of length 3m−2 in N = Cm⊕Cm. By applying Lemma 2.2.2 to ϕ(T03m−2−|T |),
we obtain that T03m−2−|T | has a subsequence W such that σ(ϕ(W )) = 0 and |W | ∈
{m, 2m}. If |W | = m, then ϕ(T ) has a nontrivial zero-sum subsequence ϕ(W ∩ T ) of
length not exceeding m, a contradiction. Therefore, |W | = 2m and

σ(W ) ∈ Ker(ϕ) .

Let W1 = gcd(W,T ). Then |W1| ≥ |W | − (3m − 2 − |T |) ≥ m + k + 2, and ϕ(W1) is
a minimal zero-sum sequence. Since ϕ(T ) has no nontrivial zero-sum subsequences of
length not exceeding m, we can choose a subsequence W2 of W1 with |W2| = m + k + 1
such that the subgroup generated by ϕ(TW−1

2 ) is not cyclic. Let T1 = TW−1
2 . Clearly,

|T1| ≥ m − 1 and f(ϕ(W2)) ≥ f(N,m + k + 1). It follows from Lemma 2.4 , Lemma 2.5
and Lemma 2.6 that

f(S) ≥ f(

n
m
−2

∏

i=1

σ(Si)W2T1) ≥ f(

n
m
−2

∏

i=1

σ(Si)W2) + f(T1)

≥ (1 + f(ϕ(W2)))(
n

m
− 2) + f(ϕ(W2)) + f(T1)

≥ (1 + f(N,m+ k + 1))(
n

m
− 2) + f(N,m+ k + 1) + (2m− 3)

≥ (k + 2)n− 1.

Let G = Cn ⊕ Cn with n ≥ 2. We say that G has Property B if every minimal
zero-sum sequence S ∈ F(G) of length |S| = D(G) = 2n − 1 contains some element
with multiplicity n−1. This property was first addressed in [4], and it is conjectured that
every group (of the above form) satisfies Property B. The present state of knowledge on
Property B is discussed in [8, Section 7]). In particular, if n ∈ [4, 7], then G has Property
B. Here we need the following characterization (for a proof see [9, Theorem 5.8.7]).

Lemma 4.2. Let G = Cn⊕Cn with n ≥ 2. Then the following statements are equivalent :

1. If S ∈ F(G), |S| = 3n−3 and S has no zero-sum subsequence T of length |T | ≥ n,
then there exists some a ∈ G such that 0n−1an−2 |S.

2. If S ∈ F(G) is zero-sum free and |S| = 2n− 2, then an−2 |S for some a ∈ G.

3. If S ∈ A(G) and |S| = 2n− 1, then an−1 |S for some a ∈ G.
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4. If S ∈ A(G) and |S| = 2n− 1, then there exists a basis (e1, e2) of G and integers
x1, . . . , xn ∈ [0, n− 1] with x1 + . . .+ xn ≡ 1 mod n such that

S = en−1
1

n
∏

ν=1

(xνe1 + e2) .

Lemma 4.3. Let G = Cn ⊕ Cn with n ≥ 2 and suppose that G satisfies Property B. Let
S ∈ A(G) with length |S| = 2n − 1. If T is a subsequence of S such that |T | = n + k,
where 1 ≤ k ≤ n− 2, then

f(T ) ≥ (k + 2)n− 1.

Furthermore, if W is a zero-sum free sequence over G with |W | = 2n− 3, then

f(W ) ≥ n2 − n− 1.

Proof. Let S ∈ A(G) be of length |S| = 2n − 1. Then by Lemma 4.2, there is a basis
(e1, e2) of G such that S = e1

n−1
∏n

i=1(e1 + aie2) with
∑n

i=1 ai ≡ 1 mod n. Without
loss of generality, let S = e2

n−1
∏n

i=1(e1 + aie2) and let V =
∏n

i=1(e1 + aie2). Then

T = e2
n+k−l

∏l
i=1(e1 + aie2), where l ∈ [k + 1, n]. Let ϕ : G → 〈e2〉 be the canonical

epimorphism.

Case 1: l = n.
Then T = e2

k
∏n

i=1(e1 + aie2) = e2
kV . Since

∑n
i=1 ai ≡ 1 mod n, we have σ(V ) = e2.

Therefore, |〈e2〉 ∩ Σ(T )| ≥ k + 1. Since
∑n

i=1 ai ≡ 1 mod n we infer that a1, . . . , an are
not all equal to the same number modulo n. Without loss of generality, we may assume
that an−1 6≡ an mod n. So, for every i ∈ [1, n − 1] we have |(ie1 + 〈e2〉) ∩ Σ(V )| ≥
|{ie1 + (a1 + . . .+ ai−1 + an−1)e2, ie1 + (a1 + . . .+ ai−1 + an)e2}| = 2. By Lemma 3.1.2, we
have |(ie1 + 〈e2〉) ∩ Σ(T )| ≥ |(ie1 + 〈e2〉) ∩ Σ(V ) + Σ(0e2

k)| ≥ k + 2. Therefore,

|Σ(T )| ≥|〈e2〉 ∩ Σ(T )| + |(e1 + 〈e2〉) ∩ Σ(T )| + . . .+ |((n− 1)e1 + 〈e2〉) ∩ Σ(T )|

≥k + 1 + (k + 2) × (n− 1) = (k + 2)n− 1.

Case 2: l ≤ n− 1.
Then k + 2 ≤ l + 1 ≤ n. Let S1 = e2

n+k−l and S2 =
∏l

i=1(e1 + aie2). Then
f(S1) = n+ k − l and f(ϕ(S2)) = l. By Lemma 2.6, we have

f(T ) ≥ (1 + f(ϕ(S2)))f(S1) + f(ϕ(S2))

= (n + k − l)(l + 1) + l

= (n + k − l + 1)(l + 1) − 1

≥ (k + 2)n− 1.

Next, suppose that W ∈ F(G) is zero-sum free of length |S| = 2n − 3. If G \ {0} ⊂
Σ(W ), then f(W ) ≥ n2−1 > n2−n−1 and we are done. So, we may assume there exists
g ∈ G\{0}, such that −g 6∈ Σ(W ). Then gW is zero-sum free, and thus, gW (−g−σ(W ))
is a minimal zero-sum sequence of length 2n − 1. It follows from the first part of this
lemma that f(W ) ≥ n2 − n− 1 as desired.
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Lemma 4.4. Let G be cyclic of order |G| = p ∈ P and T ∈ F(G \ {0}). If a ∈ G \ {0},
then

|Σ(Ta) \ {0}| ≥ min{p− 1, 1 + |Σ(T ) \ {0}|}.

Proof. Let A = {0}∪(Σ(T )\{0}) andB = {0, a}. By Lemma 2.3.1, |A+B| ≥ min{p, |A|+
|B| − 1} = min{p, 2 + |Σ(T ) \ {0}|}. Therefore, |Σ(Ta) \ {0}| = |A + B| − 1 ≥ min{p−
1, 1 + |Σ(T ) \ {0}|}.

Lemma 4.5. If G = Cn ⊕ Cn with n ∈ [4, 7], then f(G, n+ 2) = 4n− 1.

Proof. Let S ∈ F(G) be zero-sum free of length |S| = n + 2 with n ∈ [4, 7]. As noted
above G satisfies Property B. By Example 1, it suffices to show that f(S) ≥ 4n − 1. If
n = 4, then n+ 2 = 6 = D(C4 ⊕C4)− 1. By Lemma 2.1.1, f(S) = 16− 1 = 15 as desired.
If n = 5, then |S| = 2m− 3, and thus, the result follows immediately from Lemma 4.3.

Now suppose that n = 6, and assume to the contrary that f(S) ≤ 22. Then, |−Σ(S)| =
|Σ(S)| = f(S) ≤ 22 and |G \ ({0} ∪ (−Σ(S)))| ≥ 13. Let A = {x1, . . . , x13} ⊂ G \ ({0} ∪
(−Σ(S))). Then xiS is zero-sum free for every i ∈ [1, 13]. If there exist i, j ∈ [1, 13]
such that xixjS is zero-sum free, then xixjS(−σ(xixjS)) is a minimal zero-sum sequence.
Thus, the result follows from Lemma 4.3.

Next, assume that xixjS is not zero-sum free for any i, j ∈ [1, 13]. Since xiS, xjS is
zero-sum free, we must have xi + xj ∈ −Σ(S). This implies A+ A ⊂ −Σ(S). Then

|A+ A| ≤ | − Σ(S)| = |Σ(S)| = f(S) ≤ 22.

We set H = Stab(A+ A). Then, by Lemma 2.3.2, we have

|A+ A| ≥ 2|A+H| − |H| ,

and since H is a subgroup of G, we get |H| ∈ {36, 18, 12, 9, 6, 4, 3, 2, 1}.
If |H| ∈ {18, 36}, then |G/H| ∈ {1, 2}, and thus H ⊂ (A + H) + (A + H). Hence,

0 ∈ H ⊂ A+H + A+H = A+ A ⊂ −Σ(S). Therefore, 0 ∈ Σ(S), a contradiction.
We now assume that |H| ∈ {12, 9, 6, 4, 3, 2, 1}. Note that

|A+H| ≥

⌈

|A|

|H|

⌉

|H|.

We have

|A+ A| ≥ 2|A+H| − |H| ≥

(

2

⌈

|A|

|H|

⌉

− 1

)

|H| > 22,

giving a contradiction.
It remains to consider the case that n = 7.
Let S1 be the maximal subsequence of S such that 〈supp(S1)〉 is cyclic. Then N =

〈supp(S1)〉 ∼= C7. Since there are exactly 8 distinct subgroups of order 7 and |S| = 9, we
must have f(S1) ≥ |S1| ≥ 2. Let S2 = SS−1

1 = b1 · . . . · bw and let ϕ : G → G/N be the
canonical epimorphism. Then none of the terms of S2 is in N , and thus ϕ(S2) a sequence
of non-zero elements in G/N . Let q = |{0}

⋃∑

ϕ(S2)|.
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If f(S1) ≥ 3 and q ≥ 7, then by Lemma 2.6 we have that f(S) ≥ qf(S1) + q − 1 ≥ 27
and we are done. If f(S1) ≥ 3 and q ≤ 6, then by Theorem 3.2, |S2| + 1 ≤ q ≤ 6,
and thus 4 ≤ |S1| ≤ 6. Again by Lemma 2.6, we have that f(S) ≥ qf(S1) + q − 1 ≥
(10 − |S1|)(|S1| + 1) − 1 ≥ 27 as desired.

Next we may assume that f(S1) = 2. Choose a basis (f1, f2) of G with f2 |S1. Then,
S1 = f2

2 and 〈supp(S1)〉 = 〈f2〉 = N . Now

S = f2
2

k
∏

i=1

(aif1 + bif2)

with ai 6= 0 for every i ∈ [1, k], and S2 =
∏7

i=1(aif1 + bif2). Let rj = |Σ(S) ∩ (jf1 +N)|
and sj = |Σ(S2) ∩ (jf1 +N)|, where j ∈ [0, 6]. Then

f(S) = Σ6
j=0rj.

By Lemma 4.4, we have Σ
(
∏7

i=1 ai

)

∼= C7, so sj = |Σ(S2) ∩ (jf1 +N)| ≥ 1 for every
j ∈ [0, 6]. By Lemma 3.1.2, rj ≥ min{ord(f2), 2 + sj} ≥ 3 for every j ∈ [0, 6].

Case 1: h
(
∏7

i=1 ai

)

≥ 3.
Without loss of generality, let a = a1 = a2 = a3. Since h(S) = 2, we may assume

b1 6= b2. Then
∣

∣(af1 +N) ∩ Σ(S2)
∣

∣ ≥ 2. By Lemma 3.1.2, ra ≥ 4.

By Lemma 4.4, we have
∣

∣Σ
(
∏7

i=3 ai

)

\ {0}
∣

∣ ≥ 5. Assume that {x1, x2, . . . , x5} ⊂

Σ
(
∏7

i=3 ai

)

\ {0}. Then |((a + xj)f1 + N) ∩ Σ(S2)| ≥ 2 for every j ∈ [1, 5]. By Lemma
3.1.2, ra+xj

≥ 4.
Note that a, a+x1, . . . , a+x5 are pairwise distinct, we have f(S) = Σ6

j=0rj ≥ 6×4+3 =
27 as desired.

Case 2: h
(
∏7

i=1 ai

)

≤ 2.

Since ai 6= 0 for every i ∈ [1, 7] we infer that h
(
∏7

i=1 ai

)

= 2. So, we may assume
a1, a2, a3, a4 are pairwise distinct and a1+a2 = 0. Therefore, (a1f1+b1f2)+(a2f1+b2f2) =
(b1 + b2)f2 ∈ N . By Lemma 2.3.1, we have Σ

(
∏7

i=3 ai

)

≥ 6. Let {x1, x2, . . . , x5, x6} ⊂

Σ
(
∏7

i=3 ai

)

. For every j ∈ [1, 6], by Lemma 3.1.2, rxj
≥ |

∑

(0S1((b1 + b2)f2)) + (xjf1 +
N) ∩ Σ(S2)| ≥ 3 + |(xjf1 +N) ∩ Σ(S2)| ≥ 4. Therefore f(S) = Σ7

j=1rj ≥ 6 × 4 + 3 = 27.

Lemma 4.6. Let G = C4 ⊕ C8. Then f(G, 9) = 23.

Proof. Assume to the contrary that f(G, 9) 6= 23. By Example 1, there is a zero-sum free
sequence S ∈ F(G) of length |S| = 9 such that f(S) = |

∑

(S)| ≤ 22. By Lemma 2.1.2,
G \ (

∑

(S) ∪ {0}) ⊂ x+H for some subgroup H ⊂ G and some x ∈ G \H. Therefore,

22 ≥ |
∑

(S)| ≥ |G| − 1 − |x+H| = 31 − |H| ,

and hence, |H| ≥ 9. Since |H| divides |G| = 32, it follows that |H| = 16. Therefore,
G = H ∪ (x +H). From G \ (

∑

(S) ∪ {0}) ⊂ x+H we infer that

H \ {0} ⊂
∑

(S).
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Hence,

|
∑

(S) ∩H| = 15.

Since D(H) ≤ 8 + 2 − 1 = 9 = |S|, we infer that there is at least one term of S is not in
H. Let y ∈ S with y ∈ G \H. Let T = Sy−1. Then, f(T ) ≥ f(G, 8) ≥ 2 × 8 − 1 = 15.
Note that G = H ∪ (x+H). We obtain that, |

∑

(T )∩ (x+H)| ≥ 8 or |
∑

(T )∩H| ≥ 8.
This together with S = Ty and y ∈ G \ H implies |

∑

(S) ∩ (x + H)| ≥ 8. Therefore,
|
∑

(S)| = |
∑

(S) ∩H| + |
∑

(S) ∩ (x+H)| ≥ 15 + 8 = 23, a contradiction.

5 Proof of Theorem 1.1.

LetG = Cn1
⊕. . .⊕Cnr

with 1 < n1 | . . . |nr, r ≥ 2, nr−1 ≥ 3, and we set n = exp(G) = nr.
Let S = a1 · . . . · an+1 ∈ F(G) be a zero-sum free sequence of length |S| = n + 1. By
Example 1, we need only prove that f(S) ≥ 3n− 1. Assume to the contrary that

f(S) ≤ 3n− 2.

By Lemma 2.8, we have

h(S) ≥ max{2,
3|S| + 5

17
} = max{2,

3n+ 8

17
}. (1)

Let S1 be a subsequence of S with maximal length such that 〈supp(S1)〉 is cyclic. We
set N = 〈supp(S1)〉 and S2 = SS−1

1 . As before, we have S = S1S2, and all terms of S1 are
in N , but none of the terms of S2 is in N . Clearly, |S1| ≥ h(S) ≥ 3n+8

17
. Let ϕ : G→ G/N

denote the canonical epimorphism, and put

S2 = b1 · . . . · bw and q = |{0} ∪
∑

(ϕ(S2))| .

By Theorem 3.2, there is a subsequence W0 of S2 with |W0| ≤ q − 1 such that

|{0}
⋃∑

(ϕ(W0))| = q .

From (1) we have that |S1| ≥ max{2, 3n+8
17

} ≥ 2. By Lemma 2.6, we can prove that
q ≤ |S2|. Therefore, |W0| ≤ q − 1 ≤ |S2| − 1. It follows from Theorem 3.2 that

gcd(q, n) > 1 and 2 ≤ q ≤ min{|S2|, n− 2}. (2)

Using Lemma 2.4 and Lemma 2.6, we obtain that

3n− 2 ≥ f(S) ≥ f(S1W0) + f(S2W
−1
0 )

≥ qf(S1) + q − 1 + f(S2W
−1
0 )

≥ qf(S1) + q − 1 + |S2| − |W0|

≥ q|S1| + q − 1 + |S2| − |W0|

≥ q|S1| + |S2|

= (q − 1)|S1| + n+ 1.
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This gives that |S1| ≤
2n−3
q−1

. Therefore

2n− 3

q − 1
≥ |S1| ≥

3n + 8

17
. (3)

Hence, q ≤ 12. Next we distinguish cases according to the value of q ∈ [1, 12].

Case 1: 9 ≤ q ≤ 12.
We distinguish subcases according to the value taken by n.

Subcase 1.1: n ≥ 15.
Then |S2W

−1
0 | ≥ n+1− 2n−3

q−1
−(q−1) > 2n−3

q−1
≥ |S1| (since n ≥ 15). By the maximality

of |S1|, the subgroup generated by supp(S2W
−1
0 ) is not cyclic. By Lemma 2.5 we have

f(S2W
−1
0 ) ≥ 2|S2| − 2|W0| − 1. It follows from Lemma 2.4 and Lemma 2.6 that

f(S) ≥ f(S1W0) + f(S2W
−1
0 ) ≥ qf(S1) + q − 1 + 2|S2| − 2|W0| − 1

≥ q|S1| + q − 1 + 2(n+ 1 − |S1|) − 2(q − 1) − 1 = (q − 2)(|S1| − 1) + 2n
≥ 7(3n+8

17
− 1) + 2n > 3n− 2(since n ≥ 10),

a contradiction.

Subcase 1.2: n = 14.
By (3) we obtain that |S1| = 3 and q = 9. In a similar way to above we derive that

〈supp(S2W
−1
0 )〉 is not cyclic and f(S2W

−1
0 ) ≥ 2|S2| − 2|W0| − 1, and

f(S) ≥ f(S1W0) + f(S2W
−1
0 ) ≥ qf(S1) + q − 1 + 2|S2| − 2|W0| − 1

≥ q|S1| + q − 1 + 2(n+ 1 − |S1|) − 2(q − 1) − 1 = (q − 2)(|S1| − 1) + 2n
≥ 7(3 − 1) + 2n ≥ 3n− 1,

a contradiction.

Subcase 1.3: n ∈ {11, 12, 13}.
By (3) we have that 2 ≥ |S1| ≥ 3, a contradiction.

Subcase 1.4: n ≤ 10.
By (2), q ≤ n− 2 ≤ 8, a contradiction.

Case 2: q = 8.
By (2), n is even and n ≥ 10. We distinguish subcases according to the value of n.

Subcase 2.1: n ≥ 21.
By (3), |S1| ≤

2n−3
7

. Hence, |S2W
−1
0 | ≥ n+ 1− 2n−3

7
− 7 > 2n−3

7
≥ |S1| (since n ≥ 13).

By the maximality of |S1| we know that the subgroup generated by supp(S2W
−1
0 ) is not

cyclic. By Lemma 2.5 we have f(S2W
−1
0 ) ≥ 2|S2| − 2|W0| − 1. Therefore,

3n− 2 ≥ f(S) ≥ f(S1W0) + f(S2W
−1
0 )

≥ qf(S1) + q − 1 + f(S2W
−1
0 )

≥ qf(S1) + q − 1 + 2|S2| − 2|W0| − 1

≥ q|S1| + q − 1 + 2|S2| − 2(q − 1) − 1|

= q|S1| + 2(n+ 1 − |S1|) − (q − 1) − 1 = (q − 2)|S1| + 2n+ 2 − q

= 6(|S1| − 1) + 2n > 3n− 2 ( since n ≥ 21) ,
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a contradiction.

Subcase 2.2: 10 ≤ n ≤ 20 and n 6= 16.
By (3) we have that |S1| ≥

3n+8
17

. If ϕ(bi) ∈ {ϕ(b1),−ϕ(b1)} holds for every i ∈ [2, w],
then ϕ(bi) ∈ 〈ϕ(b1)〉 for every i ∈ [1, w], and by Theorem 3.2 we have 8ϕ(b1) = 0. This
together with nϕ(b1) = 0 gives that gcd(8, n)ϕ(b1) = 0. Therefore, 8 = q = |{0} ∪
∑

(ϕ(S2))| ≤ |〈ϕ(b1)〉| ≤ gcd(8, n) < 8, a contradiction. Thus, ϕ(bi) 6∈ {ϕ(b1),−ϕ(b1)}
for some i ∈ [2, w]. By Theorem 3.2, we can take W0 such that |W0| ≤ q − 2 and
{0} ∪

∑

(ϕ(W0)) = {0} ∪
∑

(ϕ(S2)) . As above, we derive that 〈supp(S2W
−1
0 )〉 is not

cyclic and f(S2W
−1
0 ) ≥ 2|S2| − 2|W0| − 1. Then

f(S) ≥ f(S1W0) + f(S2W
−1
0 ) ≥ qf(S1) + q − 1 + 2|S2| − 2|W0| − 1

≥ q|S1| + q − 1 + 2(n+ 1 − |S1|) − 2(q − 2) − 1 = (q − 2)(|S1| − 1) + 2n+ 2

≥ 6(
3n+ 8

17
− 1) + 2n+ 2 ≥ 3n− 1 ,

a contradiction.

Subcase 2.3: n = 16.
By (3) we have that |S1| = 4. As above, we can take W0 such that |W0| ≤ q − 1,

and derive that 〈supp(S2W
−1
0 )〉 is not cyclic and thus, f(S2W

−1
0 ) ≥ 2|S2| − 2|W0| − 1.

Therefore,

f(S) ≥ f(S1W0) + f(S2W
−1
0 ) ≥ qf(S1) + q − 1 + 2|S2| − 2|W0| − 1

≥ q|S1| + q − 1 + 2(n+ 1 − |S1|) − 2(q − 1) − 1 = (q − 2)(|S1| − 1) + 2n

≥ 6(4 − 1) + 2n ≥ 3n− 1 ,

a contradiction.

Case 3: q ≤ 7.
So, we must have that for every subsequence W of S2,

|{0}
⋃∑

ϕ(W )| ≤ q ≤ 7. (4)

By Theorem 3.2, there is a subsequence U of S2 with |U | ≥ |S2| − q + 1 such that

|〈ϕ(U)〉| | q. (5)

Let K = 〈supp(S1U)〉. It follows from (5) that

|K| = |N ||〈ϕ(U)〉| | q|N |. (6)

As before, write S = T1T2 where all terms of T1 are in K, but none of the terms of T2

is in K. Then 〈supp(T1)〉 = 〈supp(S1U)〉 = K, and |T1| ≥ |S1U | ≥ n+ 2 − q. Therefore,

|T1| ≥ n + 2 − q ≥ n− 5. (7)

Let ψ : G→ G/K be the canonical epimorphism and let T2 = c1 · . . . · ct2 .
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We distinguish two subcases.

Subcase 3.1: |T2| = 0.
Then

K = 〈supp(S1U)〉 = 〈supp(S)〉.

Set ` = exp(K). Then |N | | ` | n. Let K = C` ⊕ R where R is a finite abelian group
with exp(R) | `. By (6) we have

|R| | q.

Assume to the contrary, that R is not cyclic. Since |R| | q ≤ 7, we must have R = C2
2 and

K = C`⊕C2⊕C2. From D(K) = `+2 ≥ n+1 we infer that ` = n. Hence, D(K) = n+2.
By Lemma 2.1.1, f(S) = |K| − 1 = 4n− 1 > 3n− 1, a contradiction.

Therefore, R is cyclic. If n = q, since |S1| ≥ 2, by Lemma 2.6 we have that f(S) ≥
q|S1| + q − 1 ≥ 3q − 1 = 3n− 1, a contradiction. Therefore, n = fq for some f ≥ 2.

Since n + 1 ≤ D(K) − 1 = `+ |R| − 2, |R| | |q|, ` | n and n ≥ 2q, we infer that ` = n
and |R| ≥ 3. If |R| < q, then we must have |R| = 3. It follows from Lemma 2.1.1 that
f(S) = |K| − 1 = 3n − 1, a contradiction. Therefore, |R| = q ≥ 4 and K = Cn ⊕ Cq.
By Lemma 4.5 and Lemma 4.1, we have that n ∈ {q, 2q}, and therefore, n = 2q. We
distinguish subcases according to the value q ≤ 7.

Subcase 3.1.1: q ∈ {5, 6, 7}.
By (3), |S1| ∈ {3, 4}. Since |S2| = |S| − |S1| ≥ 2q+ 1− 4 ≥ q > |S1|, 〈supp(S2)〉 is not

cyclic. By Lemma 2.5, we have |Σ(S2)| ≥ 2|S2| − 1.
From |N ||n, |K| = nq and (6), we obtain that N ∼= Cn and K/N ∼= Cq. Let K =

(g0 +N)∪ . . .∪ (gq−1 +N) be the decomposition of cosets of N , where gi ∈ K and g0 ∈ N .
Let ri = |(gi + N) ∩ Σ(S2)| and si = |(gi + N) ∩ Σ(S)|. Then |Σ(S2)| = Σq−1

i=0 ri and
|Σ(S)| = Σq−1

i=0 si. Since Σ(ϕ(S2)) = G/N ∼= Cq, we have ri ≥ 1.

Subcase 3.1.1.1: |S1| = 4.
If f(S1) ≥ 5, then by Lemma 2.6, f(S) ≥ 5q + q − 1 = 6q − 1 = 3n − 1, and we

are done. So we may assume S1 = h4, where ord(h) = |N | = 2q. By Lemma 3.1.2,
si ≥ min{2q, ri + 4} ≥ 5 for every i ∈ [0, q− 1]. If ri + 4 ≥ 2q for some i ∈ [0, q− 1], then

|Σ(S)| = Σq−1
i=0 si ≥ 2q + 5(q − 1) = 7q − 5 ≥ 6q − 1 = 3n− 1,

a contradiction. Next, we may assume ri + 4 < 2q for all i ∈ [0, q − 1]. We have

|Σ(S)| = Σq−1
i=0 si ≥ Σq−1

i=0 (ri + 4) = |Σ(S2)| + 4q ≥ 2|S2| − 1 + 4q

= 2(2q + 1 − 4) − 1 + 4q = 8q − 7 ≥ 6q − 1,

a contradiction again.

Subcase 3.1.1.2: |S1| = 3.
Since h(S) ≥ d3n+8

17
e ≥ 3, we may assume that S1 = h3, where ord(h) = 2q. By

Lemma 3.1.2, si ≥ min{2q, ri + 3} ≥ 4 for every i ∈ [0, q − 1].
If ri + 3 > 2q holds for at least two distinct indices i ∈ [0, q − 1], then

|Σ(S)| = Σq−1
i=0 si ≥ 2q + 2q + 4(q − 2) = 8q − 8 ≥ 6q − 1,
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a contradiction. If ri + 3 ≤ 2q for every i ∈ [0, q − 1], we have

|Σ(S)| = Σq−1
i=0 si ≥ Σq−1

i=0 (ri + 3) = |Σ(S2)| + 3q ≥ 2|S2| − 1 + 3q

= 2(2q + 1 − 3) − 1 + 3q = 7q − 5 ≥ 6q − 1,

a contradiction. So we may assume that ri + 3 > 2q holds exactly for one i ∈ [0, q − 1].
If ϕ(bi) ∈ {ϕ(b1),−ϕ(b1)} for every i ∈ [1, 2q− 2]. We may assume that ϕ(b1) = . . . =

ϕ(bt) and ϕ(bt+1) = . . . = ϕ(b2q−2) = −ϕ(b1). Since vg(S2) ≤ 3, and q − 1 ≥ 4, we may
assume b1 6= b2. Next, we show that

|(b +N) ∩ Σ(S2)| ≥ 2 (8)

holds for every b ∈ {g0, g1, . . . , gq−1}.

Note that ord(ϕ(b1)) = q, we have that N, b1 + N, . . . , (q − 1)b1 + N are pairwise
disjoint. Therefore, b + N = jb1 + N = (q − j)(−b1) + N for some j ∈ [1, q]. We may
assume that t ≥ q−1. If 1 ≤ j ≤ q−2, then {b3 + . . .+b3+j−1 +b1, b3 + . . .+b3+j−1 +b2} ⊂
(jb1 +N)∩Σ(S2) = (b+N)∩Σ(S2). Hence, |(b+N)∩Σ(S2)| ≥ 2. If j = q− 1 and t ≥ q
then |Σ(S2)| = |(b+N)∩Σ(S2)| ≥ |{b3 + . . .+ bq + b1, b3 + . . .+ bq + b2}| = 2. If j = q− 1
and t = q − 1 then ϕ(bq) = . . . = ϕ(b2q) = −ϕ(b1). Since q − 1 ≥ 4 we may assume that
bq 6= bq+1. We now have |(b+N)∩Σ(S2)| ≥ |{bq, bq+1}| = 2 as desired. Next, assume that
j = q. If t ≥ q+1, then as above we can prove that |(b+N)∩Σ(S2)| ≥ 2. Otherwise, t ≤ q
and ϕ(bq+1) = −ϕ(b1). Thus, we have that |(b+N)∩Σ(S2)| ≥ |{bq+1 + b1, bq+1 + b2}| = 2.
This proves (8). Therefore

|Σ(S)| = Σq−1
i=0 si ≥ (2 + 3)(q − 1) + 2q = 7q − 5 ≥ 6q − 1,

a contradiction.
Next, we may assume ϕ(bj) 6∈ {ϕ(b1),−ϕ(b1)} for some j ∈ [1, 2q − 2]. Then we can

choose a subsequence W0 of S2 with |W0| ≤ q − 2 such that |{0} ∪
∑

(ϕ(W0))| = q, so
Σ(W0) ∩ (gi +N) 6= ∅ for every i ∈ [1, q − 1]. Since |S2W

−1
0 | ≥ q = |ϕ(G)|, S2W

−1
0 has a

nontrivial subsequence W1 with σ(W1) ∈ N = Ker(ϕ). Thus, ri ≥ 2 for every i ∈ [1, q−1],
and therefore,

|Σ(S)| = Σq−2
i=0 si ≥ 4 + (2 + 3)(q − 2) + 2q = 7q − 6 ≥ 6q − 1,

a contradiction.

Subcase 3.1.2: q = 4.
Then S is a zero-sum free sequence of length 9 in K ∼= C4 ⊕ C8, a contradiction to

Lemma 4.6.

Subcase 3.2: |T2| ≥ 1.
If ϕ(bi) ∈ {ϕ(b1),−ϕ(b1)} for every i ∈ [1, w], then we can take U = S2, and this

reduces to Subcase 3.1. Next, assume that ϕ(bi) 6∈ {ϕ(b1),−ϕ(b1)} for some i ∈ [1, w].
By Theorem 3.2, we can choose W0 such that |W0| ≤ q − 2, so |T1| ≥ n+ 3 − q.

We first assume that n ≥ 3q − 9. By the maximality of S1, we know that K is not
cyclic. By Lemma 2.5, f(T1) ≥ 2|T1| − 1. It follows from Lemma 2.6 and Lemma 2.4 that
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f(S) ≥ 2f(T1)+1+ |T2|−1 ≥ 4|T1|−2+ |T2| = 3|T1|+n−1 ≥ 3(n+3−q)+n−1 ≥ 3n−1
(since n ≥ 3q − 9), giving a contradiction.

Next, we assume that n ≤ 3q − 10. It follows from (2) that

q + 2 ≤ n ≤ 3q − 10. (9)

Thus, q ≥ 6. Hence, q ∈ {6, 7}. Let

λ = |{0} ∪
∑

(ψ(T2))|.

By Theorem 3.2, there is a subsequence X of T2 with |X| ≤ λ− 1 such that

|{0}
⋃∑

(ψ(X))| = λ.

We next distinguish subcases according to the possible value of q ∈ {6, 7}.

Subcase 3.2.1: q = 6.
From (9), we obtain that n = 8. By Lemma 2.6, we obtain that q|S1| + q − 1 ≤

3 × 8 − 2. This gives that |S1| ≤ 2, so |S1| = 2. Again, by Lemma 2.6, we obtain that
λf(T1) + λ− 1 ≤ 22. By Lemma 2.5, f(T1) ≥ 2|T1| − 1. Since λ ≥ 2, 4|T1| − 1 ≤ 22, and
thus |T1| ≤ 5. Note that |T1| ≥ n + 3 − q = 5. We have |T1| = 5 and λ = 2. Therefore,
|X| = 1. By Lemma 2.6 and Lemma 2.4, we obtain that f(S) ≥ 2f(T1) + 1 + f(T2X

−1).
Since |T2X

−1| = 3 and |S1| = 2, by the maximality of S1 we infer that no element could
occur more than two times in T2X

−1. It now follows from Lemma 2.7 and Lemma 2.4
that f(T2X

−1) ≥ 4. Therefore, f(S) ≥ 2f(T1)+1+ f(T2X
−1) ≥ 4|T1|−1+4 = 23 = 3n−1,

giving a contradiction.

Subcase 3.2.2: q = 7.
From (9), we obtain that n ∈ {9, 10, 11}. So, we have gcd(q, n) = 1, giving a contra-

diction to (2). In all cases, we are able to find a contradiction. Therefore, we must have
f(S) ≥ 3n− 1, so f(G, n+ 1) = 3n− 1 as desired.

6 On Σ|G|(S) and proof of Corollary 1.2.

We briefly point out the relationship between the invariants f(G, k) and the study of
|Σ|G|(S)| for suitable S ∈ F(G). To do so we need the following result, conjectured in [1]
and proved by W. Gao and I. Leader in [6].

Theorem A. Let S ∈ F(G) be a sequence. If 0 6∈ Σ|G|(S), then there is a zero-sumfree
sequence T ∈ F(G) of length |T | = |S| − |G| + 1 such that |Σ|G|(S)| ≥ |Σ(T )|.

Note that for S = 0|G|−1T , where T ∈ F(G) is zero-sum free, we have |Σ|G|(S)| =
|Σ(T )|. Thus for every k ∈ [1,D(G) − 1] we have

min{Σ|G|(S) | S ∈ F(G), |G|+ k − 1, 0 /∈ Σ|G|(S)} =

min
{

|Σ(T )|
∣

∣ T ∈ F(G) is zero-sum free of length |T | = k} = f(G, k) .

Now we are in a position to prove Corollary 1.2.
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Proof of Proposition 1.2. Let exp(G) = n and let S ∈ F(G) be a sequence of length
|S| = |G| + n. Suppose that 0 /∈ Σ|G|(S). Then [9, Theorem 5.8.3]) implies that G is
neither cyclic nor congruent to C2⊕Cn. Thus it follows that n+1 ≤ D(G)−1. Therefore
the above considerations (applied with k = n+ 1) show that |Σ|G|(S)| ≥ f(G, n+ 1), and
by Theorem 1.1 we have f(G, n+ 1) ≥ 3n− 1.

We recall a conjecture by B. Bollobás and I. Leader, stated in [1].

Conjecture 6.1. Let G = Cn ⊕ Cn with n ≥ 2 and let (e1, e2) be a basis of G. If
k ∈ [0, n− 2] and S = en−1

1 ek+1
2 ∈ F(G), then f(G, n+ k) = f(S).

If S is as above, then clearly f(S) = (k+2)n− 1. Thus [16], Theorem 1.1 and Lemma
4.3 imply that conjecture for k ∈ {0, 1, n − 2}. We generalize this conjecture as follows
(see Example 1).

Conjecture 6.2. Let G = Cn1
⊕ . . .⊕Cnr

with r ≥ 2 and 1 < n1 | . . . |nr. Let (e1, . . . , er)
be a basis of G with ord(ei) = ni for all i ∈ [1, r], k ∈ [0, nr−1 − 2] and

S = enr−1
r ek+1

r−1 ∈ F(G) .

Then we have f(G, nr + k) = f(S) = (k + 2)nr − 1.
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Theory 8 (1976), 52 – 57.

[15] J.E. Olson and E.T. White, Sums from a sequence of group elements, Number Theory
and Algebra (H. Zassenhaus, ed.), Academic Press, 1977, pp. 215 – 222.

[16] Fang Sun, On subsequence sums of a zero-sumfree sequence, Electron. J. Comb. 14
(2007), R52.

the electronic journal of combinatorics 15 (2008), #R117 21


