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Abstract

We describe the structure of those graphs that have largest spectral radius in

the class of all connected graphs with a given degree sequence. We show that in

such a graph the degree sequence is non-increasing with respect to an ordering of

the vertices induced by breadth-first search. For trees the resulting structure is

uniquely determined up to isomorphism. We also show that the largest spectral

radius in such classes of trees is strictly monotone with respect to majorization.
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1 Introduction

Let G(V, E) be a simple finite undirected graph with vertex set V (G) and edge set E(G).
The eigenvalue of G are the eigenvalues of the adjacency matrix A(G). The spectral
radius of G is the largest eigenvalue of A(G), also called the index of the graph. When G
is connected, A(G) is irreducible and by the Perron-Frobenius Theorem (see e.g. [8]) the
largest eigenvalue λ(G) of G is simple and there is a unique positive unit eigenvector. We
refer to such an eigenvector f as the Perron vector of G.

There exists a vast literature that provides upper and lower bounds on the largest
eigenvalue of G given some information about the graph, for previous results see [5].
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Many recent results use the maximum, minimum or average degrees, e.g., [10, 13]. Some
new results are based on the entire degree sequence, e.g., [15].

The goal of this article is slightly shifted. We want to characterize connected graphs G
that have greatest spectral radius in the class of all graphs with a given degree sequence.
We show that in such a graph the degree sequence is non-increasing with respect to an
ordering of the vertices induced by breadth-first search. (Recently similar results have
been shown for the special cases of caterpillars [16] and cycles with spikes [1].) We also
show that the greatest maximum eigenvalue in such classes of trees is strictly monotone
with respect to some partial ordering of degree sequences. The results are related to the
(partly open) problem of finding connected graphs of maximal spectral radius with given
number of vertices and edges (but arbitrary degree sequences). Brualdi and Solheid [4]
have shown that such graphs have stepwise adjacency matrix. We refer the reader to [6,
Sect. 3.5] for details and further discussion of this and related problems.

The paper is organized as follows: The results of this paper are stated in Section 2. In
Section 3 we prove these theorems by means of a technique of rearranging graphs which
has been developed in [2] for the problem of minimizing the first Dirichlet eigenvalue
within a class of trees. Indeed, we will discuss the close relationship between this problem
and the problem of finding trees with greatest maximum eigenvalue in Section 4.

2 Degree Sequences and Largest Eigenvalue

Let d(v) denote the degree of vertex v. We call a vertex v with d(v) = 1 a pendant vertex
of the graph (and leaf in case of a tree). In the following n denotes the total number
of vertices, i.e., n = |V |. A sequence π = (d0, . . . , dn−1) of nonnegative integers is called
degree sequence if there exists a graph G with n vertices for which d0, . . . , dn−1 are the
degrees of its vertices, see Melnikov et al. [11] for relevant information. In the entire
article we enumerate the degrees in non-increasing order.

We introduce the following class for which we can provide optimal results for the
greatest maximum eigenvalue.

Cπ = {G is a connected graph with degree sequence π} .

For the characterization of graphs that have greatest maximum eigenvalue among all
graphs in Cπ we introduce an ordering of the vertices v0, . . . , vn−1 of a graph by means of
breadth-first search: Select a vertex v0 ∈ G and create a sorted list of vertices beginning
with v0; append all neighbors v1, . . . , vd(v0) of v0 sorted by decreasing degrees; then append
all neighbors of v1 that are not already in this list; continue recursively with v2, v3, . . .
until all vertices of G are processed. In this way we build layers where each vertex v in
layer i has distance i from root v0 which we call its height h(v) = dist(v, v0). Moreover, v
is adjacent to some vertices w in layer i− 1. We call the least one (in the above breadth-
first search) the parent of v and v a child of w. Notice that one can draw these layers on
circles. Hence we call such an ordering spiral like ordering, see [12].
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Definition 1 (BFD-ordering). Let G(V, E) be a connected graph with root v0. Then
a well-ordering ≺ of the vertices is called breadth-first search ordering with decreasing
degrees (BFD-ordering for short) if the following holds for all vertices v, w ∈ V :

(B1) if w1 ≺ w2 then v1 ≺ v2 for all children v1 of w1 and v2 of w2, resp.;

(B2) if v ≺ u, then d(v) ≥ d(u).

We call a connected graph that has a BFD-ordering of its vertices a BFD-graph.

Every graph has for each of its vertices v an ordering with root v that satisfies (B1).
This can be found by a breadth-first search as described above. However, not all graphs
have an ordering that satisfies (B2); consider the complete bipartite graph K2,3.

Theorem 1. Let G have greatest maximum eigenvalue in class Cπ. Then there exists
a BFD-ordering of V (G) that is consistent with its Perron vector f in such a way that
f(u) > f(v) implies u ≺ v and hence d(u) ≥ d(v).

It is important to note that this condition is not sufficient in general. Let π =
(4, 4, 3, 3, 2, 1, 1), then there exist two BFD-graphs but only one has greatest maximum
eigenvalue, see Figure 1.

0

1 2 3 4

5 6

0

1 2 3 4

5 6

Figure 1: Two BFD-graphs with degree sequence π = (4, 4, 3, 3, 2, 1, 1) that satisfy the
conditions of Theorem 1.
l.h.s.: λ = 3.0918, f = (0.5291, 0.5291, 0.3823, 0.3823, 0.3423, 0.1236, 0.1236),
r.h.s.: λ = 3.1732, f = (0.5068, 0.5023, 0.4643, 0.4643, 0.1773, 0.1583, 0.0559)

Trees are of special interest. Hence we are looking at the class Tπ of all trees with
given sequence π. Notice that sequences π = (d0, . . . , dn−1) is a degree sequence of a tree
if and only if every di > 0 and

∑n−1
i=0 di = 2 (n − 1), see [7]. In this class there is a single

graph with BFD-ordering, see Figure 2.

Theorem 2. A tree G with degree sequence π has greatest maximum eigenvalue in class
Tπ if and only if it is a BFD-tree. G is then uniquely determined up to isomorphism. The
BFD-ordering is consistent with the Perron vector f of G in such a way that f(u) > f(v)
implies u ≺ v.

For a tree with degree sequence π a sharp upper bound on the largest eigenvalue can
be found by computing the corresponding BFD-tree. Obviously finding this tree can be
done in O(n) time if the degree sequence is sorted.
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Figure 2: A BFD-tree with degree sequence π = (42, 34, 23, 110)

We define a partial ordering on degree sequences as follows: for two sequences π =
(d0, . . . , dn−1) and π′ = (d′

0, . . . , d
′
n−1), π 6= π′, we write π C π′ if and only if

∑j

i=0 di ≤
∑j

i=0 d′
i for all j = 0, . . . n− 1 (recall that the degree sequences are non-increasing). Such

an ordering is sometimes called majorization.

Theorem 3. Let π and π′ two distinct degree sequences of trees with π C π ′. Let G
and G′ be trees with greatest maximum eigenvalues in classes Cπ and Cπ′ , resp. Then
λ(G) < λ(G′).

We get the following well-known result as an immediate corollary.

Corollary 4. A tree G has greatest maximum eigenvalue in the class of all trees with
n vertices and k leaves if and only if it is a star with paths of almost the same lengths
attached to each of its k leaves.

Proof. The tree sequence π∗ = (k, 2, . . . , 2, 1, . . . , 1) is maximal the class of trees with k
pendant vertices w.r.t. ordering C. Thus the statement immediately follows from Theo-
rems 2 and 3.

3 Proof of the Theorems

We recall that λ(G) denotes the maximum eigenvalue of G. Let Nf(v) =
∑

uv∈E f(u).
Thus the adjacency matrix A(G) can be defined by (Af)(v) = Nf (v). The Rayleigh
quotient of the adjacency matrix A(G) on vectors f on V is the fraction

RG(f) =
〈Af, f〉
〈f, f〉 =

∑

v∈V f(v)
∑

uv∈E f(u)
∑

v∈V f(v)2
=

2
∑

uv∈E f(u)f(v)
∑

v∈V f(v)2
. (1)

By the Rayleigh-Ritz Theorem we find the following well-known property for the spectral
radius of G.

Proposition 1 ([8]). Let S denote the set of unit vectors on V . Then

λ(G) = max
f∈S

RG(f) = 2 max
f∈S

∑

uv∈E

f(u)f(v) .

Moreover, if RG(f) = λ(G) for a (positive) function f ∈ S, then f is an eigenvector
corresponding to the largest eigenvalue λ(G) of A(G), i.e., it is a Perron vector.
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The following technical lemma will be useful.

Lemma 2. Let f be the Perron vector of a connected graph G. Then f(u) ≥ f(v) if and
only if Nf (u) ≥ Nf (v) . Moreover, for each edge uv ∈ E where v is a pendant vertex and
u is not, λ(G) = f(u)/f(v) and f(u) > f(v).

Proof. The first statement immediately follows from the positivity of the Perron vector
and the fact that f(v) = Nf(v)/λ. For the second statement notice that the largest
eigenvalue of a path with one interior vertex is

√
2. Thus the result follows by the well-

known fact that λ(H) ≤ λ(G) for a connected subgraph H of G.

The main techniques for proving our theorems is rearranging of edges. We need two
standard types of rearrangement steps that we call switching and shifting, respectively, in
the following.

Lemma 3 (Switching [9, 14]). Let G(V, E) be a graph in class Cπ with some edges v1u1

and v2u2. Assume that v1v2, u1u2 /∈ E. Then we get a new graph G′(V, E ′) with the
same degree sequence π by replacing v1u1 and v2u2 with edges v1v2 and u1u2 ( switching).
Let f is a Perron vector of G then we find λ(G′) ≥ λ(G), whenever f(v1) ≥ f(u2) and
f(v2) ≥ f(u1). The inequality is strict if and only if at least one of these two inequalities
is strict.

Proof. By removing and inserting edges we obtain

RG′(f) −RG(f) = 〈A(G′)f, f〉 − 〈A(G)f, f〉

= 2





∑

xy∈E′\E

f(x)f(y) −
∑

uv∈E\E′

f(u)f(v)





= 2 (f(v1)f(v2) + f(u1)f(u2) − f(v1)f(u1) + f(v2)f(u2))

= 2 (f(v1) − f(u2)) · (f(v2) − f(u1))

≥ 0 ,

and hence λ(G′) ≥ RG′(f) ≥ RG(f) = λ(G) by Proposition 1. Moreover, λ(G′) = λ(G)
if and only if f is also an eigenvector corresponding to λ(G′) on G′ and hence

λ(G)f(v1) = (A(G)f)(v1) = f(u1) +
∑

wv1∈E∩E′

f(w)

= λ(G′)f(v1) = (A(G′)f)(v1) = f(v2) +
∑

wv1∈E∩E′

f(w)

and hence f(u1) = f(v2). Analogously we find f(v1) = f(u2).

Lemma 4 (Shifting [1, 2]). Let G(V, E) be a graph in class Cπ, and let uv1 ∈ E and
uv2 /∈ E. Then we get a new graph G′(V, E ′) by replacing edge uv1 by the edge uv2

( shifting). Let f is a Perron vector of G then we find λ(G′) > λ(G), whenever f(v2) ≥
f(v1).
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Proof. Analogously to the proof of Lemma 3 we find λ(G′) ≥ RG′(f) ≥ RG(f) = λ(G).
If equality holded then f would also be a Perron vector of G′ and thus λ(G′)f(v2) =
∑

xv2∈E f(x) +
∑

yv∈E′\E f(y) >
∑

xv2∈E f(x) = λ(G)f(v2), a contradiction.

Lemma 5. Let f be the Perron vector of a graph G in Cπ. Let u and v be two vertices
with d(u) > d(v). If f(u) < f(v) then G cannot have greatest maximum eigenvalue in Cπ.

Proof. Let d(u) − d(v) = c > 0 and assume f(u) < f(v). Then there are (at least) c
neighbors wk of u that are not adjacent to v. When we replace these edges w1u, . . . , wcu
by the edges w1v, . . . , wcv we get a new graph G′ with the same degree sequence π. The
neighbors c can be chosen such that G′ remains connected, since either u and v have a
common neighbor or are adjacent, or we can select any of the neighbors of u. By Lemma 4
we then have λ(G′) > λ(G) and the statement follows.

Lemma 6. Let f be the Perron vector of a graph G in Cπ. Let vu ∈ E(G) and vx /∈ E(G)
with f(u) < f(x) ≤ f(v). If f(v) ≥ f(w) for all neigbors w of x, then G cannot have
greatest maximum eigenvalue in Cπ.

Proof. Assume that such vertices exist. Construct a new graph G′(V, E ′) with the same
degree sequence π by replacing edges vu and xw by edges vx and uw. Then by Lemma 3,
RG′(f) > RG(f). It remains to show that we can choose vertex w such that G′ is
connected. Then G′ ∈ Cπ and hence G cannot have the greatest maximum eigenvalue.

First, notice that there must be a neighbor p of x that is not adjacent to u, since oth-
erwise Nf (x) =

∑

wx∈E f(w) ≤
∑

yu∈E f(y) = Nf (u) and thus by Lemma 2, f(x) ≤ f(u),
a contradiction to our assumptions. Furthermore, x must have at least two neighbors,
since otherwise we had by Lemma 2 and assumption f(x) > f(u), f(w) = Nf (x) >
Nf(u) ≥ f(v), a contradiction to f(w) ≤ f(v). Since G is connected there is a simple
path Pvx = (v, . . . , t, x) from v to x. Then there are four cases:

(1) If vu /∈ Pvx and ut /∈ E(G), then we set w = t.

(2) Else, if vu /∈ Pvx and ut ∈ E(G), then we set w to one of the neighbors of x that are
not adjacent to u.

(3) Else, if vu ∈ Pvx and all neighbors not equal t are adjacent to u. Then t cannot be
adjacent to u and we set w = t.

(4) Else, vu ∈ Pvx and there exists a neighbor p of x, p 6= t, with up /∈ E(G). Then we
set w = p.

In either case G′ remains connected. Thus the statement follows.

Proof of Theorem 1. Assume that G(V, E) has greatest maximum eigenvalue in class Cπ.
Let f be a Perron vector of G. Create an ordering ≺ by breadth-first search as follows:
Choose the maximum of f as root v0 in layer 0; append all neighbors v1, . . . , vd(v0) of v0 to
the list ordered list; these neighbors are ordered such that u ≺ v whenever d(u) > d(v),
or d(u) = d(v) and f(u) > f(v) (in the remaining case the ordering can be arbitrary);
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then continue recursively with all vertices v1, v2, . . . until all vertices of G are processed.
Notice that (B1) holds for this ordering.
We first show that u ≺ v implies f(u) ≥ f(v) for all u, v ∈ V . Suppose there exist two
vertices vi and vj with vi ≺ vj but f(vi) < f(vj). Notice that vi cannot be root v0.
Let wi and wj be the parents of vi and vj, respectively. By construction there are two
cases: (i) wi = wj, or (ii) wi ≺ wj. For case (i) we have d(vi) ≥ d(vj) by construction
and d(vi) ≤ d(vj) by Lemma 5 and thus d(vi) = d(vj). But then we had vi � vj by the
definition of our ordering, since f(vi) < f(vj), a contradiction.
For case (ii) assume that vj is maximal, i.e., for any other vertex u with this property
we have f(u) ≤ f(vj). Let vi (≺ vj) be the first vertex (in the ordering of ≺) with
f(vi) < f(vj). Hence f(u) ≥ f(vj) for each u ≺ vi and we find f(wi) ≥ f(vj) > f(vi).
Note that vj cannot be adjacent neither to wi nor to v0 as we then had case (i). Thus
f(wi) ≥ f(uj) for all neighbors uj of vj, since otherwise vj were not maximal. Hence G
can not have greatest maximum eigenvalue by Lemma 6, a contradiction. At last we have
to show Property (B2). However, this follows immediately from Lemma 5.

Proof of Theorem 2. The necessity condition is an immediate corollary of Theorem 1. To
show that two BFD-trees G and G′ in class Tπ are isomorphic we use a function φ that
maps the vertex vi in the i-th position in the BFD-ordering of G to the vertex wi in
the i-th position in the BFD-ordering of G′. By the properties (B1) and (B2) φ is an
isomorphism, as vi and wi have the same degree and the images of neighbors of vi in
the next layer are exactly the neigbors of wi in the next layer. The latter can be seen by
looking on all vertices of G in the reverse BFD-ordering. Thus the proposition follows.

Proof of Theorem 3. Let π = (d0, . . . , dn−1) and π′ = (d′
0, . . . , d

′
n−1) be two non-increasing

tree sequences with π C π′, i.e., π 6= π′,
∑j

i=0 di ≤
∑j

i=0 d′
i, and

∑n−1
i=0 di =

∑n−1
i=0 d′

i =
2(n − 1). Let G have greatest maximum eigenvalue in Tπ. By Theorem 2 G has a BFD-
ordering that is consistent with f , i.e., f(u) > f(v) implies u ≺ v.
First assume that π and π′ differ only in two positions k and l with d′

k = dk + 1 and
d′

l = dl−1 (and hence k < l and dk ≥ dl > 1). Let vk and vl be the corresponding vertices
in G. Without loss of generality we assume that f(vk) ≥ f(vl). Since G is a tree and
d(vl) ≥ 2, there exists a neighbor w of vl in layer h(vl) + 1 that is not adjacent to vk.
Thus we can shift edge vlw by vkw and get a new tree G′ with degree sequence π′ and
λ(G′) > λ(G) by Lemma 4.
For two tree sequences π Cπ′ we can find a sequence of tree sequences π = π0 Cπ1 C · · ·C
πk = π′ where πi−1 and πi (i = 1, . . . , n) differ only in two positions as described above
by the following recursive procedure. For πi−1 let j be the first position in which πi−1

and π′ differ. Then d
(i−1)
j < d′

j and we construct πi = (d
(i)
0 , . . . , d

(i)
n−1) by d

(i)
j = d

(i−1)
j + 1,

d
(i)
j+1 = d

(i−1)
j+1 −1, and d

(i)
l = d

(i−1)
l otherwise. If necessary, πi is then sorted nonincreasingly.

Thus πi again is a tree sequence and the statement follows.
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4 Remarks

In general, we can ask the same questions for Perron vectors of generalized graph Lapla-
cians, i.e., symmetric matrices with non-positive off-diagonal entries. In this paper we
showed that switching and shifting operations are compatible with respect to degree se-
quences and we used them to find trees or connected graphs with greatest maximum
eigenvalue of the adjacency matrix. In [2] these operations were applied to construct
graphs with the smallest first eigenvalue of the so called Dirichlet matrix. Here the cor-
responding minization problems are called Faber-Krahn-type inequalities. We refer the
interested reader to [3] and the references given therein.

One also might ask whether one can find the smallest maximum eigenvalue in a class
Cπ by the same procedure. It is possible to apply shifting in the proof of Theorem 1 just
the “other way round”. We then would arrive at trees that are constructed by breadth-
first search but with increasing vertex degrees for non-pendant vertices. However, this
idea does not work. Figure 3 shows a counterexample.

Figure 3: Two trees with degree sequence (2, 2, 3, 3, 3, 1, 1, 1, 1, 1). The tree on the l.h.s.
has smallest maximum eigenvalue (λ = 2.1010) among all trees in Cπ. The tree on the
r.h.s. has a breadth-first ordering of the vertices with increasing degree sequences (and
thus has lowest first Dirichlet eigenvalue). However it does not minimize the maximum
eigenvalue (λ = 2.1067)
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