On Subsequence Sums of a Zero-sum Free Sequence II

Weidong Gao ${ }^{1}$, Yuanlin Li^{2}, Jiangtao Peng ${ }^{3}$ and Fang Sun ${ }^{4}$
${ }^{1,3,4}$ Center for Combinatorics, LPMC Nankai University, Tianjin, P.R. China
${ }^{2}$ Department of Mathematics Brock University, St. Catharines, Ontario Canada L2S 3A1
${ }^{1}$ gao@cfc.nankai.edu.cn, ${ }^{2}$ yli@brocku.ca, 3^{3} pjt821111@cfc.nankai.edu.cn, ${ }^{4}$ sunfang2005@163.com

Submitted: Apr 29, 2008; Accepted: Sep 2, 2008; Published: Sep 15, 2008
Mathematics Subject Classification: 11B

Abstract

Let G be an additive finite abelian group with exponent $\exp (G)=n$. For a sequence S over G, let $\mathrm{f}(S)$ denote the number of non-zero group elements which can be expressed as a sum of a nontrivial subsequence of S. We show that for every zero-sum free sequence S over G of length $|S|=n+1$ we have $\mathrm{f}(S) \geq 3 n-1$.

1 Introduction and Main results

Let G be an additive finite abelian group with $\operatorname{exponent} \exp (G)=n$ and let S be a sequence over G (we follow the conventions of [5] concerning sequences over abelian groups; details are recalled in Section 2). We denote by $\Sigma(S)$ the set of all subsums of S, and by $\mathrm{f}(G, S)=\mathrm{f}(S)$ the number of nonzero group elements which can be expressed as a sum of a nontrivial subsequence of S (thus $f(S)=|\Sigma(S) \backslash\{0\}|)$.

In 1972, R.B. Eggleton and P. Erdős (see [2]) first tackled the problem of determining the minimal cardinality of $\Sigma(S)$ for squarefree zero-sum free sequences (that is for zerosum free subsets of G), see [7] for recent progress. For general sequences the problem was first studied by J.E. Olson and E.T. White in 1977 (see Lemma 2.5). In a recent new approach [16], the fourth author of this paper proved that every zero-sum free sequence S over G of length $|S|=n$ satisfies $\mathrm{f}(S) \geq 2 n-1$. A main result of the present paper runs as follows.

Theorem 1.1. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ be a finite abelian group with $1<n_{1}|\ldots| n_{r}$. If $r \geq 2$ and $n_{r-1} \geq 3$, then every zero-sum free sequence S over G of length $|S|=n_{r}+1$ satisfies $\mathrm{f}(S) \geq 3 n_{r}-1$.

This partly confirms a former conjecture of B. Bollobás and I. Leader, which is outlined in Section 6. All information on the minimal cardinality of $\Sigma(S)$ can successfully applied to the investigation of a great variety of problems in combinatorial and additive number theory. In the final section of this paper we will discuss applications to the study of $\Sigma_{|G|}(S)$, a topic which has been studied by many authors (see [14], [3], [13], [12], [10], [11] and the surveys [5, 8]). In particular, Theorem 1.1 and a result of B. Bollobás and I. Leader (see Theorem A in Section 6) has the following consequence.

Corollary 1.2. Let G be a finite abelian group with exponent $\exp (G)=n$, and let S be a sequence over G of length $|S|=|G|+n$. Then, either $0 \in \sum_{|G|}(S)$ or $\left|\sum_{|G|}(S)\right| \geq 3 n-1$.

This paper is organized as follows. In Section 2 we fix notation and gather the necessary tools from additive group theory. In Section 3 we prove a crucial result (Theorem 3.2) whose corollary answers a question of H. Snevily. In Section 4 we continue to present some more preliminary results which will be used in the proof of the main result 1.1, which will finally be given in Section 5. In Section 6 we briefly discuss some applications.

Throughout this paper, let G denote an additive finite abelian group.

2 Notation and some results from additive group theory

Our notation and terminology are consistent with [5] and [9]. We briefly gather some key notions and fix the notation concerning sequences over abelian groups. Let \mathbb{N} denote the set of positive integers and let $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$, we set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$.

Throughout, all abelian groups will be written additively. For $n \in \mathbb{N}$, let C_{n} denote a cyclic group with n elements.

Let $A, B \subset G$ be nonempty subsets. Then $A+B=\{a+b \mid a \in A, b \in B\}$ denotes their sumset. The stabilizer of A is defined as $\operatorname{Stab}(A)=\{g \in G \mid g+A=A\}, A$ is called periodic if $\operatorname{Stab}(A) \neq\{0\}$, and we set $-A=\{-a \mid a \in A\}$.

An s-tuple $\left(e_{1}, \ldots, e_{s}\right)$ of elements of G is said to be independent if $e_{i} \neq 0$ for all $i \in[1, s]$ and, for every s-tuple $\left(m_{1}, \ldots, m_{s}\right) \in \mathbb{Z}^{s}$,

$$
m_{1} e_{1}+\ldots+m_{s} e_{s}=0 \quad \text { implies } \quad m_{1} e_{1}=\ldots=m_{s} e_{s}=0
$$

An s-tuple $\left(e_{1}, \ldots, e_{s}\right)$ of elements of G is called a basis if it is independent and $G=$ $\left\langle e_{1}\right\rangle \oplus \ldots \oplus\left\langle e_{s}\right\rangle$.

Let $\mathcal{F}(G)$ be the multiplicative, free abelian monoid with basis G. The elements of $\mathcal{F}(G)$ are called sequences over G. We write sequences $S \in \mathcal{F}(G)$ in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}, \quad \text { with } \quad \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \quad \text { for all } \quad g \in G
$$

We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S, and we say that S contains g if $\mathrm{v}_{g}(S)>0$. A sequence S_{1} is called a subsequence of S if $S_{1} \mid S$ in $\mathcal{F}(G)$ (equivalently, $\mathrm{v}_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G)$. Given two sequences $S, T \in \mathcal{F}(G)$, we denote by $\operatorname{gcd}(S, T)$ the longest subsequence dividing both S and T. If a sequence $S \in \mathcal{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$.

For a sequence

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{v_{g}(S)} \in \mathcal{F}(G)
$$

we call

$$
\begin{gathered}
|S|=l=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \quad \text { the length of } S, \\
\mathrm{~h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in G\right\} \in[0,|S|] \\
\text { the maximum of the multiplicities of } S, \\
\operatorname{supp}(S)=\left\{g \in G \mid \mathrm{v}_{g}(S)>0\right\} \subset G \quad \text { the support of } S, \\
\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G \quad \text { the sum of } S, \\
\Sigma_{k}(S)=\left\{\sum_{i \in I} g_{i} \mid I \subset[1, l] \text { with }|I|=k\right\} \\
\text { the set of } k \text {-term subsums of } S, \text { for all } k \in \mathbb{N}, \\
\Sigma_{\leq k}(S)=\bigcup_{j \in[1, k]} \Sigma_{j}(S), \quad \Sigma_{\geq k}(S)=\bigcup_{j \geq k} \Sigma_{j}(S),
\end{gathered}
$$

and

$$
\Sigma(S)=\Sigma_{\geq 1}(S) \text { the set of (all) subsums of } S .
$$

The sequence S is called

- zero-sum free if $0 \notin \Sigma(S)$,
- a zero-sum sequence if $\sigma(S)=0$,
- a minimal zero-sum sequence if $1 \neq S, \sigma(S)=0$, and every $S^{\prime} \mid S$ with $1 \leq\left|S^{\prime}\right|<|S|$ is zero-sum free.

We denote by $\mathcal{A}(G) \subset \mathcal{F}(G)$ the set of all minimal zero-sum sequences over G. Every map of abelian groups $\varphi: G \rightarrow H$ extends to a homomorphism $\varphi: \mathcal{F}(G) \rightarrow \mathcal{F}(H)$ where $\varphi(S)=\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$. If φ is a homomorphism, then $\varphi(S)$ is a zero-sum sequence if and only if $\sigma(S) \in \operatorname{Ker}(\varphi)$.

Let $\mathrm{D}(G)$ denote the smallest integer $l \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ of length $|S| \geq l$ has a zero-sum subsequence. Equivalently, we have $\mathrm{D}(G)=\max \{|S| \mid S \in$ $\mathcal{A}(G)\})$, and $\mathrm{D}(G)$ is called the Davenport constant of G.

We shall need the following results on the Davenport constant (proofs can be found in [9, Proposition 5.1.4 and Proposition 5.5.8.2.(c)]).

Lemma 2.1. Let $S \in \mathcal{F}(G)$ be a zero-sum free sequence.

1. If $|S|=\mathrm{D}(G)-1$, then $\Sigma(S)=G \backslash\{0\}$, and hence $\mathrm{f}(S)=|G|-1$.
2. If G is a p-group and $|S|=\mathrm{D}(G)-2$, then there exist a subgroup $H \subset G$ and an element $x \in G \backslash H$ such that $G \backslash(\Sigma(S) \cup\{0\}) \subset x+H$.

Lemma 2.2. Let $G=C_{n_{1}} \bigoplus C_{n_{2}}$ with $1 \leq n_{1} \mid n_{2}$, and let $S \in \mathcal{F}(G)$.

1. $\mathrm{D}\left(C_{n_{1}} \bigoplus C_{n_{2}}\right)=n_{1}+n_{2}-1$.
2. If S has length $|S|=2 n_{1}+n_{2}-2$, then S has a zero-sum subsequence T of length $|T| \in\left[1, n_{2}\right]$.
3. If S has length $|S|=n_{1}+2 n_{2}-2$, then S has a zero-sum subsequence W of length $|W| \in\left\{n_{2}, 2 n_{2}\right\}$.

Proof. 1. and 2. follow from [9, Theorem 5.8.3].
3. See [5, Theorem 6.7].

Proofs of the two following classical addition theorems can be found in [9, Theorem 5.2.6 and Corollary 5.2.8].

Lemma 2.3. Let $A, B \subset G$ be nonempty subsets.

1. (Cauchy-Davenport) If G is cyclic of order $|G|=p \in \mathbb{P}$, then $|A+B| \geq \min \{p,|A|+$ $|B|-1\}$.
2. (Kneser) If $H=\operatorname{Stab}(A+B)$ denotes the stabilizer of $A+B$, then $|A+B| \geq$ $|A+H|+|B+H|-|H|$.

We continue with some crucial definitions going back to R.B. Eggleton and P. Erdős. For a sequence $S \in \mathcal{F}(G)$ let

$$
\mathrm{f}(G, S)=\mathrm{f}(S)=|\Sigma(S) \backslash\{0\}| \text { be the number of nonzero subsums of } S .
$$

Let $k \in \mathbb{N}$. We define

$$
\begin{aligned}
\mathrm{F}(G, k)=\min \{|\Sigma(S)| \mid & S \in \mathcal{F}(G) \text { is a zero-sum free and } \\
& \text { squarefree sequence of length }|S|=k\}
\end{aligned}
$$

and we denote by $\mathrm{F}(k)$ the minimum of all $\mathrm{F}(A, k)$ where A runs over all finite abelian groups A having a squarefree and zero-sum free sequence of length k. Furthermore, we set

$$
\mathrm{f}(G, k)=\min \{|\Sigma(S)| \quad S \in \mathcal{F}(G) \text { is zero-sum free of length }|S|=k\} .
$$

By definition, we have $\mathrm{f}(G, k) \leq \mathrm{F}(G, k)$. Since there is no zero-sum sequence S of length $|S| \geq \mathrm{D}(G)$, we have $\mathrm{f}(G, k)=0$ for $k \geq \mathrm{D}(G)$. The following simple example provides an upper bound for $\mathrm{f}(G, \cdot)$ which will be used frequently in the sequel (see also Conjecture 6.2).

Example 1. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $r \geq 2,1<n_{1}|\ldots| n_{r}$ and let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for all $i \in[1, r]$. For $k \in\left[0, n_{r-1}-2\right]$ we set

$$
S=e_{r}^{n_{r}-1} e_{r-1}^{k+1} \in \mathcal{F}(G) .
$$

Clearly, S is zero-sum free, $|S|=n_{r}+k$ and $\mathrm{f}(S)=(k+2) n_{r}-1$. Thus we get $\mathrm{f}\left(G, n_{r}+k\right) \leq$ $(k+2) n_{r}-1$.

Lemma 2.4. [9, Theorem 5.3.1] If $t \in \mathbb{N}$ and $S=S_{1} \cdot \ldots \cdot S_{t} \in \mathcal{F}(G)$ is zero-sum free, then

$$
\mathrm{f}(S) \geq \mathrm{f}\left(S_{1}\right)+\ldots+\mathrm{f}\left(S_{t}\right)
$$

Lemma 2.5. [15] Let $S \in \mathcal{F}(G)$ be zero-sum free. If $\langle\operatorname{supp}(S)\rangle$ is not cyclic, then

$$
|\Sigma(S)| \geq 2|S|-1
$$

Lemma 2.6. [7, Lemma 2.3] Let $S=S_{1} S_{2} \in \mathcal{F}(G), H=\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle$ and let $\varphi: G \rightarrow$ G / H denote the canonical epimorphism. Then we have

$$
\mathrm{f}(S) \geq\left(1+\mathrm{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathrm{f}\left(S_{1}\right)+\mathrm{f}\left(\varphi\left(S_{2}\right)\right)
$$

Lemma 2.7.

1. $\mathrm{F}(1)=1, \mathrm{~F}(2)=3, \mathrm{~F}(3)=5$ and $\mathrm{F}(4)=8$.
2. If $S \in \mathcal{F}(G)$ is squarefree, zero-sum free of length $|S|=3$ and contains no elements of order 2 , then $\mathrm{f}(S) \geq 6$.
3. $\mathrm{F}(5)=13$ and $\mathrm{F}(6)=19$.

Proof. 1. See [9, Corollary 5.3.4.1].
2. See [9, Proposition 5.3.2.2].
3. See [7].

The proof of the following lemma follows the lines of the proof of [7, Theorem 1.3].
Lemma 2.8. Let $S \in \mathcal{F}(G)$ be zero-sum free of length $|S| \geq 2$. If $f(S) \leq 3|S|-5$, then $\mathrm{h}(S) \geq \max \left\{2, \frac{3|S|+5}{17}\right\}$.

Proof. Let $q \in \mathbb{N}_{0}$ be maximal such that S has a representation in the form $S=S_{0} S_{1}$. $\ldots \cdot S_{q}$ with $S_{0} \in \mathcal{F}(G)$ and squarefree, zero-sum free sequences $S_{1}, \ldots, S_{q} \in \mathcal{F}(G)$ of length $\left|S_{\nu}\right|=6$ for all $\nu \in[1, q]$. Among all those representations of S choose one for which $d=\left|\operatorname{supp}\left(S_{0}\right)\right|$ is maximal, and set $S_{0}=g_{1}^{r_{1}} \cdot \ldots \cdot g_{d}^{r_{d}}$, where $g_{1}, \ldots, g_{d} \in G$ are pairwise distinct, $d \in \mathbb{N}_{0}$ and $r_{1} \geq \cdots \geq r_{d} \in \mathbb{N}$. Since q is maximal, we have $d \in[0,5]$.

Assume to the contrary that $r_{1} \leq 1$. Then either $d=0$ or $r_{1}=\ldots=r_{d}=1$, and for convenience we set $\mathrm{F}(0)=0$. By Lemmas 2.4 and 2.7, we obtain that
$\mathrm{f}(S) \geq \mathrm{f}\left(S_{1}\right)+\ldots+\mathrm{f}\left(S_{q}\right)+\mathrm{F}(d) \geq 19 q+\mathrm{F}(d)=3|S|-4+q+\mathrm{F}(d)-3 d+4 \geq 3|S|-4$, a contradiction.

Therefore, $\mathrm{h}(S) \geq r_{1} \geq 2$, and we set $g=g_{1}$. We assert that $\mathrm{v}_{g}\left(S_{i}\right) \geq 1$ for all $i \in[1, q]$. Assume to the contrary that there exists some $i \in[1, q]$ with $g \nmid S_{i}$. Since $\left|S_{i}\right|=6>d$, there is an $h \in \operatorname{supp}\left(S_{i}\right)$ with $h \nmid S_{0}$. Since S may be written in the form

$$
S=\left(h g^{-1} S_{0}\right) S_{1} \cdot \ldots \cdot S_{i-1}\left(g h^{-1} S_{i}\right) S_{i+1} \cdot \ldots \cdot S_{q}
$$

and $\left|\operatorname{supp}\left(h g^{-1} S_{0}\right)\right|>\left|\operatorname{supp}\left(S_{0}\right)\right|$, we get a contradiction to the maximality of $\left|\operatorname{supp}\left(S_{0}\right)\right|$. Therefore, $\mathrm{h}(S) \geq \mathrm{v}_{g}(S)=q+r_{1} \geq 2$.

Clearly, S_{0} allows a product decomposition

$$
S_{0}=\prod_{i=1}^{5} T_{i}^{q_{i}}
$$

where, for all $i \in[1,5], T_{i}=g_{1} \cdot \ldots \cdot g_{i}$ and $q_{i}=r_{i}-r_{i+1}$, with $r_{6}=0$. Thus we get $q_{1}+\ldots+q_{5}=r_{1}=\mathrm{v}_{g}\left(S_{0}\right), q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+5 q_{5}=\left|S_{0}\right|$ and

$$
q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+5 q_{5}+6 q=|S|
$$

By Lemma 2.4 and Lemma 2.7 we obtain that

$$
q_{1}+3 q_{2}+5 q_{3}+8 q_{4}+13 q_{5}+19 q \leq \mathrm{f}(S) \leq 3|S|-5 .
$$

Using the last two relations we infer that

$$
\begin{aligned}
& 17 q+17 q_{5}+16 q_{4}+13 q_{3}+9 q_{2}+5 q_{1}= \\
& 6\left(q_{1}+2 q_{2}+3 q_{3}+4 q_{4}+5 q_{5}+6 q\right)-\left(q_{1}+3 q_{2}+5 q_{3}+8 q_{4}+13 q_{5}+19 q\right) \geq 3|S|+5
\end{aligned}
$$

and therefore

$$
\mathrm{h}(S) \geq \mathrm{v}_{g}(S)=q+r_{1}=q+q_{1}+\ldots+q_{5} \geq \frac{3|S|+5}{17}
$$

3 Sums and Element Orders

Theorem 3.2 in this section will be used repeatedly to deduce Theorem 1.1 and it also has its own interest. Moreover, its corollary answers a question of H. Snevily. We first prove a lemma.

Lemma 3.1. Let $A \subset G$ be a finite nonempty subset.

1. If $x+A=A$ for some $x \in G$, then $|A| x=0$.
2. Let $r \in \mathbb{N}, y_{1}, \ldots, y_{r} \in G$ and $k=\min \left\{\operatorname{ord}\left(y_{i}\right) \mid i \in[1, r]\right\}$. Then $\mid \sum\left(0 y_{1} \cdot \ldots \cdot y_{r}\right)+$ $A \mid \geq \min \{k, r+|A|\}$.

Proof. 1. Since $x+A=A$, we have that

$$
|A| x+\sum_{a \in A} a=\sum_{a \in A}(x+a)=\sum_{a \in A} a
$$

Therefore, $|A| x=0$.
2. We proceed by induction on r. Let $r=1$. If $\left|\sum\left(0 y_{1}\right)+A\right| \geq 1+|A|$ then we are done. Otherwise, $\sum\left(0 y_{1}\right)+A=\left(y_{1}+A\right) \cup A=A$. This forces that $y_{1}+A=A$. By 1., we have $|A| y_{1}=0$. Therefore, $k \leq \operatorname{ord}\left(y_{1}\right) \leq|A|$, and thus $\left|\sum\left(0 y_{1}\right)+A\right|=|A| \geq \operatorname{ord}\left(y_{1}\right) \geq k$. So, $\left|\sum\left(0 y_{1}\right)+A\right| \geq \min \{k, 1+|A|\}$.

Suppose that $r \geq 2$ and that the assertion is true for $r-1$. Let $B=\sum\left(0 y_{1} \cdot \ldots\right.$. $\left.y_{r-1}\right)+A$. If $\left|\sum\left(0 y_{1} \cdot \ldots \cdot y_{r}\right)+A\right| \geq 1+|B|$, then by induction hypothesis, we have that $\left|\sum\left(0 y_{1} \cdot \ldots \cdot y_{r}\right)+A\right| \geq 1+|B| \geq 1+\min \{k, r-1+|A|\} \geq \min \{k, r+|A|\}$ and we are done. So, we may assume that $\left|\sum\left(0 y_{1} \cdot \ldots \cdot y_{r}\right)+A\right| \leq|B|$. Note that $\sum\left(0 y_{1} \cdot \ldots \cdot y_{r}\right)+A=\left(y_{r}+\left(\sum\left(0 y_{1} \cdot \ldots \cdot y_{r-1}\right)+A\right)\right) \cup\left(\sum\left(0 y_{1} \cdot \ldots \cdot y_{r-1}\right)+A\right)=\left(y_{r}+B\right) \cup B$. We must have $y_{r}+B=B$. By 1., we have $|B| y_{r}=0$, and thus $k \leq \operatorname{ord}\left(y_{r}\right) \leq|B|$. Therefore, $\left|\sum\left(0 y_{1} \cdot \ldots \cdot y_{r}\right)+A\right| \geq|B| \geq k$. This completes the proof.

Theorem 3.2. Let $S=a_{1} \cdot \ldots \cdot a_{k} \in \mathcal{F}(G \backslash\{0\})$ be a sequence of length $|S|=k \geq 2$, and set $q=\left|\{0\} \cup \sum(S)\right|$.

1. If T is a proper subsequence of S such that $\left|\{0\} \cup \sum(U)\right|=\left|\{0\} \cup \sum(T)\right|$ for every subsequence U of S with $T \mid U$ and $|U|=|T|+1$, then $\{0\} \cup \sum(T)=\{0\} \cup \sum(S)$.
2. For any nontrivial subsequence V_{0} of S, there is a subsequence V of S with $V_{0} \mid V$, such that $\left|\{0\} \cup \sum(V)\right|-|V| \geq\left|\{0\} \cup \sum\left(V_{0}\right)\right|-\left|V_{0}\right|$ and $\{0\} \cup \sum(V)=\{0\} \cup \sum(S)$.
3. Suppose that $q \leq|S|$. Then there is a proper subsequence W of S such that $\{0\} \cup$ $\sum(W)=\{0\} \cup \sum(S)$ and $|W| \leq q-1$. Moreover, $q x=0$ for every term $x \in S W^{-1}$.
4. If $q \leq|S|$ and $a_{i} \notin\left\{a_{1},-a_{1}\right\}$ for some $i \in[2, k]$, then we can find $a W$ with all properties stated in (3) such that $|W| \leq q-2$.
5. Suppose that $q \leq|S|$. There is a subsequence T of S with $|T| \geq|S|-q+2$ such that $|\langle\operatorname{supp}(T)\rangle| \mid q$.

Proof. 1. Let $S T^{-1}=g_{1} \cdot \ldots \cdot g_{l}$. By the assumption,

$$
\{0\} \cup \sum\left(g_{i} T\right)=\{0\} \cup \sum(T)
$$

holds for every $i \in[1, l]$, or equivalently,

$$
\{0\} \cup\left\{g_{i}\right\}+\{0\} \cup \sum(T)=\{0\} \cup \sum(T)
$$

for every $i \in[1, t]$. Therefore,

$$
\{0\} \cup \sum(S)=\{0\} \cup\left\{g_{1}\right\}+\{0\} \cup\left\{g_{2}\right\}+\ldots+\{0\} \cup\left\{g_{t}\right\}+\{0\} \cup \sum(T)=\{0\} \cup \sum(T)
$$

2. Let V be a subsequence of S with maximal length such that $V_{0} \mid V$ and $\mid\{0\} \cup$ $\sum(V)\left|-|V| \geq\left|\{0\} \cup \sum\left(V_{0}\right)\right|-\left|V_{0}\right|\right.$. If $V=S$, then clearly the result holds. Next, we may assume that V is a proper subsequence. It is not hard to show that V satisfies the assumption in 1.. By 1. we conclude that $\{0\} \cup \sum(V)=\{0\} \cup \sum(S)$.
3. Let W be a subsequence of S with maximal length such that $\left|\{0\} \cup \sum(W)\right| \geq|W|+1$. Then $|W| \leq\left|\{0\} \cup \sum(W)\right|-1 \leq\left|\{0\} \cup \sum(S)\right|-1=q-1<|S|$. Therefore, W is a proper subsequence of S.

Using the maximality of W, we can easily verify that W satisfies the assumption in 1.. It follows from 1. that $\{0\} \cup \sum(W)=\{0\} \cup \sum(S)$. Since for each $x \in S W^{-1}$, $\left|x+\{0\} \cup \sum(S)\right|=\left|\{0\} \cup \sum(S)\right|$ and $x+\{0\} \cup \sum(S)=x+\{0\} \cup \sum(W) \subset\{0\} \cup \sum(S)$, we obtain that $x+\{0\} \cup \sum(S)=\{0\} \cup \sum(S)$. It now follows from Lemma 3.1 that $q x=0$ holds for every $x \in S W^{-1}$.
4. Let $V_{0}=a_{1} a_{i}$. Then $\left|\{0\} \cup \sum\left(V_{0}\right)\right|-\left|V_{0}\right|=4-2=2$. By 2., there exists a subsequence W such that $\left|\{0\} \cup \sum(W)\right|-|W| \geq 2$ and $\{0\} \cup \sum(W)=\{0\} \cup \sum(S)$. Thus $|W| \leq q-2 \leq|S|-2$, and therefore, clearly W is a proper subsequence of S. As in 3., we can prove that $q x=0$ holds for every $x \in S W^{-1}$.
5. If $a_{i} \in\left\{a_{1},-a_{1}\right\}$ holds for every $i \in[2, k]$, then by 3 . we have that $q a_{i}=0$ for some i. Since $a_{i}= \pm a_{1}$, we have $q a_{1}=0$ and $\operatorname{ord}\left(a_{1}\right)$ divides q. Let $T=S$. Then $|\langle\operatorname{supp}(T)\rangle|=\left|\left\langle a_{1}\right\rangle\right|=\operatorname{ord}\left(a_{1}\right)$ divides q. Next we assume that $a_{i} \notin\left\{a_{1},-a_{1}\right\}$ for some $i \in[2, k]$, by 4 . there is a proper subsequence W of S with $\{0\} \cup \sum(W)=\{0\} \cup \sum(S)$ and $|W| \leq q-2$. Let $T=S W^{-1}$. Then,

$$
|T|=|S|-|W| \geq|S|-q+2
$$

For every term y in T, as shown in 3 . we have that

$$
y+\{0\} \cup \sum(U)=\{0\} \cup \sum(U) .
$$

Therefore,

$$
\langle\operatorname{supp}(T)\rangle+\{0\} \cup \sum(W)=\{0\} \cup \sum(W)
$$

Since the left hand side is a union of some cosets of $\langle\operatorname{supp}(T)\rangle$, we conclude that $|\langle\operatorname{supp}(T)\rangle|$ divides $\left|\{0\} \cup \sum(U)\right|=q$ as desired.

The following result answers a question of H. Snevily, formulated in a private communication to the first author.

Corollary 3.3. Let $S=a_{1} \cdot \ldots \cdot a_{r} \in \mathcal{F}(G)$, and suppose that $\operatorname{ord}\left(a_{i}\right) \geq r$ holds for every $i \in[1, r]$. Then, $\left|\left\{a_{i}\right\} \cup\left(a_{i}+\sum\left(S a_{i}^{-1}\right)\right)\right| \geq r$ holds for every $i \in[1, r]$.
Proof. Let $q=\left|0 \cup \sum\left(S a_{i}^{-1}\right)\right|$. If $q \leq r-1$, then by Theorem 3.2.3, $q a_{j}=0$ for some $j \neq i$. Thus $q \geq \operatorname{ord}\left(a_{j}\right) \geq r$, giving a contradiction. Therefore, $q \geq r$ and thus $\left|\left\{a_{i}\right\} \cup\left(a_{i}+\sum\left(S a_{i}^{-1}\right)\right)\right|=\left|0 \cup \sum\left(S a_{i}^{-1}\right)\right| \geq r$ as desired.

4 Zero-sum free sequences over groups of rank two

Lemma 4.1. Let $G=C_{m} \oplus C_{n}$ with $1<m \mid n$. Suppose that $\mathrm{f}\left(C_{m} \oplus C_{m}, m+k\right)=$ $(k+2) m-1$ for every positive integer $k \in[1, m-2]$ and $n \geq m\left(1+\frac{k m+3}{f(N, m+k+1)+1-(k+2) m}\right)$. Then $\mathrm{f}(G, n+k)=(k+2) n-1$.

Proof. Clearly, we have $n \geq 2 m$. Let $k \in[1, m-2]$ and let $S \in \mathcal{F}(G)$ be zero-sum free of length

$$
\begin{equation*}
|S|=n+k=\left(\frac{n}{m}-3\right) m+(3 m-2)+2+k \tag{*}
\end{equation*}
$$

By Example 1, we obtain that $\mathrm{f}(G, n+k) \leq(k+2) n-1$, and so we need only show that $\mathrm{f}(S)=\left|\sum(S)\right| \geq(k+2) n-1$. Let $\varphi: G \rightarrow N$ be an epimorphism with $N \cong C_{m} \oplus C_{m}$ and $\operatorname{Ker}(\varphi) \cong C_{\frac{n}{m}}$.

By (*) and Lemma 2.2.1 (for details see [9, Lemma 5.7.10]), S allows a product decomposition $S=S_{1} \cdot \ldots \cdot S_{n / m-2} T$, where $S_{1}, \ldots, S_{n / m-2}, T \in \mathcal{F}(G)$ and, for every $i \in[1, n / m-2], \varphi\left(S_{i}\right)$ has sum zero and length $\left|S_{i}\right| \in[1, m]$. Note that $|T| \geq 2 m+k$. We distinguish two cases.
Case 1: $\quad|T| \geq 3 m-2$.
Applying Lemma 2.2 .1 to $\varphi(T)$, we can find a subsequence of T, say $S_{\frac{n}{m}-1}$, such that

$$
1 \leq\left|S_{\frac{n}{m}-1}\right| \leq m \quad \text { and } \quad \sigma\left(S_{\frac{n}{m}-1}\right) \in \operatorname{Ker}(\varphi)
$$

We claim that $\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)$ is zero-sum free. Otherwise, if $\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)$ is not zero-sum free, or equivalently, if $T S_{\frac{n}{m}-1}^{-1}$ has a nontrivial subsequence $S_{\frac{n}{m}}$ (say) such that $\sigma\left(S_{\frac{n}{m}}\right) \in$ $\operatorname{Ker}(\varphi)$, then the sequence $\prod_{i=1}^{\frac{n}{m}} \sigma\left(S_{i}\right)$ of $\frac{n}{m}$ elements in $\operatorname{Ker}(\varphi)$ is not zero-sum free. Therefore, S is not zero-sum free, giving a contradiction. Hence, $\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)$ is zero-sum free as claimed. Note that $\left|\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)\right| \geq 2 m+k-m=m+k$. By the hypothesis of the lemma,

$$
\mathrm{f}\left(\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)\right) \geq \mathrm{f}(N, m+k) \geq(k+2) m-1
$$

Let $R_{1}=\prod_{i=1}^{\frac{n}{m}-1} \sigma\left(S_{i}\right)$. Then $\left|R_{1}\right|=\frac{n}{m}-1$ and R_{1} is zero-sum free. Therefore, $\left|\left\langle\operatorname{supp}\left(R_{1}\right)\right\rangle\right| \geq \mathrm{f}\left(R_{1}\right)+1 \geq\left|R_{1}\right|+1=\frac{n}{m}=|\operatorname{Ker}(\varphi)|$ and then $\left\langle\operatorname{supp}\left(R_{1}\right)\right\rangle=\operatorname{Ker}(\varphi)$. Let $R_{2}=T S_{\frac{1}{m}-1}^{-1}$. Now applying Lemma 2.6 to the sequence $R_{1} R_{2}$, we obtain that

$$
\begin{aligned}
\mathrm{f}(S) & \geq \mathrm{f}\left(R_{1} R_{2}\right) \geq\left(1+\mathrm{f}\left(\varphi\left(R_{2}\right)\right)\right) \mathbf{f}\left(R_{1}\right)+\mathbf{f}\left(\varphi\left(R_{2}\right)\right) \\
& \geq\left(1+\mathrm{f}\left(\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)\right)\right)\left(\frac{n}{m}-1\right)+\mathrm{f}\left(\varphi\left(T S_{\frac{n}{m}-1}^{-1}\right)\right) \geq(k+2) n-1
\end{aligned}
$$

Case 2: $\quad|T| \in[2 m+k, 3 m-3]$.
If $\varphi(T)$ has a nontrivial zero-sum subsequence of length not exceeding m, then by repeating the argument used in the above case we can prove the result, i.e. $\mathrm{f}(S) \geq(k+2) n-1$. So, we may assume that $\varphi(T)$ has no nontrivial zero-sum subsequence of length not exceeding m.

Next, consider the sequence $T 0^{3 m-2-|T|}$ of $3 m-2$ elements in G. Then $\varphi\left(T 0^{3 m-2-|T|}\right)$ is a sequence of length $3 m-2$ in $N=C_{m} \oplus C_{m}$. By applying Lemma 2.2.2 to $\varphi\left(T 0^{3 m-2-|T|}\right)$, we obtain that $T 0^{3 m-2-|T|}$ has a subsequence W such that $\sigma(\varphi(W))=0$ and $|W| \in$ $\{m, 2 m\}$. If $|W|=m$, then $\varphi(T)$ has a nontrivial zero-sum subsequence $\varphi(W \cap T)$ of length not exceeding m, a contradiction. Therefore, $|W|=2 m$ and

$$
\sigma(W) \in \operatorname{Ker}(\varphi)
$$

Let $W_{1}=\operatorname{gcd}(W, T)$. Then $\left|W_{1}\right| \geq|W|-(3 m-2-|T|) \geq m+k+2$, and $\varphi\left(W_{1}\right)$ is a minimal zero-sum sequence. Since $\varphi(T)$ has no nontrivial zero-sum subsequences of length not exceeding m, we can choose a subsequence W_{2} of W_{1} with $\left|W_{2}\right|=m+k+1$ such that the subgroup generated by $\varphi\left(T W_{2}^{-1}\right)$ is not cyclic. Let $T_{1}=T W_{2}^{-1}$. Clearly, $\left|T_{1}\right| \geq m-1$ and $\mathbf{f}\left(\varphi\left(W_{2}\right)\right) \geq \mathbf{f}(N, m+k+1)$. It follows from Lemma 2.4, Lemma 2.5 and Lemma 2.6 that

$$
\begin{aligned}
\mathrm{f}(S) & \geq \mathrm{f}\left(\prod_{i=1}^{\frac{n}{m}-2} \sigma\left(S_{i}\right) W_{2} T_{1}\right) \geq \mathrm{f}\left(\prod_{i=1}^{\frac{n}{m}-2} \sigma\left(S_{i}\right) W_{2}\right)+\mathbf{f}\left(T_{1}\right) \\
& \geq\left(1+\mathrm{f}\left(\varphi\left(W_{2}\right)\right)\right)\left(\frac{n}{m}-2\right)+\mathbf{f}\left(\varphi\left(W_{2}\right)\right)+\mathrm{f}\left(T_{1}\right) \\
& \geq(1+\mathrm{f}(N, m+k+1))\left(\frac{n}{m}-2\right)+\mathrm{f}(N, m+k+1)+(2 m-3) \\
& \geq(k+2) n-1
\end{aligned}
$$

Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$. We say that G has Property \mathbf{B} if every minimal zero-sum sequence $S \in \mathcal{F}(G)$ of length $|S|=\mathrm{D}(G)=2 n-1$ contains some element with multiplicity $n-1$. This property was first addressed in [4], and it is conjectured that every group (of the above form) satisfies Property B. The present state of knowledge on Property \mathbf{B} is discussed in [8, Section 7]). In particular, if $n \in[4,7]$, then G has Property B. Here we need the following characterization (for a proof see [9, Theorem 5.8.7]).

Lemma 4.2. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$. Then the following statements are equivalent:

1. If $S \in \mathcal{F}(G),|S|=3 n-3$ and S has no zero-sum subsequence T of length $|T| \geq n$, then there exists some $a \in G$ such that $0^{n-1} a^{n-2} \mid S$.
2. If $S \in \mathcal{F}(G)$ is zero-sum free and $|S|=2 n-2$, then $a^{n-2} \mid S$ for some $a \in G$.
3. If $S \in \mathcal{A}(G)$ and $|S|=2 n-1$, then $a^{n-1} \mid S$ for some $a \in G$.
4. If $S \in \mathcal{A}(G)$ and $|S|=2 n-1$, then there exists a basis $\left(e_{1}, e_{2}\right)$ of G and integers $x_{1}, \ldots, x_{n} \in[0, n-1]$ with $x_{1}+\ldots+x_{n} \equiv 1 \bmod n$ such that

$$
S=e_{1}^{n-1} \prod_{\nu=1}^{n}\left(x_{\nu} e_{1}+e_{2}\right)
$$

Lemma 4.3. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$ and suppose that G satisfies Property \mathbf{B}. Let $S \in \mathcal{A}(G)$ with length $|S|=2 n-1$. If T is a subsequence of S such that $|T|=n+k$, where $1 \leq k \leq n-2$, then

$$
\mathrm{f}(T) \geq(k+2) n-1
$$

Furthermore, if W is a zero-sum free sequence over G with $|W|=2 n-3$, then

$$
\mathrm{f}(W) \geq n^{2}-n-1
$$

Proof. Let $S \in \mathcal{A}(G)$ be of length $|S|=2 n-1$. Then by Lemma 4.2, there is a basis $\left(e_{1}, e_{2}\right)$ of G such that $S=e_{1}{ }^{n-1} \prod_{i=1}^{n}\left(e_{1}+a_{i} e_{2}\right)$ with $\sum_{i=1}^{n} a_{i} \equiv 1 \bmod n$. Without loss of generality, let $S=e_{2}{ }^{n-1} \prod_{i=1}^{n}\left(e_{1}+a_{i} e_{2}\right)$ and let $V=\prod_{i=1}^{n}\left(e_{1}+a_{i} e_{2}\right)$. Then $T=e_{2}{ }^{n+k-l} \prod_{i=1}^{l}\left(e_{1}+a_{i} e_{2}\right)$, where $l \in[k+1, n]$. Let $\varphi: G \rightarrow\left\langle e_{2}\right\rangle$ be the canonical epimorphism.
Case 1: $l=n$.
Then $T=e_{2}{ }^{k} \prod_{i=1}^{n}\left(e_{1}+a_{i} e_{2}\right)=e_{2}{ }^{k} V$. Since $\sum_{i=1}^{n} a_{i} \equiv 1 \bmod n$, we have $\sigma(V)=e_{2}$. Therefore, $\left|\left\langle e_{2}\right\rangle \cap \Sigma(T)\right| \geq k+1$. Since $\sum_{i=1}^{n} a_{i} \equiv 1 \bmod n$ we infer that a_{1}, \ldots, a_{n} are not all equal to the same number modulo n. Without loss of generality, we may assume that $a_{n-1} \not \equiv a_{n} \bmod n$. So, for every $i \in[1, n-1]$ we have $\left|\left(i e_{1}+\left\langle e_{2}\right\rangle\right) \cap \Sigma(V)\right| \geq$ $\left|\left\{i e_{1}+\left(a_{1}+\ldots+a_{i-1}+a_{n-1}\right) e_{2}, i e_{1}+\left(a_{1}+\ldots+a_{i-1}+a_{n}\right) e_{2}\right\}\right|=2$. By Lemma 3.1.2, we have $\left|\left(i e_{1}+\left\langle e_{2}\right\rangle\right) \cap \Sigma(T)\right| \geq\left|\left(i e_{1}+\left\langle e_{2}\right\rangle\right) \cap \Sigma(V)+\Sigma\left(0 e_{2}^{k}\right)\right| \geq k+2$. Therefore,

$$
\begin{aligned}
|\Sigma(T)| & \geq\left|\left\langle e_{2}\right\rangle \cap \Sigma(T)\right|+\left|\left(e_{1}+\left\langle e_{2}\right\rangle\right) \cap \Sigma(T)\right|+\ldots+\left|\left((n-1) e_{1}+\left\langle e_{2}\right\rangle\right) \cap \Sigma(T)\right| \\
& \geq k+1+(k+2) \times(n-1)=(k+2) n-1 .
\end{aligned}
$$

Case 2: $\quad l \leq n-1$.
Then $k+2 \leq l+1 \leq n$. Let $S_{1}=e_{2}{ }^{n+k-l}$ and $S_{2}=\prod_{i=1}^{l}\left(e_{1}+a_{i} e_{2}\right)$. Then $\mathrm{f}\left(S_{1}\right)=n+k-l$ and $\mathrm{f}\left(\varphi\left(S_{2}\right)\right)=l$. By Lemma 2.6, we have

$$
\begin{aligned}
\mathrm{f}(T) & \geq\left(1+\mathrm{f}\left(\varphi\left(S_{2}\right)\right)\right) \mathrm{f}\left(S_{1}\right)+\mathrm{f}\left(\varphi\left(S_{2}\right)\right) \\
& =(n+k-l)(l+1)+l \\
& =(n+k-l+1)(l+1)-1 \\
& \geq(k+2) n-1 .
\end{aligned}
$$

Next, suppose that $W \in \mathcal{F}(G)$ is zero-sum free of length $|S|=2 n-3$. If $G \backslash\{0\} \subset$ $\Sigma(W)$, then $\mathrm{f}(W) \geq n^{2}-1>n^{2}-n-1$ and we are done. So, we may assume there exists $g \in G \backslash\{0\}$, such that $-g \notin \Sigma(W)$. Then $g W$ is zero-sum free, and thus, $g W(-g-\sigma(W))$ is a minimal zero-sum sequence of length $2 n-1$. It follows from the first part of this lemma that $\mathrm{f}(W) \geq n^{2}-n-1$ as desired.

Lemma 4.4. Let G be cyclic of order $|G|=p \in \mathbb{P}$ and $T \in \mathcal{F}(G \backslash\{0\})$. If $a \in G \backslash\{0\}$, then

$$
|\Sigma(T a) \backslash\{0\}| \geq \min \{p-1,1+|\Sigma(T) \backslash\{0\}|\}
$$

Proof. Let $A=\{0\} \cup(\Sigma(T) \backslash\{0\})$ and $B=\{0, a\}$. By Lemma 2.3.1, $|A+B| \geq \min \{p,|A|+$ $|B|-1\}=\min \{p, 2+|\Sigma(T) \backslash\{0\}|\}$. Therefore, $|\Sigma(T a) \backslash\{0\}|=|A+B|-1 \geq \min \{p-$ $1,1+|\Sigma(T) \backslash\{0\}|\}$.

Lemma 4.5. If $G=C_{n} \oplus C_{n}$ with $n \in[4,7]$, then $f(G, n+2)=4 n-1$.
Proof. Let $S \in \mathcal{F}(G)$ be zero-sum free of length $|S|=n+2$ with $n \in[4,7]$. As noted above G satisfies Property B. By Example 1, it suffices to show that $\mathrm{f}(S) \geq 4 n-1$. If $n=4$, then $n+2=6=\mathrm{D}\left(C_{4} \oplus C_{4}\right)-1$. By Lemma 2.1.1, $\mathrm{f}(S)=16-1=15$ as desired. If $n=5$, then $|S|=2 m-3$, and thus, the result follows immediately from Lemma 4.3.

Now suppose that $n=6$, and assume to the contrary that $\mathrm{f}(S) \leq 22$. Then, $|-\Sigma(S)|=$ $|\Sigma(S)|=\mathrm{f}(S) \leq 22$ and $|G \backslash(\{0\} \cup(-\Sigma(S)))| \geq 13$. Let $A=\left\{x_{1}, \ldots, x_{13}\right\} \subset G \backslash(\{0\} \cup$ $(-\Sigma(S)))$. Then $x_{i} S$ is zero-sum free for every $i \in[1,13]$. If there exist $i, j \in[1,13]$ such that $x_{i} x_{j} S$ is zero-sum free, then $x_{i} x_{j} S\left(-\sigma\left(x_{i} x_{j} S\right)\right)$ is a minimal zero-sum sequence. Thus, the result follows from Lemma 4.3.

Next, assume that $x_{i} x_{j} S$ is not zero-sum free for any $i, j \in[1,13]$. Since $x_{i} S, x_{j} S$ is zero-sum free, we must have $x_{i}+x_{j} \in-\Sigma(S)$. This implies $A+A \subset-\Sigma(S)$. Then

$$
|A+A| \leq|-\Sigma(S)|=|\Sigma(S)|=\mathrm{f}(S) \leq 22
$$

We set $H=\operatorname{Stab}(A+A)$. Then, by Lemma 2.3.2, we have

$$
|A+A| \geq 2|A+H|-|H|,
$$

and since H is a subgroup of G, we get $|H| \in\{36,18,12,9,6,4,3,2,1\}$.
If $|H| \in\{18,36\}$, then $|G / H| \in\{1,2\}$, and thus $H \subset(A+H)+(A+H)$. Hence, $0 \in H \subset A+H+A+H=A+A \subset-\Sigma(S)$. Therefore, $0 \in \Sigma(S)$, a contradiction.

We now assume that $|H| \in\{12,9,6,4,3,2,1\}$. Note that

$$
|A+H| \geq\left\lceil\frac{|A|}{|H|}\right\rceil|H|
$$

We have

$$
|A+A| \geq 2|A+H|-|H| \geq\left(2\left\lceil\frac{|A|}{|H|}\right\rceil-1\right)|H|>22
$$

giving a contradiction.
It remains to consider the case that $n=7$.
Let S_{1} be the maximal subsequence of S such that $\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle$ is cyclic. Then $N=$ $\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle \cong C_{7}$. Since there are exactly 8 distinct subgroups of order 7 and $|S|=9$, we must have $\mathrm{f}\left(S_{1}\right) \geq\left|S_{1}\right| \geq 2$. Let $S_{2}=S S_{1}^{-1}=b_{1} \cdot \ldots \cdot b_{w}$ and let $\varphi: G \rightarrow G / N$ be the canonical epimorphism. Then none of the terms of S_{2} is in N, and thus $\varphi\left(S_{2}\right)$ a sequence of non-zero elements in G / N. Let $q=\left|\{0\} \bigcup \sum \varphi\left(S_{2}\right)\right|$.

If $\mathrm{f}\left(S_{1}\right) \geq 3$ and $q \geq 7$, then by Lemma 2.6 we have that $\mathrm{f}(S) \geq q \mathrm{f}\left(S_{1}\right)+q-1 \geq 27$ and we are done. If $f\left(S_{1}\right) \geq 3$ and $q \leq 6$, then by Theorem $3.2,\left|S_{2}\right|+1 \leq q \leq 6$, and thus $4 \leq\left|S_{1}\right| \leq 6$. Again by Lemma 2.6, we have that $\mathrm{f}(S) \geq q f\left(S_{1}\right)+q-1 \geq$ $\left(10-\left|S_{1}\right|\right)\left(\left|S_{1}\right|+1\right)-1 \geq 27$ as desired.

Next we may assume that $\mathrm{f}\left(S_{1}\right)=2$. Choose a basis $\left(f_{1}, f_{2}\right)$ of G with $f_{2} \mid S_{1}$. Then, $S_{1}=f_{2}{ }^{2}$ and $\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle=\left\langle f_{2}\right\rangle=N$. Now

$$
S=f_{2}{ }^{2} \prod_{i=1}^{k}\left(a_{i} f_{1}+b_{i} f_{2}\right)
$$

with $a_{i} \neq 0$ for every $i \in[1, k]$, and $S_{2}=\prod_{i=1}^{7}\left(a_{i} f_{1}+b_{i} f_{2}\right)$. Let $r_{j}=\left|\Sigma(S) \cap\left(j f_{1}+N\right)\right|$ and $s_{j}=\left|\Sigma\left(S_{2}\right) \cap\left(j f_{1}+N\right)\right|$, where $j \in[0,6]$. Then

$$
\mathrm{f}(S)=\Sigma_{j=0}^{6} r_{j} .
$$

By Lemma 4.4, we have $\Sigma\left(\prod_{i=1}^{7} a_{i}\right) \cong C_{7}$, so $s_{j}=\left|\Sigma\left(S_{2}\right) \cap\left(j f_{1}+N\right)\right| \geq 1$ for every $j \in[0,6]$. By Lemma 3.1.2, $r_{j} \geq \min \left\{\operatorname{ord}\left(f_{2}\right), 2+s_{j}\right\} \geq 3$ for every $j \in[0,6]$.
Case 1: $\mathrm{h}\left(\prod_{i=1}^{7} a_{i}\right) \geq 3$.
Without loss of generality, let $a=a_{1}=a_{2}=a_{3}$. Since $\mathrm{h}(S)=2$, we may assume $b_{1} \neq b_{2}$. Then $\left|\left(a f_{1}+N\right) \cap \Sigma\left(S_{2}\right)\right| \geq 2$. By Lemma 3.1.2, $r_{a} \geq 4$.

By Lemma 4.4, we have $\left|\Sigma\left(\prod_{i=3}^{7} a_{i}\right) \backslash\{0\}\right| \geq 5$. Assume that $\left\{x_{1}, x_{2}, \ldots, x_{5}\right\} \subset$ $\Sigma\left(\prod_{i=3}^{7} a_{i}\right) \backslash\{0\}$. Then $\left|\left(\left(a+x_{j}\right) f_{1}+N\right) \cap \Sigma\left(S_{2}\right)\right| \geq 2$ for every $j \in[1,5]$. By Lemma $3.1 .2, r_{a+x_{j}} \geq 4$.

Note that $a, a+x_{1}, \ldots, a+x_{5}$ are pairwise distinct, we have $\mathrm{f}(S)=\Sigma_{j=0}^{6} r_{j} \geq 6 \times 4+3=$ 27 as desired.
Case 2: $\mathrm{h}\left(\prod_{i=1}^{7} a_{i}\right) \leq 2$.
Since $a_{i} \neq 0$ for every $i \in[1,7]$ we infer that $\mathrm{h}\left(\prod_{i=1}^{7} a_{i}\right)=2$. So, we may assume $a_{1}, a_{2}, a_{3}, a_{4}$ are pairwise distinct and $a_{1}+a_{2}=0$. Therefore, $\left(a_{1} f_{1}+b_{1} f_{2}\right)+\left(a_{2} f_{1}+b_{2} f_{2}\right)=$ $\left(b_{1}+b_{2}\right) f_{2} \in N$. By Lemma 2.3.1, we have $\Sigma\left(\prod_{i=3}^{7} a_{i}\right) \geq 6$. Let $\left\{x_{1}, x_{2}, \ldots, x_{5}, x_{6}\right\} \subset$ $\Sigma\left(\prod_{i=3}^{7} a_{i}\right)$. For every $j \in[1,6]$, by Lemma 3.1.2, $r_{x_{j}} \geq \mid \sum\left(0 S_{1}\left(\left(b_{1}+b_{2}\right) f_{2}\right)\right)+\left(x_{j} f_{1}+\right.$ $N) \cap \Sigma\left(S_{2}\right)\left|\geq 3+\left|\left(x_{j} f_{1}+N\right) \cap \Sigma\left(S_{2}\right)\right| \geq 4\right.$. Therefore $\mathrm{f}(S)=\Sigma_{j=1}^{7} r_{j} \geq 6 \times 4+3=27$.

Lemma 4.6. Let $G=C_{4} \oplus C_{8}$. Then $f(G, 9)=23$.
Proof. Assume to the contrary that $\mathrm{f}(G, 9) \neq 23$. By Example 1, there is a zero-sum free sequence $S \in \mathcal{F}(G)$ of length $|S|=9$ such that $\mathrm{f}(S)=\left|\sum(S)\right| \leq 22$. By Lemma 2.1.2, $G \backslash\left(\sum(S) \cup\{0\}\right) \subset x+H$ for some subgroup $H \subset G$ and some $x \in G \backslash H$. Therefore,

$$
22 \geq\left|\sum(S)\right| \geq|G|-1-|x+H|=31-|H|
$$

and hence, $|H| \geq 9$. Since $|H|$ divides $|G|=32$, it follows that $|H|=16$. Therefore, $G=H \cup(x+H)$. From $G \backslash\left(\sum(S) \cup\{0\}\right) \subset x+H$ we infer that

$$
H \backslash\{0\} \subset \sum(S)
$$

Hence,

$$
\left|\sum(S) \cap H\right|=15
$$

Since $\mathrm{D}(H) \leq 8+2-1=9=|S|$, we infer that there is at least one term of S is not in H. Let $y \in S$ with $y \in G \backslash H$. Let $T=S y^{-1}$. Then, $\mathfrak{f}(T) \geq \mathfrak{f}(G, 8) \geq 2 \times 8-1=15$. Note that $G=H \cup(x+H)$. We obtain that, $\left|\sum(T) \cap(x+H)\right| \geq 8$ or $\left|\sum(T) \cap H\right| \geq 8$. This together with $S=T y$ and $y \in G \backslash H$ implies $\left|\sum(S) \cap(x+H)\right| \geq 8$. Therefore, $\left|\sum(S)\right|=\left|\sum(S) \cap H\right|+\left|\sum(S) \cap(x+H)\right| \geq 15+8=23$, a contradiction.

5 Proof of Theorem 1.1.

Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}, r \geq 2, n_{r-1} \geq 3$, and we set $n=\exp (G)=n_{r}$. Let $S=a_{1} \cdot \ldots \cdot a_{n+1} \in \mathcal{F}(G)$ be a zero-sum free sequence of length $|S|=n+1$. By Example 1, we need only prove that $\mathrm{f}(S) \geq 3 n-1$. Assume to the contrary that

$$
f(S) \leq 3 n-2
$$

By Lemma 2.8, we have

$$
\begin{equation*}
\mathrm{h}(S) \geq \max \left\{2, \frac{3|S|+5}{17}\right\}=\max \left\{2, \frac{3 n+8}{17}\right\} \tag{1}
\end{equation*}
$$

Let S_{1} be a subsequence of S with maximal length such that $\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle$ is cyclic. We set $N=\left\langle\operatorname{supp}\left(S_{1}\right)\right\rangle$ and $S_{2}=S S_{1}^{-1}$. As before, we have $S=S_{1} S_{2}$, and all terms of S_{1} are in N, but none of the terms of S_{2} is in N. Clearly, $\left|S_{1}\right| \geq \mathrm{h}(S) \geq \frac{3 n+8}{17}$. Let $\varphi: G \rightarrow G / N$ denote the canonical epimorphism, and put

$$
S_{2}=b_{1} \cdot \ldots \cdot b_{w} \quad \text { and } \quad q=\left|\{0\} \cup \sum\left(\varphi\left(S_{2}\right)\right)\right| .
$$

By Theorem 3.2, there is a subsequence W_{0} of S_{2} with $\left|W_{0}\right| \leq q-1$ such that

$$
\left|\{0\} \bigcup \sum\left(\varphi\left(W_{0}\right)\right)\right|=q
$$

From (1) we have that $\left|S_{1}\right| \geq \max \left\{2, \frac{3 n+8}{17}\right\} \geq 2$. By Lemma 2.6, we can prove that $q \leq\left|S_{2}\right|$. Therefore, $\left|W_{0}\right| \leq q-1 \leq\left|S_{2}\right|-1$. It follows from Theorem 3.2 that

$$
\begin{equation*}
\operatorname{gcd}(q, n)>1 \text { and } 2 \leq q \leq \min \left\{\left|S_{2}\right|, n-2\right\} . \tag{2}
\end{equation*}
$$

Using Lemma 2.4 and Lemma 2.6, we obtain that

$$
\begin{aligned}
3 n-2 \geq \mathrm{f}(S) & \geq \mathrm{f}\left(S_{1} W_{0}\right)+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \\
& \geq q \mathrm{f}\left(S_{1}\right)+q-1+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \\
& \geq q \mathrm{f}\left(S_{1}\right)+q-1+\left|S_{2}\right|-\left|W_{0}\right| \\
& \geq q\left|S_{1}\right|+q-1+\left|S_{2}\right|-\left|W_{0}\right| \\
& \geq q\left|S_{1}\right|+\left|S_{2}\right| \\
& =(q-1)\left|S_{1}\right|+n+1 .
\end{aligned}
$$

This gives that $\left|S_{1}\right| \leq \frac{2 n-3}{q-1}$. Therefore

$$
\begin{equation*}
\frac{2 n-3}{q-1} \geq\left|S_{1}\right| \geq \frac{3 n+8}{17} \tag{3}
\end{equation*}
$$

Hence, $q \leq 12$. Next we distinguish cases according to the value of $q \in[1,12]$.
Case 1: $\quad 9 \leq q \leq 12$.
We distinguish subcases according to the value taken by n.
Subcase 1.1: $n \geq 15$.
Then $\left|S_{2} W_{0}^{-1}\right| \geq n+1-\frac{2 n-3}{q-1}-(q-1)>\frac{2 n-3}{q-1} \geq\left|S_{1}\right|$ (since $n \geq 15$). By the maximality of $\left|S_{1}\right|$, the subgroup generated by $\operatorname{supp}\left(S_{2} W_{0}^{-1}\right)$ is not cyclic. By Lemma 2.5 we have $\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq 2\left|S_{2}\right|-2\left|W_{0}\right|-1$. It follows from Lemma 2.4 and Lemma 2.6 that

$$
\begin{aligned}
\mathrm{f}(S) & \geq \mathrm{f}\left(S_{1} W_{0}\right)+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq q \mathrm{f}\left(S_{1}\right)+q-1+2\left|S_{2}\right|-2\left|W_{0}\right|-1 \\
& \geq q\left|S_{1}\right|+q-1+2\left(n+1-\left|S_{1}\right|\right)-2(q-1)-1=(q-2)\left(\left|S_{1}\right|-1\right)+2 n \\
& \geq 7\left(\frac{3 n+8}{17}-1\right)+2 n>3 n-2(\text { since } n \geq 10),
\end{aligned}
$$

a contradiction.
Subcase 1.2: $n=14$.
By (3) we obtain that $\left|S_{1}\right|=3$ and $q=9$. In a similar way to above we derive that $\left\langle\operatorname{supp}\left(S_{2} W_{0}^{-1}\right)\right\rangle$ is not cyclic and $f\left(S_{2} W_{0}^{-1}\right) \geq 2\left|S_{2}\right|-2\left|W_{0}\right|-1$, and

$$
\begin{aligned}
\mathrm{f}(S) & \geq \mathrm{f}\left(S_{1} W_{0}\right)+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq q \mathrm{f}\left(S_{1}\right)+q-1+2\left|S_{2}\right|-2\left|W_{0}\right|-1 \\
& \geq q\left|S_{1}\right|+q-1+2\left(n+1-\left|S_{1}\right|\right)-2(q-1)-1=(q-2)\left(\left|S_{1}\right|-1\right)+2 n \\
& \geq 7(3-1)+2 n \geq 3 n-1,
\end{aligned}
$$

a contradiction.
Subcase 1.3: $n \in\{11,12,13\}$.
By (3) we have that $2 \geq\left|S_{1}\right| \geq 3$, a contradiction.
Subcase 1.4: $n \leq 10$.
By (2), $q \leq n-2 \leq 8$, a contradiction.
Case 2: $q=8$.
By (2), n is even and $n \geq 10$. We distinguish subcases according to the value of n.
Subcase 2.1: $n \geq 21$.
By (3), $\left|S_{1}\right| \leq \frac{2 n-3}{7}$. Hence, $\left|S_{2} W_{0}^{-1}\right| \geq n+1-\frac{2 n-3}{7}-7>\frac{2 n-3}{7} \geq\left|S_{1}\right|($ since $n \geq 13)$. By the maximality of $\left|S_{1}\right|$ we know that the subgroup generated by $\operatorname{supp}\left(S_{2} W_{0}^{-1}\right)$ is not cyclic. By Lemma 2.5 we have $\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq 2\left|S_{2}\right|-2\left|W_{0}\right|-1$. Therefore,

$$
\begin{aligned}
3 n-2 & \geq \mathrm{f}(S) \geq \mathrm{f}\left(S_{1} W_{0}\right)+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \\
& \geq q \mathrm{f}\left(S_{1}\right)+q-1+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \\
& \geq q \mathrm{f}\left(S_{1}\right)+q-1+2\left|S_{2}\right|-2\left|W_{0}\right|-1 \\
& \geq q\left|S_{1}\right|+q-1+2\left|S_{2}\right|-2(q-1)-1 \mid \\
& =q\left|S_{1}\right|+2\left(n+1-\left|S_{1}\right|\right)-(q-1)-1=(q-2)\left|S_{1}\right|+2 n+2-q \\
& =6\left(\left|S_{1}\right|-1\right)+2 n>3 n-2(\text { since } n \geq 21),
\end{aligned}
$$

a contradiction.
Subcase 2.2: $\quad 10 \leq n \leq 20$ and $n \neq 16$.
By (3) we have that $\left|S_{1}\right| \geq \frac{3 n+8}{17}$. If $\varphi\left(b_{i}\right) \in\left\{\varphi\left(b_{1}\right),-\varphi\left(b_{1}\right)\right\}$ holds for every $i \in[2, w]$, then $\varphi\left(b_{i}\right) \in\left\langle\varphi\left(b_{1}\right)\right\rangle$ for every $i \in[1, w]$, and by Theorem 3.2 we have $8 \varphi\left(b_{1}\right)=0$. This together with $n \varphi\left(b_{1}\right)=0$ gives that $\operatorname{gcd}(8, n) \varphi\left(b_{1}\right)=0$. Therefore, $8=q=\mid\{0\} \cup$ $\sum\left(\varphi\left(S_{2}\right)\right)\left|\leq\left|\left\langle\varphi\left(b_{1}\right)\right\rangle\right| \leq \operatorname{gcd}(8, n)<8\right.$, a contradiction. Thus, $\varphi\left(b_{i}\right) \notin\left\{\varphi\left(b_{1}\right),-\varphi\left(b_{1}\right)\right\}$ for some $i \in[2, w]$. By Theorem 3.2, we can take W_{0} such that $\left|W_{0}\right| \leq q-2$ and $\{0\} \cup \sum\left(\varphi\left(W_{0}\right)\right)=\{0\} \cup \sum\left(\varphi\left(S_{2}\right)\right)$. As above, we derive that $\left\langle\operatorname{supp}\left(S_{2} W_{0}^{-1}\right)\right\rangle$ is not cyclic and $\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq 2\left|S_{2}\right|-2\left|W_{0}\right|-1$. Then

$$
\begin{aligned}
\mathrm{f}(S) & \geq \mathrm{f}\left(S_{1} W_{0}\right)+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq q \mathrm{f}\left(S_{1}\right)+q-1+2\left|S_{2}\right|-2\left|W_{0}\right|-1 \\
& \geq q\left|S_{1}\right|+q-1+2\left(n+1-\left|S_{1}\right|\right)-2(q-2)-1=(q-2)\left(\left|S_{1}\right|-1\right)+2 n+2 \\
& \geq 6\left(\frac{3 n+8}{17}-1\right)+2 n+2 \geq 3 n-1
\end{aligned}
$$

a contradiction.
Subcase 2.3: $n=16$.
By (3) we have that $\left|S_{1}\right|=4$. As above, we can take W_{0} such that $\left|W_{0}\right| \leq q-1$, and derive that $\left\langle\operatorname{supp}\left(S_{2} W_{0}^{-1}\right)\right\rangle$ is not cyclic and thus, $f\left(S_{2} W_{0}^{-1}\right) \geq 2\left|S_{2}\right|-2\left|W_{0}\right|-1$. Therefore,

$$
\begin{aligned}
\mathrm{f}(S) & \geq \mathrm{f}\left(S_{1} W_{0}\right)+\mathrm{f}\left(S_{2} W_{0}^{-1}\right) \geq q \mathrm{f}\left(S_{1}\right)+q-1+2\left|S_{2}\right|-2\left|W_{0}\right|-1 \\
& \geq q\left|S_{1}\right|+q-1+2\left(n+1-\left|S_{1}\right|\right)-2(q-1)-1=(q-2)\left(\left|S_{1}\right|-1\right)+2 n \\
& \geq 6(4-1)+2 n \geq 3 n-1
\end{aligned}
$$

a contradiction.
Case 3: $\quad q \leq 7$.
So, we must have that for every subsequence W of S_{2},

$$
\begin{equation*}
\left|\{0\} \bigcup \sum \varphi(W)\right| \leq q \leq 7 \tag{4}
\end{equation*}
$$

By Theorem 3.2, there is a subsequence U of S_{2} with $|U| \geq\left|S_{2}\right|-q+1$ such that

$$
\begin{equation*}
|\langle\varphi(U)\rangle| \mid q . \tag{5}
\end{equation*}
$$

Let $K=\left\langle\operatorname{supp}\left(S_{1} U\right)\right\rangle$. It follows from (5) that

$$
\begin{equation*}
|K|=|N||\langle\varphi(U)\rangle||q| N \mid . \tag{6}
\end{equation*}
$$

As before, write $S=T_{1} T_{2}$ where all terms of T_{1} are in K, but none of the terms of T_{2} is in K. Then $\left\langle\operatorname{supp}\left(T_{1}\right)\right\rangle=\left\langle\operatorname{supp}\left(S_{1} U\right)\right\rangle=K$, and $\left|T_{1}\right| \geq\left|S_{1} U\right| \geq n+2-q$. Therefore,

$$
\begin{equation*}
\left|T_{1}\right| \geq n+2-q \geq n-5 \tag{7}
\end{equation*}
$$

Let $\psi: G \rightarrow G / K$ be the canonical epimorphism and let $T_{2}=c_{1} \cdot \ldots \cdot c_{t_{2}}$.

We distinguish two subcases.
Subcase 3.1: $\quad\left|T_{2}\right|=0$.
Then

$$
K=\left\langle\operatorname{supp}\left(S_{1} U\right)\right\rangle=\langle\operatorname{supp}(S)\rangle
$$

Set $\ell=\exp (K)$. Then $|N||\ell| n$. Let $K=C_{\ell} \oplus R$ where R is a finite abelian group with $\exp (R) \mid \ell$. By (6) we have

$$
|R| \mid q
$$

Assume to the contrary, that R is not cyclic. Since $|R| \mid q \leq 7$, we must have $R=C_{2}^{2}$ and $K=C_{\ell} \oplus C_{2} \oplus C_{2}$. From $\mathrm{D}(K)=\ell+2 \geq n+1$ we infer that $\ell=n$. Hence, $\mathrm{D}(K)=n+2$. By Lemma 2.1.1, $\mathrm{f}(S)=|K|-1=4 n-1>3 n-1$, a contradiction.

Therefore, R is cyclic. If $n=q$, since $\left|S_{1}\right| \geq 2$, by Lemma 2.6 we have that $\mathrm{f}(S) \geq$ $q\left|S_{1}\right|+q-1 \geq 3 q-1=3 n-1$, a contradiction. Therefore, $n=f q$ for some $f \geq 2$.

Since $n+1 \leq \mathrm{D}(K)-1=\ell+|R|-2,|R|| | q|, \ell| n$ and $n \geq 2 q$, we infer that $\ell=n$ and $|R| \geq 3$. If $|R|<q$, then we must have $|R|=3$. It follows from Lemma 2.1.1 that $\mathrm{f}(S)=|K|-1=3 n-1$, a contradiction. Therefore, $|R|=q \geq 4$ and $K=C_{n} \oplus C_{q}$. By Lemma 4.5 and Lemma 4.1, we have that $n \in\{q, 2 q\}$, and therefore, $n=2 q$. We distinguish subcases according to the value $q \leq 7$.
Subcase 3.1.1: $q \in\{5,6,7\}$.
By (3), $\left|S_{1}\right| \in\{3,4\}$. Since $\left|S_{2}\right|=|S|-\left|S_{1}\right| \geq 2 q+1-4 \geq q>\left|S_{1}\right|$, $\left\langle\operatorname{supp}\left(S_{2}\right)\right\rangle$ is not cyclic. By Lemma 2.5, we have $\left|\Sigma\left(S_{2}\right)\right| \geq 2\left|S_{2}\right|-1$.

From $|N|\left|n,|K|=n q\right.$ and (6), we obtain that $N \cong C_{n}$ and $K / N \cong C_{q}$. Let $K=$ $\left(g_{0}+N\right) \cup \ldots \cup\left(g_{q-1}+N\right)$ be the decomposition of cosets of N, where $g_{i} \in K$ and $g_{0} \in N$. Let $r_{i}=\left|\left(g_{i}+N\right) \cap \Sigma\left(S_{2}\right)\right|$ and $s_{i}=\left|\left(g_{i}+N\right) \cap \Sigma(S)\right|$. Then $\left|\Sigma\left(S_{2}\right)\right|=\Sigma_{i=0}^{q-1} r_{i}$ and $|\Sigma(S)|=\Sigma_{i=0}^{q-1} s_{i}$. Since $\Sigma\left(\varphi\left(S_{2}\right)\right)=G / N \cong C_{q}$, we have $r_{i} \geq 1$.
Subcase 3.1.1.1: $\quad\left|S_{1}\right|=4$.
If $\mathrm{f}\left(S_{1}\right) \geq 5$, then by Lemma $2.6, \mathrm{f}(S) \geq 5 q+q-1=6 q-1=3 n-1$, and we are done. So we may assume $S_{1}=h^{4}$, where $\operatorname{ord}(h)=|N|=2 q$. By Lemma 3.1.2, $s_{i} \geq \min \left\{2 q, r_{i}+4\right\} \geq 5$ for every $i \in[0, q-1]$. If $r_{i}+4 \geq 2 q$ for some $i \in[0, q-1]$, then

$$
|\Sigma(S)|=\Sigma_{i=0}^{q-1} s_{i} \geq 2 q+5(q-1)=7 q-5 \geq 6 q-1=3 n-1
$$

a contradiction. Next, we may assume $r_{i}+4<2 q$ for all $i \in[0, q-1]$. We have

$$
\begin{aligned}
|\Sigma(S)| & =\Sigma_{i=0}^{q-1} s_{i} \geq \Sigma_{i=0}^{q-1}\left(r_{i}+4\right)=\left|\Sigma\left(S_{2}\right)\right|+4 q \geq 2\left|S_{2}\right|-1+4 q \\
& =2(2 q+1-4)-1+4 q=8 q-7 \geq 6 q-1
\end{aligned}
$$

a contradiction again.
Subcase 3.1.1.2: $\left|S_{1}\right|=3$.
Since $\mathrm{h}(S) \geq\left\lceil\frac{3 n+8}{17}\right\rceil \geq 3$, we may assume that $S_{1}=h^{3}$, where $\operatorname{ord}(h)=2 q$. By Lemma 3.1.2, $s_{i} \geq \min \left\{2 q, r_{i}+3\right\} \geq 4$ for every $i \in[0, q-1]$.

If $r_{i}+3>2 q$ holds for at least two distinct indices $i \in[0, q-1]$, then

$$
|\Sigma(S)|=\Sigma_{i=0}^{q-1} s_{i} \geq 2 q+2 q+4(q-2)=8 q-8 \geq 6 q-1
$$

a contradiction. If $r_{i}+3 \leq 2 q$ for every $i \in[0, q-1]$, we have

$$
\begin{aligned}
|\Sigma(S)| & =\Sigma_{i=0}^{q-1} s_{i} \geq \Sigma_{i=0}^{q-1}\left(r_{i}+3\right)=\left|\Sigma\left(S_{2}\right)\right|+3 q \geq 2\left|S_{2}\right|-1+3 q \\
& =2(2 q+1-3)-1+3 q=7 q-5 \geq 6 q-1
\end{aligned}
$$

a contradiction. So we may assume that $r_{i}+3>2 q$ holds exactly for one $i \in[0, q-1]$.
If $\varphi\left(b_{i}\right) \in\left\{\varphi\left(b_{1}\right),-\varphi\left(b_{1}\right)\right\}$ for every $i \in[1,2 q-2]$. We may assume that $\varphi\left(b_{1}\right)=\ldots=$ $\varphi\left(b_{t}\right)$ and $\varphi\left(b_{t+1}\right)=\ldots=\varphi\left(b_{2 q-2}\right)=-\varphi\left(b_{1}\right)$. Since $\mathrm{v}_{g}\left(S_{2}\right) \leq 3$, and $q-1 \geq 4$, we may assume $b_{1} \neq b_{2}$. Next, we show that

$$
\begin{equation*}
\left|(b+N) \cap \Sigma\left(S_{2}\right)\right| \geq 2 \tag{8}
\end{equation*}
$$

holds for every $b \in\left\{g_{0}, g_{1}, \ldots, g_{q-1}\right\}$.
Note that $\operatorname{ord}\left(\varphi\left(b_{1}\right)\right)=q$, we have that $N, b_{1}+N, \ldots,(q-1) b_{1}+N$ are pairwise disjoint. Therefore, $b+N=j b_{1}+N=(q-j)\left(-b_{1}\right)+N$ for some $j \in[1, q]$. We may assume that $t \geq q-1$. If $1 \leq j \leq q-2$, then $\left\{b_{3}+\ldots+b_{3+j-1}+b_{1}, b_{3}+\ldots+b_{3+j-1}+b_{2}\right\} \subset$ $\left(j b_{1}+N\right) \cap \Sigma\left(S_{2}\right)=(b+N) \cap \Sigma\left(S_{2}\right)$. Hence, $\left|(b+N) \cap \Sigma\left(S_{2}\right)\right| \geq 2$. If $j=q-1$ and $t \geq q$ then $\left|\Sigma\left(S_{2}\right)\right|=\left|(b+N) \cap \Sigma\left(S_{2}\right)\right| \geq\left|\left\{b_{3}+\ldots+b_{q}+b_{1}, b_{3}+\ldots+b_{q}+b_{2}\right\}\right|=2$. If $j=q-1$ and $t=q-1$ then $\varphi\left(b_{q}\right)=\ldots=\varphi\left(b_{2 q}\right)=-\varphi\left(b_{1}\right)$. Since $q-1 \geq 4$ we may assume that $b_{q} \neq b_{q+1}$. We now have $\left|(b+N) \cap \Sigma\left(S_{2}\right)\right| \geq\left|\left\{b_{q}, b_{q+1}\right\}\right|=2$ as desired. Next, assume that $j=q$. If $t \geq q+1$, then as above we can prove that $\left|(b+N) \cap \Sigma\left(S_{2}\right)\right| \geq 2$. Otherwise, $t \leq q$ and $\varphi\left(b_{q+1}\right)=-\varphi\left(b_{1}\right)$. Thus, we have that $\left|(b+N) \cap \Sigma\left(S_{2}\right)\right| \geq\left|\left\{b_{q+1}+b_{1}, b_{q+1}+b_{2}\right\}\right|=2$. This proves (8). Therefore

$$
|\Sigma(S)|=\Sigma_{i=0}^{q-1} s_{i} \geq(2+3)(q-1)+2 q=7 q-5 \geq 6 q-1
$$

a contradiction.
Next, we may assume $\varphi\left(b_{j}\right) \notin\left\{\varphi\left(b_{1}\right),-\varphi\left(b_{1}\right)\right\}$ for some $j \in[1,2 q-2]$. Then we can choose a subsequence W_{0} of S_{2} with $\left|W_{0}\right| \leq q-2$ such that $\left|\{0\} \cup \sum\left(\varphi\left(W_{0}\right)\right)\right|=q$, so $\Sigma\left(W_{0}\right) \cap\left(g_{i}+N\right) \neq \emptyset$ for every $i \in[1, q-1]$. Since $\left|S_{2} W_{0}^{-1}\right| \geq q=|\varphi(G)|, S_{2} W_{0}^{-1}$ has a nontrivial subsequence W_{1} with $\sigma\left(W_{1}\right) \in N=\operatorname{Ker}(\varphi)$. Thus, $r_{i} \geq 2$ for every $i \in[1, q-1]$, and therefore,

$$
|\Sigma(S)|=\sum_{i=0}^{q-2} s_{i} \geq 4+(2+3)(q-2)+2 q=7 q-6 \geq 6 q-1,
$$

a contradiction.
Subcase 3.1.2: $\quad q=4$.
Then S is a zero-sum free sequence of length 9 in $K \cong C_{4} \oplus C_{8}$, a contradiction to Lemma 4.6.
Subcase 3.2: $\quad\left|T_{2}\right| \geq 1$.
If $\varphi\left(b_{i}\right) \in\left\{\varphi\left(b_{1}\right),-\varphi\left(b_{1}\right)\right\}$ for every $i \in[1, w]$, then we can take $U=S_{2}$, and this reduces to Subcase 3.1. Next, assume that $\varphi\left(b_{i}\right) \notin\left\{\varphi\left(b_{1}\right),-\varphi\left(b_{1}\right)\right\}$ for some $i \in[1, w]$. By Theorem 3.2, we can choose W_{0} such that $\left|W_{0}\right| \leq q-2$, so $\left|T_{1}\right| \geq n+3-q$.

We first assume that $n \geq 3 q-9$. By the maximality of S_{1}, we know that K is not cyclic. By Lemma 2.5, $\mathrm{f}\left(T_{1}\right) \geq 2\left|T_{1}\right|-1$. It follows from Lemma 2.6 and Lemma 2.4 that
$\mathrm{f}(S) \geq 2 \mathrm{f}\left(T_{1}\right)+1+\left|T_{2}\right|-1 \geq 4\left|T_{1}\right|-2+\left|T_{2}\right|=3\left|T_{1}\right|+n-1 \geq 3(n+3-q)+n-1 \geq 3 n-1$ (since $n \geq 3 q-9$), giving a contradiction.

Next, we assume that $n \leq 3 q-10$. It follows from (2) that

$$
\begin{equation*}
q+2 \leq n \leq 3 q-10 \tag{9}
\end{equation*}
$$

Thus, $q \geq 6$. Hence, $q \in\{6,7\}$. Let

$$
\lambda=\left|\{0\} \cup \sum\left(\psi\left(T_{2}\right)\right)\right| .
$$

By Theorem 3.2, there is a subsequence X of T_{2} with $|X| \leq \lambda-1$ such that

$$
\left|\{0\} \bigcup \sum(\psi(X))\right|=\lambda .
$$

We next distinguish subcases according to the possible value of $q \in\{6,7\}$.
Subcase 3.2.1: $\quad q=6$.
From (9), we obtain that $n=8$. By Lemma 2.6, we obtain that $q\left|S_{1}\right|+q-1 \leq$ $3 \times 8-2$. This gives that $\left|S_{1}\right| \leq 2$, so $\left|S_{1}\right|=2$. Again, by Lemma 2.6, we obtain that $\lambda f\left(T_{1}\right)+\lambda-1 \leq 22$. By Lemma 2.5, $f\left(T_{1}\right) \geq 2\left|T_{1}\right|-1$. Since $\lambda \geq 2,4\left|T_{1}\right|-1 \leq 22$, and thus $\left|T_{1}\right| \leq 5$. Note that $\left|T_{1}\right| \geq n+3-q=5$. We have $\left|T_{1}\right|=5$ and $\lambda=2$. Therefore, $|X|=1$. By Lemma 2.6 and Lemma 2.4, we obtain that $\mathrm{f}(S) \geq 2 \mathrm{f}\left(T_{1}\right)+1+\mathrm{f}\left(T_{2} X^{-1}\right)$. Since $\left|T_{2} X^{-1}\right|=3$ and $\left|S_{1}\right|=2$, by the maximality of S_{1} we infer that no element could occur more than two times in $T_{2} X^{-1}$. It now follows from Lemma 2.7 and Lemma 2.4 that $\mathrm{f}\left(T_{2} X^{-1}\right) \geq 4$. Therefore, $\mathrm{f}(S) \geq 2 \mathrm{f}\left(T_{1}\right)+1+\mathrm{f}\left(T_{2} X^{-1}\right) \geq 4\left|T_{1}\right|-1+4=23=3 n-1$, giving a contradiction.
Subcase 3.2.2: $\quad q=7$.
From (9), we obtain that $n \in\{9,10,11\}$. So, we have $\operatorname{gcd}(q, n)=1$, giving a contradiction to (2). In all cases, we are able to find a contradiction. Therefore, we must have $\mathrm{f}(S) \geq 3 n-1$, so $\mathrm{f}(G, n+1)=3 n-1$ as desired.

6 On $\Sigma_{|G|}(S)$ and proof of Corollary 1.2.

We briefly point out the relationship between the invariants $\mathrm{f}(G, k)$ and the study of $\left|\Sigma_{|G|}(S)\right|$ for suitable $S \in \mathcal{F}(G)$. To do so we need the following result, conjectured in [1] and proved by W. Gao and I. Leader in [6].

Theorem A. Let $S \in \mathcal{F}(G)$ be a sequence. If $0 \notin \Sigma_{|G|}(S)$, then there is a zero-sumfree sequence $T \in \mathcal{F}(G)$ of length $|T|=|S|-|G|+1$ such that $\left|\Sigma_{|G|}(S)\right| \geq|\Sigma(T)|$.

Note that for $S=0^{|G|-1} T$, where $T \in \mathcal{F}(G)$ is zero-sum free, we have $\left|\Sigma_{|G|}(S)\right|=$ $|\Sigma(T)|$. Thus for every $k \in[1, \mathrm{D}(G)-1]$ we have

$$
\begin{aligned}
& \min \left\{\Sigma_{|G|}(S)\left|S \in \mathcal{F}(G),|G|+k-1,0 \notin \Sigma_{|G|}(S)\right\}=\right. \\
& \min \{|\Sigma(T)| \mid T \in \mathcal{F}(G) \text { is zero-sum free of length }|T|=k\}=\mathrm{f}(G, k)
\end{aligned}
$$

Now we are in a position to prove Corollary 1.2.

Proof of Proposition 1.2. Let $\exp (G)=n$ and let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=|G|+n$. Suppose that $0 \notin \Sigma_{|G|}(S)$. Then [9, Theorem 5.8.3]) implies that G is neither cyclic nor congruent to $C_{2} \oplus C_{n}$. Thus it follows that $n+1 \leq \mathrm{D}(G)-1$. Therefore the above considerations (applied with $k=n+1$) show that $\left|\Sigma_{|G|}(S)\right| \geq \mathrm{f}(G, n+1)$, and by Theorem 1.1 we have $\mathrm{f}(G, n+1) \geq 3 n-1$.

We recall a conjecture by B. Bollobás and I. Leader, stated in [1].
Conjecture 6.1. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$ and let $\left(e_{1}, e_{2}\right)$ be a basis of G. If $k \in[0, n-2]$ and $S=e_{1}^{n-1} e_{2}^{k+1} \in \mathcal{F}(G)$, then $\mathrm{f}(G, n+k)=\mathrm{f}(S)$.

If S is as above, then clearly $\mathrm{f}(S)=(k+2) n-1$. Thus [16], Theorem 1.1 and Lemma 4.3 imply that conjecture for $k \in\{0,1, n-2\}$. We generalize this conjecture as follows (see Example 1).

Conjecture 6.2. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $r \geq 2$ and $1<n_{1}|\ldots| n_{r}$. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for all $i \in[1, r], k \in\left[0, n_{r-1}-2\right]$ and

$$
S=e_{r}^{n_{r}-1} e_{r-1}^{k+1} \in \mathcal{F}(G)
$$

Then we have $\mathrm{f}\left(G, n_{r}+k\right)=\mathrm{f}(S)=(k+2) n_{r}-1$.

ACKNOWLEDGMENTS.

The authors would like to thank the referee for very useful suggestion. We would like to express our thanks to Dr. Fang Chen for pointing out Lemma 2.5 to us. This paper was completed when the first author visited the Fields Institute. He would like to thank the host Institution for the hospitality. This work was supported in part by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, the National Science Foundation of China, the funds of Fields Institute and a discovery grant from NSERC in Canada.

References

[1] B. Bollobás and I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999), 27 - 35.
[2] R.B. Eggleton and P. Erdős, Two combinatorial problems in group theory, Acta Arith. 21 (1972), 111 - 116.
[3] W. Gao, Addition theorems for finite abelian groups, J. Number Theory 53 (1995), $241-246$.
[4] W. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period. Math. Hung. 38 (1999), 179 - 211.
[5] __, Zero-sum problems in finite abelian groups: a survey, Expo. Math. 24 (2006), 337 - 369.
[6] W. Gao and I. Leader, Sums and k-sums in abelian groups of order k, J. Number Theory 120 (2006), 26 - 32.
[7] W. Gao, Y. Li, J. Peng, and F. Sun, Subsums of a zero-sum free subset of an abelian group, Electron. J. Combin. 15 (2008), R116.
[8] A. Geroldinger, Additive group theory and non-unique factorizations, to appear in Advanced Courses in Mathematics CRM Barcelona.
[9] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, 700p, vol. 278, Chapman \& Hall/CRC, 2006.
[10] D.J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sums, Integers 5(2) (2005), Paper A07, 11p.
[11] D.J. Grynkiewicz, E. Marchan, and O. Ordaz, Representation of finite abelian group elements by subsequence sums, manuscript.
[12] Y.O. Hamidoune, Subsequence sums, Comb. Probab. Comput. 12 (2003), 413 - 425.
[13] Y.O. Hamidoune, O. Ordaz, and A. Ortuño, On a combinatorial theorem of Erdős, Ginzburg and Ziv, Comb. Probab. Comput. 7 (1998), 403 - 412.
[14] J.E. Olson, On a combinatorial problem of Erdős, Ginzburg and Ziv, J. Number Theory 8 (1976), $52-57$.
[15] J.E. Olson and E.T. White, Sums from a sequence of group elements, Number Theory and Algebra (H. Zassenhaus, ed.), Academic Press, 1977, pp. 215 - 222.
[16] Fang Sun, On subsequence sums of a zero-sumfree sequence, Electron. J. Comb. 14 (2007), R52.

