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Abstract

For a fixed graph H on k vertices, and a graph G on at least k vertices, we write

G −→ H if in any vertex-coloring of G with k colors, there is an induced subgraph

isomorphic to H whose vertices have distinct colors. In other words, if G −→ H then

a totally multicolored induced copy of H is unavoidable in any vertex-coloring of G

with k colors. In this paper, we show that, with a few notable exceptions, for any

graph H on k vertices and for any graph G which is not isomorphic to H, G 6−→ H.

We explicitly describe all exceptional cases. This determines the induced vertex-

anti-Ramsey number for all graphs and shows that totally multicolored induced

subgraphs are, in most cases, easily avoidable.

1 Introduction

Let G = (V, E) be a graph. Let c : V (G) → [k] be a vertex-coloring of G. We say that G
is monochromatic under c if all vertices have the same color and we say that G is rainbow
or totally multicolored under c if all vertices of G have distinct colors. The existence of a
graph forcing an induced monochromatic subgraph isomorphic to H is well known. The
following bounds are due to Brown and Rödl:

Theorem 1 (Vertex-Induced Graph Ramsey Theorem [6]) For all graphs H, and
all positive integers t there exists a graph Rt(H) such that if the vertices of Rt(H) are
colored with t colors, then there is an induced subgraph of Rt(H) isomorphic to H which is
monochromatic. Let the order of Rt(H) with smallest number of vertices be rmono(t, H).
Then there are constants C1 = C1(t), C2 = C2(t) such that C1k

2 ≤ max{rmono(t, H) :
|V (H)| = k} ≤ C2k

2 log2 k.
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Theorem 1 is one of numerous vertex-Ramsey results investigating the existence of
induced monochromatic subgraphs, including the studies of Folkman numbers such as in
[16], [4] and others. There are also “canonical”-type theorems claiming the existence of
monochromatic or rainbow substructures (see, for example, a general survey paper by
Deuber [13]). The paper of Eaton and Rödl provides the following specific result for
vertex-colorings of graphs.

Theorem 2 (Vertex-Induced Canonical Graph Ramsey Theorem [14]) For all
graphs H, there is a graph Rcan(H) such that if Rcan(H) is vertex-colored then there
is an induced subgraph of Rcan(H) isomorphic to H which is either monochromatic or
rainbow. Let the order of such a graph with the smallest number of vertices be rcan(H).
There are constants c1, c2 such that c1k

3 ≤ max{rcan(H) : |V (H)| = k} ≤ c2k
4 log k.

In this paper, we study the existence of totally multicolored induced subgraphs iso-
morphic to a fixed graph H, in any coloring of a graph G using exactly k = |V (H)| colors.
We call a coloring of vertices, with k nonempty color classes, a k-coloring. Whereas the
induced-vertex Ramsey theory minimizes the order of a graph that forces a desired in-
duced monochromatic graph, it is clear that for the multicolored case a similar goal is
trivially achieved by the graph H itself. What is not clear is whether it is possible to
construct an arbitrarily large graph G with the property that any k-coloring of V (G)
induces a rainbow H.

Definition 1 Let G and H be two graphs. We say “G arrows H” and write G −→ H
if for any coloring of the vertices of G with exactly |V (H)| colors, there is an induced
rainbow subgraph isomorphic to H. Let

f(H) = max{|V (G)| : G −→ H},

if such a max exists. If not, we write f(H) = ∞.

It follows from the definition that if f(H) = ∞ then for any n0 ∈ N there is n > n0

and a graph G on n vertices such that any k-coloring of vertices of G produces a rainbow
induced copy of H. The function f was first investigated by the first author in [2].

Theorem 3 ([2]) Let H be a graph on k vertices. If H or its complement is (1) a
complete graph, (2) a star or (3) a disjoint union of two adjacent edges and an isolated
vertex, then f(H) = ∞; otherwise f(H) ≤ 4k − 2.

We improve the bound on f(H) to the best possible bound on graphs H for which
f(H) < ∞.

Theorem 4 Let H be a graph on k vertices. If H or its complement is (1) a complete
graph, (2) a star or (3) a disjoint union of two adjacent edges and an isolated vertex, then
f(H) = ∞; otherwise f(H) ≤ k + 2 if k is even and f(H) ≤ k + 1 if k is odd.

What we prove in this paper is stronger. First, we find f(H) for all graphs H. Second,
we are able to explicitly classify almost all pairs (G, H) for which G −→ H. We describe
some classes of graphs and state our main result in the following section.
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2 Main Result

Let Kn, En, Sn, Cn, Pn be a complete graph, an empty graph, a star, a cycle and a path on
n vertices, respectively. Let H1 + H2 denote the vertex-disjoint union of graphs H1 and
H2. We denote Λ = P3 + K1. If H is a graph, let H denote its complement. Let P and
Θ be the Petersen and Hoffman-Singleton graphs, respectively; see Wolfram Mathworld
([17] and [18], respectively) for beautiful pictures.

Let kH denote the vertex-disjoint union of k copies of graph H. We write H ≈ H ′

if H is isomorphic to H ′ and we say that H ∈ {H1, H2, . . .} if there exists an integer i
for which H ≈ Hi. We write G − v to denote the subgraph of G induced by the vertex
set V (G) \ {v}. A graph is vertex-transitive if, for every distinct v1, v2 ∈ V (G), there is
an automorphism, ϕ, of G such that ϕ(v1) = v2. A graph is edge-transitive if, for every
distinct {x1, y1}, {x2, y2} ∈ E(G), there is an automorphism, ϕ, of G such that either
both ϕ(x1) = x2 and ϕ(y1) = y2 or both ϕ(x1) = y2 and ϕ(y1) = x2.

Let P ′ and Θ′ be the graphs obtained by deleting two nonadjacent vertices from P
and Θ, respectively. In the proof of Lemma 7, we establish that both P and Θ are edge-
transitive, thus P ′ and Θ′ are well-defined. For ` ≥ 3, let M` denote a matching with `
edges; let M ′

` denote the graph obtained by deleting two nonadjacent vertices from M`.
We say that a graph is trivial if it is either complete or empty.

We define several classes of graphs in order to prove the main theorem.
Let C denote the class of connected graphs on at least three vertices.
Let P ′

3 denote the set of graphs G = (V, E) such that there is a nontrivial vertex-
partition V = V1 ∪ V2 ∪ V3, with (a) Vi 6= ∅, for all i = 1, 2, 3, (b) the tripartite subgraph
of G obtained by deleting all edges with both endpoints in Vi, i = 1, 2, 3 is a vertex disjoint
union of complete tripartite graphs and bipartite graphs, each with vertices in only two
of the parts V1, V2, V3; see Figure 1. Let P3 be the set of all graphs on at least 4 vertices
which are not in P ′

3.

Figure 1: A graph from class P ′

3. Figure 2: Graph G(3) which arrows Λ.

Let L = {G(m) : m ≥ 1}, where G(m) = (V, E), V = {v(i, j) : 0 ≤ i ≤ 6, 1 ≤ j ≤ m},
E = {v(i, j)v(i + 1, k) : 1 ≤ j, k ≤ m, j 6= k, 0 ≤ i ≤ 6} ∪ {v(i, j)v(i + 3, j) : 1 ≤ j ≤
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m, 0 ≤ i ≤ 6}, addition is taken modulo 7, see Figure 2 for an illustration.
Let T denote the set of graphs T such that (a) neither T nor T is complete or a star,

and (b) either T is vertex-transitive or there exists a vertex, v of degree 0 or |V (T )| − 1
such that T − v is vertex-transitive. Note that a perfect matching is an example of a
graph in T . If T ∈ T , denote T ′ to be the graph that is obtained from T by deleting a
vertex w that is neither of degree 0 nor of degree |V (T )| − 1. Let T ′ = {T ′ : T ∈ T }.
Note that, given T ′ ∈ T ′, the corresponding graph T ∈ T is unique.

Let F∞ =
{

Kk, Kk : k ≥ 2
}

∪
{

Sk, Sk : k ≥ 3
}

∪ {Λ, Λ}. As we see in Theorem 3,

H ∈ F∞ iff f(H) = ∞. Observe (see also [2]) that G −→ H if and only if G −→ H. In
order to classify all graphs G which arrow H, we introduce the following notation

Arrow(H) = {G : G −→ H, G 6≈ H}.

Theorem 5 (Main Theorem)

• Arrow(Λ) ⊇ L,

Arrow(Kk) =

{

C if k = 2,

{Kn : n > k} if k ≥ 3,

Arrow(Sk) =

{

P3 if k = 3,

{Sn : n > k} if k ≥ 4,

• Arrow(P ′) = {P}, Arrow(Θ′) = {Θ},
Arrow(M ′

`) = {M`, M`−1 + K1}, ` ≥ 3,

• Arrow(T ′) = {T}, if T ′ ∈ T ′ and T ′ 6≈ M ′

`, ` ≥ 3,

• If H, H 6∈ F∞ ∪ {P ′, Θ′} ∪ T ′, then Arrow(H) = ∅.

Corollary 6 Let H be a graph on k vertices. Then

f(H) =



















∞, H ∈ F∞,

k + 2, H ∈ {P ′, Θ′, P ′, Θ′} ∪ {M ′

`, M
′

` : ` ≥ 3, k = 2` − 2},

k + 1, H ∈ {T ′ : T ′ ∈ T ′} \ {M ′

`, M
′

` : ` ≥ 3, k = 2` − 2},

k, otherwise.

Remark 1 We wish to observe that a graph H for which f(H) = k + 2 only occurs for
even values of k, k ≥ 4 and is, up to complementation, uniquely defined by k except in the
cases of k = 8 and k = 48. If k ∈ {8, 48}, then there are two such complementary pairs
of graphs H. We also note that Arrow(H) is fully classified for every graph H except for
H ∈

{

Λ, Λ
}

.
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This paper is structured as follows: In Section 3 we state without proofs all of the
lemmas and supplementary results. In Section 4, we prove the main theorem. In Section
5 we prove all the lemmas from Section 3.

The main technical tool of the proof is the fact that in most cases we can assume that
the degree sequence of the graph H is consecutive. Using this, it is possible to show that
f(H) ≤ |V (H)| + c for some absolute constant c and for all H such that f(H) < ∞. We
prove several additional cited lemmas which provide a delicate analysis allowing one to
get an exact result for ALL graphs, in particular for ones with small maximum degree.

3 Definitions, Lemmas and supplementary results

Let G be a graph on n vertices and v ∈ V (G). The degree of v is denoted deg(v) and
the codegree of v, n − 1 − deg(v), is denoted codeg(v). When the choice of a graph is
ambiguous, we shall denote the degree of a vertex v in graph G by deg(G, v). If vertices
u and v are adjacent, we write u ∼ v, otherwise we write u 6∼ v. For subsets of vertices
X and Y , we write X ∼ Y if x ∼ y for all x ∈ X, y ∈ Y ; we write X 6∼ Y if x 6∼ y
for all x ∈ X, y ∈ Y . For a vertex x 6∈ Y , we write x ∼ Y if {x} ∼ Y and x 6∼ Y if
{x} 6∼ Y . For a subset S of vertices of a graph G, let G[S] be the subgraph induced by
S in G. The neighborhood of a vertex v is denoted N(v), and the closed neighborhood
of v, N [v] = N(v) ∪ {v}. We shall write e(G) to denote the number of edges in a graph
G. The subset of vertices of degree i in a graph G is Gi. The minimum and maximum
degrees of a graph G are denoted by δ(G) and ∆(G), respectively. For all other standard
definitions and notations, see [19].

We say the degree sequence of a graph H is consecutive if, for every i ∈
{δ(H), . . . , ∆(H)}, there exists a v ∈ V (H) such that deg(v) = i. The following defi-
nition is important and used throughout the paper.

Definition 2 For a graph H on k vertices, let the deck of H, denoted deck(H), be the
set of all induced subgraphs of H on k−1 vertices. We say that a graph F is in the deck of
H if it is isomorphic to a graph from the deck of H. The graph G on n vertices is said to
be bounded by a graph H on k vertices if both ∆(G) = ∆(H) and δ(G) = n−k + δ(H).

For S ⊆ V (G), if G[S] ≈ H, we say (to avoid lengthy notation), that S induces H in
G and we shall label the vertices in S as the corresponding vertices of H.

We use the following characterization of regular graphs of diameter 2.

Theorem 7 (Hoffman-Singleton, [12]) If G is a diameter 2, girth 5 graph which is
∆-regular, then ∆ ∈ {2, 3, 7, 57}. Moreover, if ∆ = 2, G is the 5-cycle; if ∆ = 3, then G
is the Petersen graph; and if ∆ = 7, G is the Hoffman-Singleton graph. It is not known
if such a graph exists for ∆ = 57.
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Note that if a 57-regular graph of diameter 2 exists, it is called a (57, 2)-Moore graph.
One of our tools is the following theorem of Akiyama, Exoo and Harary [1], later

strengthened by Bosák [7].

Theorem 8 (Bosák’s theorem) Let G be a graph on n vertices such that all induced
subgraphs of G on t vertices have the same size. If 2 ≤ t ≤ n − 2 then G is either a
complete graph or an empty graph.

In all of the lemmas below we assume that

|V (G)| = n, |V (H)| = k, ∆ = ∆(H), and δ = δ(H).

Lemma 1 If G −→ H, then the following holds:

(1) If ∆ ≤ k − 3, then ∆(G) = ∆.

(2) If 2 ≤ δ ≤ ∆ ≤ k − 3, then n ≤ k + ∆ − δ with equality iff ∆(G) = δ(G).

Lemma 2 If H is a graph on k ≥ 3 vertices and G is a graph on n ≥ k + 2 vertices such
that G −→ H, then either H or its complement is a star or the degree sequence of H is
consecutive.

The Deck Lemma is an important auxiliary lemma that is used throughout this paper.

Lemma 3 (Deck lemma) Let G −→ H. For any set U ⊂ V (G) with |U | = k−1, G[U ]
is in the deck of H. Consequently, e(H) − ∆ ≤ e(G[U ]) ≤ e(H) − δ.

Lemma 4 If f(H) > k and H has consecutive degrees, then ∆ ≤ δ + 3.

Observe that Lemmas 1, 2 and 4 immediately imply that f(H) ≤ |V (H)| + 3 if
2 ≤ δ ≤ ∆ ≤ k − 3. The remaining lemmas allow us to deal with the cases where δ < 2
or ∆ > k − 3 and to prove exact results.

Lemmas 5 and 6 address the cases where f(H) = ∞ and f(H) = k + 1.

Lemma 5 Arrow(Kk) =

{

C, k = 2,

{Kn : n > k}, k ≥ 3;

and Arrow(Sk) =

{

P3, k = 3,

{Sn : n > k}, k ≥ 4.

Lemma 6 {(G, H) : G −→ H, |V (G)| = k + 1} = {(T, T ′) : T ∈ T }.

Lemmas 7 and 8 allow us to deal with the case where n ≥ k + 2 and G is regular or
almost regular.
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Lemma 7 Assume that k ≥ 3. Let Q be the set of pairs (G, H) such that |V (G)| ≥ k+2,
G −→ H, G is bounded by H, H 6∈ F∞, H has consecutive degrees and G is d-regular for
some d ≥ 2. Then Q =

{

(P, P ′), (P, P ′), (Θ, Θ′), (Θ, Θ′)
}

.

Lemma 8 Let |V (G)| = k+2 and let G be bounded by H. If ∆−δ = 3 and ∆(G)−δ(G) =
1, then G 6−→ H.

The following is a technical lemma used in the proof of the Main Theorem and
Lemma 12.

Lemma 9 If |V (G)| ≥ k+2, G −→ H, δ = 1, and δ(G) < n−k+δ, then ∆ ≤ δ+2 = 3.
Furthermore, if equality holds, then |H3| = 1, H3 ∼ H2, and there is an S ⊆ V (G) and
v ∈ V (G) \ S such that G[S] ≈ H, |N(v) ∩ S| = 1 and v 6∼ H3 ∪ H2.

Finally, the following lemmas treat the case when ∆ = ∆(H) ∈ {1, 2, 3}.

Lemma 10 Let ∆ = 1, H 6∈ F∞ and |V (G)| ≥ k + 2. Then G −→ H implies that k is
even and (G, H) = (Mk/2+1, M

′

k/2+1
).

Lemma 11 Let ∆ = 2, H 6∈ F∞, |V (G)| ≥ k + 2 and δ(G) < n− k + δ. Then, G 6−→ H.

Lemma 12 Let ∆ = 3, H 6∈ F∞, |V (G)| ≥ k + 2 and δ(G) < n− k + δ. Then, G 6−→ H.

4 PROOF of the MAIN THEOREM

Let H be a graph on k vertices. Recall that F∞ =
{

Kk, Kk : k ≥ 2
}

∪
{

Sk, Sk : k ≥ 3
}

∪
{

Λ, Λ
}

. If H ∈ F∞, then the theorem follows from Lemma 5 and Theorem 3.
Let G −→ H, |V (G)| > k and H 6∈ F∞. We shall describe all such graphs G on n

vertices.
If n = k + 1, then Lemma 6 claims that H ≈ T ′ ∈ T ′ and G ≈ T . Note that M ′

` ∈ T ′

for all ` ≥ 3. If T ′ = M ′

`, then T = M`−1 + K1. Therefore we may assume that n ≥ k + 2
and H 6∈ F∞. By Lemma 2, the degree sequence of H is consecutive.

CASE 1. G is bounded by H.

Recall that G being bounded by H means that ∆(G) = ∆ and δ(G) = n − k + δ. By
Lemma 4, ∆ ≤ δ + 3. Lemma 1 gives that n ≤ k + 3.

First, suppose G is ∆-regular. If ∆ ≥ 2, then by Lemma 7, G ∈
{

P, P , Θ, Θ
}

and
n = k + 2. If ∆ ≤ 1, then G is a matching. Lemma 10 covers this case and gives that
H ≈ M ′

k/2+1
.
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Second, suppose G is not regular, then

n − k + δ = δ(G) < ∆(G) = ∆.

Since ∆ − δ ≤ 3, Lemma 1 implies that n − k < 3. The fact that n ≥ k + 2,
implies that n = k + 2. Applying Lemma 1 again, we see that ∆ − δ = 3 and
δ(G) = (n − k) + δ = 2 + (∆ − 3) = ∆ − 1. Thus ∆(G) − δ(G) = 1. By Lemma 8,
G 6−→ H, a contradiction.

CASE 2. G is not bounded by H.

By Lemma 1, if G −→ H and G is not bounded by H, then either δ(H) ≤ 1 (in the
case where δ(G) < n − k + δ) or ∆(H) ≥ k − 2 (in the case where ∆(G) > ∆). Using
the fact that G −→ H iff G −→ H, we will assume, without loss of generality, that
δ(G) < n − k + δ and δ ≤ 1.

Using Lemma 9 (when δ = 1) and Lemma 4 (when δ = 0), we have that ∆ ≤ 3. Since
∆ ∈ {1, 2, 3}, Lemmas 10, 11, 12 give that (G, H) = (M`, M

′

`).

Summarizing CASES 1 and 2, we see that if n ≥ k + 2 and H 6∈ F∞, then n = k + 2
and H or H is in {M ′

k/2+1
, P ′, Θ′}. Lemma 10 and the fact that M ′

` ∈ T ′ for all ` ≥ 3

give that Arrow (M ′

`) = {M`, M`−1 + K1}. Lemma 7 gives that Arrow(P ′) = {P} and
Arrow(Θ′) = {Θ}.

This concludes the proof of Theorem 5.

5 Proofs of Lemmas

5.1 Proof of Lemma 1

(1) Since G −→ H, ∆(G) ≥ ∆. Let ∆ ≤ k−3. Suppose there exists a vertex v ∈ V (G)
such that deg(v) > ∆. Color N(v) with the first ∆ + 1 + a colors, where a is the largest
integer such that both ∆ + 1 + a ≤ deg(v) and ∆ + 1 + a ≤ k − 1. Color v with color k
and color the rest of the vertices (if such exist) with the remaining colors (or color these
vertices with color 1 if no colors remain). Any S ⊆ V (G) that induces a rainbow copy of
H has a vertex, namely v, of degree greater than ∆, a contradiction.

(2) By Part (1), ∆(G) = ∆. We have that ∆(H) = k − 1 − δ(H) ≤ k − 3.
Hence, n − 1 − δ(G) = ∆(G) = ∆(H) = k − 1 − δ. So, δ(G) = n − k + δ and
∆ = ∆(G) ≥ δ(G) = n − k + δ. Thus, n ≤ k + ∆ − δ with equality if and only if
∆(G) = δ(G). �
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5.2 Proof of Lemma 2

Let H have the property that there is an i, δ(H) < i < ∆(H) such that there is
no w ∈ V (H) with deg(w) = i. Let Li(H) = {v ∈ V (H) : deg(v) < i}, and
Ui(H) = {v ∈ V (H) : deg(v) > i}. Let Li(G) = {v ∈ V (G) : deg(v) < i}, and let
Ui(G) = {v ∈ V (G) : deg(v) > n − k + i}. Since G −→ H, we may assume that H ⊆ G.

Claim 1. V (H) = Li(H) ∪ Ui(H) and V (G) = Li(G) ∪ Ui(G).
The first statement of the claim follows from our assumption on H. Assume that there

is a vertex v ∈ V (G) with i ≤ deg(v) ≤ n − k + i. Color v with one color, N(v) with i
other colors and V (G) \ N [v] with the remaining k − i − 1 colors. Any induced rainbow
subgraph H ′ of G on k vertices must contain v and exactly i of its neighbors. Thus H ′

can not be isomorphic to H; i.e., G 6−→ H, a contradiction. This proves Claim 1.

Claim 2. Ui(H) ⊆ Ui(G) and Li(H) ⊆ Li(G).
If there is a vertex w ∈ Ui(H) ∩ Li(G), then deg(G, w) ≤ i − 1 < i + 1 ≤ deg(H, w),

a contradiction. If there is a vertex w ∈ Li(H) ∩ Ui(G), then deg(H, w) ≤ i − 1,
deg(G, w) ≥ n − k + i + 1. Thus, codeg(H, w) ≥ k − i and codeg(G, w) ≤ k − i − 2, a
contradiction since codeg(G, u) ≥ codeg(H, u) for all u ∈ V (H). This proves Claim 2.

Assume first that |Ui(H)| = |Ui(G)| = 1 and consider an arbitrary (k − 1)-subset
U ⊆ Li(G). Color the vertices of U with k − 1 colors and color the rest of V (G) with
the remaining color. The induced copy of H must contain the member of Ui(G) and
so U ∪ Ui(G) must induce H. We may conclude that all (k − 1)-subsets of Li(G) are
isomorphic. Since |Li(G)| = n − 1 ≥ k + 1, Bosák’s theorem implies that Li(G) induces
a trivial subgraph. Given that U ∪ Ui(G) must induce H for any such U and the degree
sequence is not consecutive, both G and H must be stars.

Now assume that |Ui(G)| ≥ 2 and |Ui(H)| = 1. Color as many vertices of Ui(G)
with distinct colors as possible (at least two, at most k − 1) and color the rest with the
remaining colors. Under this coloring, any rainbow subgraph on k vertices will have at
least 2 vertices in Ui(G), a contradiction to Claim 2.

Thus, we may assume that |Ui(H)| ≥ 2 and a complementary argument implies
that |Li(H)| ≥ 2. Since n ≥ k + 2, it is the case that either |Ui(G)| > |Ui(H)|
or |Li(G)| > |Li(H)|. Without loss of generality, assume the former. We know that
|Ui(H)| = k − |Li(H)| ≤ k − 2. Color Ui(G) with |Ui(H)| + 1 ≤ k − 1 colors and Li(G)
with the remaining colors. Under this coloring, any rainbow subgraph of G will have more
than |Ui(H)| vertices in Ui(G), a contradiction to Claim 2. �
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5.3 Proof of Lemma 3

Consider a (k − 1)-subset U ⊆ V (G). Color its vertices with k − 1 distinct colors and
color the rest of the vertices with the remaining color. Since there is a rainbow copy of
H in this coloring, and its vertices must contain U , G[U ] must be in the deck of H. Since
each (k − 1)-vertex induced subgraph of H has at least e(H) − ∆ and at most e(H) − δ
edges, the second statement of the lemma follows. �

5.4 An important auxiliary lemma

Recall that Hd = {w ∈ V (H) : deg(H, w) = d}.

Lemma 13 Let H be a graph on k vertices with consecutive degrees and let G be a graph
on n ≥ k + 1 vertices such that G −→ H. Furthermore, let S = {y1, y2, . . . , yk} ⊆ V (G)
such that G[S] ≈ H. Let deg(G[S], y1) ≤ deg(G[S], y2) ≤ · · · ≤ deg(G[S], yk). Each of
the following is true:

(1) For any v ∈ V (G) \ S, |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆ − 2. If equality holds, then
|H∆| = 1 and H∆ ∼ H∆−1. If H∆ ⊇ {yk, yk−1} and yk 6∼ yk−1 then for any
v ∈ V (G) \ S, |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆.

(2) For any v ∈ V (G)\S, |N(v)∩(S \{y1, y2})| ≤ δ+1. If equality holds, then |Hδ| = 1
and Hδ 6∼ Hδ+1. Moreover, if Hδ ⊇ {y1, y2} and y1 ∼ y2 then for any v ∈ V (G) \S,
|N(v) ∩ (S \ {yk, yk−1})| ≤ δ − 1.

(3) There is a vertex v ∈ V (G) \ S such that either {v} ∪ S \ {yk} induces H or
{v} ∪ S \ {y1} induces H.

Proof.
(1) Let U = {v}∪S\{yk, yk−1}. Using the Deck Lemma and counting edges incident to

yk and yk−1, we have e(H)−∆ ≤ e(G[U ]) ≤ e(H)−∆−(∆−1)+1+|N(v)∩(S\{yk, yk−1})|.
It follows that

|N(v) ∩ (S \ {yk, yk−1})| ≥ ∆ − 2.

If yk 6∼ yk−1 and both yk and yk−1 are of degree ∆, then |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆.

(2) Let U = {v} ∪ S \ {y1, y2}. Then e(H)− δ ≥ e(U) ≥ e(H)− δ − (δ + 1) + |N(v)∩
(S \ {y1, y2})|. Thus, all the statements in this part hold similarly to part (1).

(3) Rainbow color S \{y1, yk} with colors {1, . . . , k−2}, both of the vertices in {y1, yk}
with color k − 1 and V (G) \ S with color k. Regardless of which vertex of color k − 1 is
chosen, the statement holds. �
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5.5 Proof of Lemma 4

Let G −→ H, |V (G)| > k, S ⊆ V (G) and G[S] ≈ H. Lemma 13 part (3) implies two cases:

CASE 1. There is a v ∈ V (G) \ S so that S ∪ {v} \ {yk} induces H.
Consequently, |N(v) ∩ S| ≥ ∆ and, in particular, ∆ − 2 ≤ |N(v) ∩ (S \ {y1, y2})| ≤

δ + 1. The last inequality follows from Lemma 13 part (2).

CASE 2. There is a v ∈ V (G) \ S so that S ∪ {v} \ {y1} induces H.
Consequently, |N(v) ∩ S| ≤ δ + 1 and δ + 1 ≥ |N(v) ∩ (S \ {yk, yk−1})| ≥ ∆ − 2. The

last inequality follows from Lemma 13 part (1).

In both cases ∆ − δ ≤ 3. �

5.6 Proof of Lemma 5

If H = K2 and G is disconnected, then color the vertices in one component of G with color
1 and all other vertices with color 2. Thus G 6−→ K2. On the other hand, if G 6−→ K2,
then there is a partition of V (G) = V1 ∪ V2 such that V1 6∼ V2.

If H = Kk, k ≥ 3 and G 6= Kn, n > k, then G 6−→ H follows from the Deck Lemma
since G has two nonadjacent vertices or n < k. On the other hand, it is obvious that
Kn −→ Kk, for all n ≥ k.

Let H = Sk for k ≥ 4. Then by the Deck Lemma, we see that G has no induced
subgraph isomorphic to P3 and no K3. Thus G has no induced P3, and therefore G is a
vertex disjoint union of cliques, which implies that G is a complete multipartite graph.
Since G has no K3, G is a complete bipartite graph. If both parts of G contain at least 2
vertices, color the vertices in these parts with disjoint sets of colors such that each part
uses at least two colors. Then any rainbow k-subgraph is a complete bipartite graph with
at least two vertices in each part, a contradiction. So, we conclude that G has only one
vertex in one of the parts, thus G is a star.

Let H = P3. It is easy to see that if G 6∈ P3, then the tri-partition V1, V2, V3 of V (G)
as in the definition of P ′

3 witnesses that G 6−→ P3 by coloring V1, V2, V3 each with distinct
colors. Suppose there is a coloring of V (G) with no rainbow copy of P3. Let the color
classes be V1, V2, V3. Let G′ be a tripartite subgraph of G with parts V1, V2, V3 which is
obtained from G by deleting all edges with both endpoints in Vi, i = 1, 2, 3. Consider a
connected component Q of G′ with vertices in all three parts V1, V2, V3. We claim that this
component is a complete tripartite graph. To see this, consider the maximal complete
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tripartite subgraph Q′ of Q. It is clear that Q has a path with one vertex in each of
V1, V2, V3. This path must induce a triangle; so Q 6= ∅. If Q′ 6= Q, then there is a vertex
v ∈ V (Q) \ V (Q′) such that v is adjacent to a vertex in Q′. Without loss of generality
assume that v ∈ V1, then v must be adjacent to all vertices of Q′ in V2 and V3. Thus
Q′ ∪ {v} is a complete tripartite graph larger than Q′, a contradiction. So, Q′ = Q and
Q is a complete tripartite graph. Therefore, each component of G′ either has vertices in
only two parts or is a complete tripartite graph, so G 6∈ P3. �

5.7 Proof of Lemma 6

Let G −→ H and n = k + 1. Any coloring of V (G) with k colors assigns the same color
to some two vertices. Thus, for any u, v ∈ V (G), either G − u or G − v is isomorphic to
H. As an immediate consequence, for at least n−1 vertices in G, the vertex degrees have
the same value d = e(G) − e(H). As a result, there are only three possibilities:

CASE 1. G − w ≈ H for all w ∈ V (G).
In particular, G − u ≈ G − v for all u, v ∈ V (G). Then, G is regular. Since an

isomorphism from G − u and G − v can be extended to an automorphism of G mapping
u to v, we see that G is vertex-transitive.

CASE 2. There is exactly one vertex, v, such that G − v 6≈ H and deg(G, v) = d′ /∈
{0, n − 1}.

As before, we have that for some d, deg(G, w) = d for all w ∈ V (G) \ {v}. If d′ > d,
then the deletion of a w ∈ V (G)\N [v] gives exactly one vertex of degree d′ and the rest of
degree d or d− 1, but the deletion of a neighbor of v does not, a contradiction. Similarly,
if d′ < d, then the deletion of a w ∈ N(v) gives exactly one vertex of degree d′ − 1 but
the deletion of a nonneighbor of v does not, a contradiction. Thus d′ = d.

Let w ∼ v, w′ 6∼ v. Let ϕ be an isomorphism from G−w to G−w′. Then, ϕ maps ver-
tices of degree d−1 in G−w, which correspond to the neighbors of w, to vertices of degree
d− 1 of G−w′, which correspond to the neighbors of w′. In particular, ϕ maps v to some
vertex x 6= v. As before, we can extend ϕ to an automorphism of G by mapping w to w ′.
The existence of this automorphism implies that G−v ≈ G−x, and we can apply CASE 1.

CASE 3. There is exactly one vertex, v ∈ V (G) such that G − v 6≈ H and
deg(G, v) ∈ {0, n − 1}.

Assume without loss of generality that deg(G, v) = 0. Then G − v − u ≈ G − v − w
for all u, w ∈ V (G − v). As in CASE 1, G − v is vertex transitive.

The above implies that if G −→ H, |V (G)| = k + 1 then (G, H) = (T, T ′) for some
T ∈ T . Now, let T ′ ∈ T ′. We need to show that T −→ T ′. Let |V (T ′)| = k. If we color
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the vertices of T with k colors then exactly two vertices, say u and v get the same color
and the rest are totally multicolored. So, if T is vertex-transitive, then T −{u} ≈ T ′ and
it is rainbow; if T is a union of a vertex transitive graph and an isolated vertex w, then
without loss of generality u 6= w and T − {u} ≈ T ′ and it is rainbow; if T has a vertex of
degree k, the result follows from the previous case by considering T . �

5.8 Proof of Lemma 7

Since G is bounded by H,

n − k + δ = δ(G) = ∆(G) = ∆. (1)

By Lemma 4, ∆ − δ ≤ 3. Therefore, either n − k = 2 or n − k = 3.

CASE 1. n − k = 3.
In this case, inequality (1) becomes

3 + δ = δ(G) = ∆(G) = ∆ ≤ δ + 3.

Thus, all the inequalities are equalities, so δ = ∆ − 3. This implies that k ≥ 4. If k = 4,
then ∆ = 3, δ = 0, and the fact that the degrees are consecutive implies that H ≈ Λ, a
contradiction to the assumption that H 6∈ F∞. Thus, we can assume that k ≥ 5.

Let G[S] ≈ H. Let y, y′, w, w′ be vertices in S with degrees ∆ − 3, ∆ − 2, ∆ − 1, ∆,
respectively, in G[S]. The fact that G is ∆-regular gives that y, y ′, w, w′ are adjacent
to 3, 2, 1, 0 vertices, respectively, in V (G) \ S. Note that y, y ′ and some two vertices in
V (G) \ S span C4 in G and w, w′ and some two vertices in V (G) \ S span C4 in G.

Let U be a set of vertices in G spanning a C4. Color all vertices of U with color 1 and
rainbow color the remaining vertices with colors {2, . . . , k}. Under this coloring, there is
a rainbow copy of H containing exactly one vertex of U . Thus, the set of vertices outside
of this copy of H spans at least 2 edges. As a result, e(H) ≥ e(G) − 3∆ + 2.

Let U ′ be a set of vertices spanning C4 in G. Color all vertices of U ′ with color 1 and
rainbow color the remaining vertices with colors {2, . . . , k}. Under this coloring, there is
a rainbow copy of H containing exactly one vertex of U ′. Thus, the set of vertices outside
of this copy of H spans at most 1 edge. As a result, e(H) ≤ e(G)−3∆+1, a contradiction
to the bound of e(H) ≥ e(G) − 3∆ + 2, derived above.

CASE 2. n − k = 2.
In this case, inequality (1) becomes

2 + δ = δ(G) = ∆(G) = ∆. (2)

Thus δ = ∆ − 2. Let G[S] ≈ H.
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If n ≤ 5, then k ≤ 3 so H ∈ F∞. Thus, we may assume that n ≥ 6. By Ramsey’s
theorem, either G contains a K3 or G contains K3. Without loss of generality, assume
that G contains K3.

Claim 1. For any copy of H in G, the two vertices outside of it are not adjacent and
e(H) = e(G) − 2∆.

By coloring the vertices of some copy of K3 with the color 1 and rainbow coloring the
rest of V (G) with colors {2, . . . , k}, it is clear that e(H) = e(G) − 2∆. If there are two
adjacent vertices outside of a copy of H in G then e(H) = e(G)−2∆ + 1, a contradiction.

Claim 2. G has diameter 2.
If G has diameter greater than 2, then either there are two vertices at a distance 3 in

G or G is disconnected. If G is disconnected, then color two vertices in one component
with color 1 and two vertices in the other component with color 2 and rainbow color
the remaining vertices with colors {3, . . . , k}. No matter which vertices are chosen, any
rainbow graph on k vertices, under this coloring, has all vertices of degree ∆ or ∆ − 1.

If G is connected and of diameter at least 3, then let u and v be vertices at distance
exactly 3 and (u, x, y, v) be a shortest u-v-path. Color u and y with color 1, color v and x
with color 2, and rainbow color the remaining vertices with colors {3, . . . , k}. Under this
coloring, a rainbow copy of H must contain x and y; otherwise, there is an edge outside
of a copy of H, contradicting Claim 1. Therefore, u and v are outside of H. But u and v
do not have a common neighbor, so H has only vertices of degree ∆ and ∆ − 1.

This contradicts the fact that δ = ∆ − 2.

Claim 3. G has no K3 and no C4.
Assume there is a triangle in G. Coloring its vertices with color 1 and the remain-

ing vertices with colors {2, . . . , k} would contradict Claim 1. If G has a C4, color its
independent sets with colors 1 and 2, respectively, and the remaining vertices with colors
{3, . . . , k}. Under this coloring, any rainbow k-vertex graph has e(G) − 2∆ + 1 edges,
another contradiction to Claim 1.

Claim 4. For any two nonadjacent vertices u and v, G − u − v ≈ H.
Color u, v and their common neighbor (which exists by Claim 2 and is unique by Claim

3) with color 1 and rainbow color the remaining vertices with colors {2, . . . , k}. Claim 1
implies that G − u − v must induce a copy of H.

Claim 5. G is vertex-transitive.
Let v, v′ ∈ V (G), let x and y be neighbors of v and let x′ and y′ be neighbors of

v′. There is an isomorphism ϕ : (G − x − y) → (G − x′ − y′) that sends v to v′, since
v, v′ are the unique degree ∆ − 2 vertices in the respective copies of H. To show that
the map ϕ can be extended to an isomorphism of G itself, we will verify, without loss
of generality, that x′ is adjacent to every vertex of ϕ(N(x)) and y ′ is adjacent to every
vertex of ϕ(N(y)).
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First, note that y and every vertex in N(x) \ {v} have exactly one common neighbor.
This neighbor, however, cannot be v or x because G has no K3. Moreover, such neighbors
are different for each distinct member of N(x) \ {v} because otherwise that vertex and
two of its neighbors would form a C4 with x.

Therefore, there is an induced matching between N(x) \ {v} and N(y) \ {v}.
Let a ∈ N(x) \ {v}. Without loss of generality, suppose ϕ(a) ∈ N(x′). Let b be any

vertex in N(y) \ {v}. If b ∼ a, then ϕ(b) ∈ N(y ′) because G has no K3. If b 6∼ a, then
a and b have a common neighbor in G − x − y, so ϕ(b) ∈ N(y ′) because G has no C4.
Therefore, we can conclude that ϕ(N(y)) = N(y ′) and symmetrically, ϕ(N(x)) = N(x′),
extending ϕ to an isomorphism of G.

Claim 6. If G −→ H, G contains no K3 and n ≥ 6, then G ≈ P or G ≈ Θ.
Since G is regular with diameter 2 and girth 5, the Hoffman-Singleton theorem (The-

orem 7) gives that the only possibilities for G are C5, P , Θ or a (57, 2)-Moore graph, if it
exists. Since n ≥ 6, G 6= C5. According to an unpublished proof due to Graham Higman,
printed in Section 3.7 of Cameron [8], if a (57, 2)-Moore graph exists, then it cannot be
vertex-transitive. So, only P and Θ remain.

Claim 7. P and Θ are edge-transitive.
Using the definition of the Petersen graph as a Kneser graph (see Section 1.6 of Godsil

and Royle, [9]), it is easy to see that P is edge-transitive.
Now, we shall show that Θ is edge-transitive. The automorphism group of Θ is of

order 50 × 7! (see Brouwer, Cohen and Neumaier [5] or Hafner [11]) and the stabilizer of
a vertex w is S7, the symmetric group that permutes the neighbors of w. Take any pair
of nonadjacent vertices x and y. Let v be their common neighbor. Any automorphism
which fixes {x, y} also fixes v. So, the subgroup of automorphisms which fix {x, y} is of
order at most 2 × 5!. By the orbit-stabilizer theorem (see Section 2.2 of [9]), the orbit of
a nonedge {x, y} is of size at least 50×7!

2×5!
= 1050. The number of nonedges in Θ is 1050,

hence Θ is edge-transitive.

Putting all of the claims together, if the vertices of G ∈ {P, Θ} are colored with n− 2
colors, then either one color class is of size 3 or two color classes are each of size 2. There
is a pair of nonadjacent vertices that can be deleted so that each vertex that remains is of
a different color. In the first coloring, this is because G has no K3; in the second, because
G has no C4.

Since G is edge-transitive, the deletion of any nonadjacent vertices produces a graph
isomorphic to P ′ or Θ′, respectively. By adding the complementary cases, the Lemma
follows. �
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5.9 Proof of Lemma 8

Let n = k + 2, ∆ − δ = 3, ∆(G) − δ(G) = 1. Let S be a set of vertices that induces H
and let ∆ = deg(G[S], yk) ≥ · · · ≥ deg(G[S], y1) = δ. By Lemma 13, part (3), there are
two possibilities, CASE 1 and CASE 2:

CASE 1. There is a v0 ∈ V (G) \ S such that G [{v0} ∪ S \ {yk}] ≈ H.
Let {v1} = V (G) \ (S ∪ {v0}). Since |N(v0) ∩ (S \ {yk})| = ∆ and ∆ = ∆(G), it

is the case that v1 6∼ v0. Color {v0} ∪ S \ {y1, y2} with colors {1, . . . , k − 1} and color
{y1, y2, v1} with color k. In the rainbow copy of H, v1 must be chosen; otherwise the
resulting rainbow subgraph has at least e(H) − (δ + 1) + (∆ − 1) > e(H) edges.

So, U := V (G) \ {y1, y2} induces H. Count the number of edges in the subgraph
induced by U :

e(G[U ]) = e(H) ≥ e(H) − |S ∩ N(y2)| − |S ∩ N(y1)|

+(deg(G, v0) − 2) + (deg(G, v1) − 2)

≥ e(H) − (∆ − 2) − (∆ − 3) + deg(G, v0) + deg(G, v1) − 4 (3)

= e(H) − 2∆ + 5 + ∆ + deg(G, v1) − 4

= e(H) − ∆ + 1 + deg(G, v1).

So, deg(G, v1) ≤ ∆ − 1 but this must occur with equality because δ(G) = ∆ − 1. Since
deg(G, v0) = ∆, deg(G, v1) = ∆ − 1, v0 6∼ v1, we have that

e(H) = e(G) − 2∆ + 1. (4)

If there are three vertices of degree ∆−1 in G, then color each of them with color k and
rainbow color the remaining vertices with colors {1, . . . , k−1}. Any rainbow colored graph
on k vertices under this coloring would have at least e(G)− 2∆ + 2 edges, a contradiction
to (4). Thus, there are at most two vertices of degree ∆ − 1 in G.

Because deg(G, v1) = ∆−1, equality holds in (3) and, in particular, |S∩N(y1)| = ∆−3.
Since δ(G) = ∆ − 1, we have that y1 ∼ {v0, v1} and deg(G, y1) = ∆ − 1. Thus, v1 and
y1 are the only vertices of degree ∆ − 1 in G. The vertex y2 has degree ∆ in G but the
equality in (3) gives that y1 6∼ y2 and |S ∩ N(y2)| = ∆ − 2. So, y2 ∼ {v0, v1}. Putting
all of this information together, we arrive at the fact that {v0, y2, v1, y1} forms an induced
copy of C4 with v0 6∼ v1 and y1 6∼ y2.

If we rainbow color S \ {y2, y1} with colors {1, . . . , k − 2} and color the vertices in
{y2, y1} with color k − 1 and {v0, v1} with color k, then the only possibility for a rainbow
graph with e(G)− 2∆ + 1 edges in this coloring is U ′ := V (G) \ {v0, y2}. Since G −→ H,
the graph induced by U ′ must be isomorphic to H. Let w be a vertex of degree ∆−3 in U ′,
then deg(G, w) = ∆−1. This forces w to be either v1 or y1. However, both v1 and y1 have
exactly one neighbor among {v0, y2}, giving that deg(G[U ′], v1) = deg(G[U ′], y1) = ∆− 2,
a contradiction.
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CASE 2. There is a v1 ∈ V (G) \ S such that G [{v1} ∪ S \ {y1}] ≈ H.
Consider G and H. We have that G −→ H and G is bounded by H. Observe that y1

in an induced copy of H in G corresponds to yk in the same set of vertices, which induce
a copy of H in G. Thus we have CASE 1 for G and H, resulting in contradiction. �

5.10 Proof of Lemma 9

Recall that δ = 1. Suppose v is a vertex such that deg(G, v) = δ(G) < n − k + δ. Then
codeg(G, v) ≥ n−(n−k+δ) = k−δ = k−1. Color k−1 non-neighbors of v with distinct
colors, color the rest of the graph with the remaining colors. Let S induce a rainbow copy
of H in G in this coloring.

Suppose v ∈ S. Since k − 1 non-neighbors of v must be in S, we see that H would
contain a vertex (namely, v) with at least k − 1 non-neighbors, and thus having degree 0,
a contradiction. As a result, v 6∈ S.

Label the vertices of S so that ∆ = deg(G[S], yk) ≥ · · · ≥ deg(G[S], y1) = δ. Let
U = {v} ∪ S \ {yk, yk−1}. Using Lemma 3, we have that e(G[U ]) ≥ e(H) − ∆. On the
other hand, we know that v has at least k − 1 non-neighbors in S, and so it has at most
one neighbor in S.

As a result, e(G[U ]) ≤ e(H)−∆− (∆−1) + 1 + 1 and e(G[U ]) ≥ e(H)−∆, so ∆ ≤ 3.
If equality occurs then, by Lemma 13, part (1), H3 = {yk} and yk ∼ H2. Moreover, the
single member of N(v)∩S is neither yk nor yk−1. Furthermore, equality also implies that
it is not possible to find a yk−1 adjacent to v. Hence, v 6∼ H3 ∪ H2. �

5.11 Proof of Lemma 10

Let ∆(H) = 1 and H 6∈
{

K2, K2, P3

}

. Hence, k ≥ 4 and ∆(H) ≤ k − 3. Let G −→ H,
where G is a graph on n ≥ k +2 vertices. By Lemma 1, ∆(G) = 1. We have the following
cases:

CASE 1. G has more isolated vertices than H.
Color the isolated vertices of G with as many colors as possible using at most k − 1

colors, color the vertices of degree 1 in G with the remaining colors. It is clear that any
rainbow subgraph on k vertices will have more isolated vertices than H.

CASE 2. G has more edges than H and H has at least three isolated vertices.
In this case, the number of vertices of degree 1 in H is at most k−3. Color vertices in

as many edges of G as possible with distinct colors, using at most k − 1 colors, and color
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the rest of the graph with the remaining colors. Any rainbow subgraph on k vertices will
contain more edges than H.

CASE 3. G has more edges than H and H has at most two isolated vertices.
Assume first that n ≥ k + 3, then color each of the isolated vertices of G with distinct

colors and, for as many edges as possible, color the endvertices with the same color, a
different color on each edge. We see that any rainbow k-vertex subgraph has at least 3
isolated vertices.

Assume now that n = k + 2. If G has at least one isolated vertex, then color the
endpoints of one edge with color 1, color the endpoints of another edge with color 2,
rainbow color the rest. Then, H must have three isolated vertices, a contradiction. Thus,
G is a matching. If, as before, we color the vertices of one edge with color 1, then the
vertices in another edge with color 2 and the rest with remaining colors, then H ≈ M ′

k/2+1
.

To complete the proof, observe that any coloring of G ≈ Mk/2+1 with k colors gives
such a rainbow H ≈ M ′

k/2+1
. �

5.12 Proof of Lemma 11

Let ∆ = 2, H 6∈ {Λ, S4}.

CASE 1. H has two nonadjacent vertices of degree 2.
If k ≤ 4, the only possibility is H ≈ C4. Corollary 2 from the paper [2] gives that

f(H) = k for any regular graph H.
Hence, we may assume k ≥ 5 and ∆ = 2 ≤ k−3. By Lemma 1 part (1), ∆(G) = ∆ = 2.

We shall show that G is a disjoint union of cycles each of length at least 5.

Claim 1. Let S ⊂ V (G) be any vertex set that induces a copy of H. Then V (G) \ S is
an independent set.

For all v ∈ V (G) \ S Lemma 13 part (1) gives that |N(v) ∩ (S \ {yk, yk−1})| = ∆ = 2.
Each vertex in V (G) \ S sends 2 edges into S, and thus no edges into V (G) \ S. So
V (G) \ S induces an empty graph.

Claim 2. G is a union of cycles.

Assume that there is a vertex v in G such that deg(G, v) < 2, consider any two ad-
jacent vertices w, w′. Color v, w, w′ with one color and the rest of the graph with the
remaining k − 1 colors. Let U ⊆ V (G) induce a rainbow copy of H under this coloring.
Then U contains one vertex from {v, w, w′}, moreover v ∈ U , since its degree is less than
2. On the other hand, both w and w′ cannot be in V (G) \ U since they are adjacent,
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contradicting the fact that V (G) \ U is an independent set. Thus there is no vertex of
degree less than 2 in G. Therefore G is 2-regular, and Claim 2 follows.

Claim 3. G has no K3 and no C4.

Assume that G has a triangle. Color its three vertices with the same color and color
the rest of the vertices with new colors. In this coloring, there is a pair of adjacent vertices
outside of a rainbow copy of H, a contradiction. If G has a C4, then color each of the two
nonadjacent vertices of a copy of C4 with color 1, color each of the two other vertices of
C4 with color 2 and the color the rest of the vertices of G with the remaining k− 2 colors
(here n ≥ k + 2 is necessary). This gives two adjacent vertices outside of a rainbow copy
of H, a contradiction.

If n ≥ k+3, then color four consecutive vertices on one cycle with one color, and color
the rest of the vertices arbitrarily with the remaining k − 1 colors. As a result, there is
an edge outside of the rainbow copy of H, a contradiction.

Thus we may assume that n = k + 2. Color three consecutive vertices on one of the
cycles of G with color 1 and rainbow color the rest of the vertices with the remaining
colors. Since there is no edge outside of a copy of H in G, we must pick the middle vertex
of color 1 in a rainbow copy of H. Thus, H is a disjoint union of an isolated vertex, a path
and perhaps some cycles. If G has at least two cycles, then color two vertices in one cycle
with color 1, color two vertices in another cycle with color 2 and rainbow color the rest of
the vertices with the remaining k−2 colors. Under this coloring, H has no isolated vertex,
a contradiction. The only case that remains is that G is a single cycle and H = Pk−1 +K1.
Since H has two nonadjacent vertices of degree two, k − 1 ≥ 5, thus n ≥ 8. Let v, v ′ and
u, u′ be two pairs of consecutive vertices of G such that G−u−u′− v− v′ consists of two
paths, each of length at least 2. Color v, v′ with color 1 and u, u′ with color 2, rainbow
color the rest of the vertices with remaining colors. Under this coloring, H has no isolated
vertices, a contradiction.

CASE 2. All degree 2 vertices of H are adjacent.
Recall that n ≥ k + 2. We have that H has one component L ∈ {P3, K3, P4}, and

all other components are isolated edges and vertices. We may assume that k ≥ 4 since
H 6∈ F∞. If k = 4 then H ∈ {P4, Λ, S4}. Since H 6∈ F∞, we see that H ≈ P4. Since
n ≥ k + 2 = 6, Ramsey’s theorem gives that G contains either K3 or K3, contradicting
the Deck Lemma (Lemma 3). We can assume that k ≥ 5, giving that ∆ = 2 ≤ k − 3 and
∆(G) = 2 by Lemma 1. The Deck Lemma implies that each connected subgraph of G on
|V (L)| vertices is isomorphic to L.

Assume first that k ≥ 7. There is only one component of G with at least three vertices
(call such a component large) and this large component is either P3, K3 or P4. Indeed,
otherwise one can find two nonadjacent vertices of degree 2 in G; considering these and
their neighbors will contradict the Deck Lemma. Since n ≥ k+2, we can color the vertices
of the large component of G with two colors and color the remaining vertices arbitrarily.
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Under this coloring, any rainbow subgraph has components with at most two vertices, a
contradiction.

Thus, k = 5 or 6 and L ∈ {P3, K3, P4}.
Let k ∈ {5, 6} and L ∈ {P3, K3}. Then, G has no component on more than three

vertices, and each large component of G is isomorphic to L. If G has only one component
isomorphic to L, then color it with two colors, and color the rest arbitrarily, resulting in
contradiction. If G has at least two such components, color the vertices in two copies of L
with two colors each and color the rest of V (G) with the remaining 1 ≤ k − 4 ≤ 2 colors.
Under this coloring, no rainbow subgraph has a component with more than 2 vertices.

Let k = 6 and L ≈ P4. Then, H is either P4 + K2 or P4 + 2K1. Any component of G
on at least three vertices must be P4 since otherwise there is a subgraph P5 of G which
contains two vertices of degree 2, nonadjacent in G, such that these two vertices and their
neighbors span at most 5 vertices, which contradicts the Deck Lemma. Color the vertices
of P4 in G with three colors and color the rest of the graph with the remaining three
colors. Under this coloring, no rainbow subgraph has a P4.

Let k = 5 and L ≈ P4. Then H ≈ P4 + K1. In particular, we have that H has no
induced 2K2. Thus, G has only one nontrivial (with at least one edge) component and
this component is either P4 or C5. Since n ≥ k+2, we can color this component with three
colors and color the rest of the vertices arbitrarily with the remaining 2 colors, arriving
at a contradiction. �

5.13 Proof of Lemma 12

Recall that ∆ = ∆(H) = 3, δ = δ(H) ≤ 1 and δ(G) < n − k + δ.

Claim 1. There exists a set S ⊂ V (G) and vertices y1 ∈ S and v1 ∈ V (G) \ S such that
G[S] ≈ H, y1 is a minimum-degree vertex in G[S] and N(v1) ∩ S = {y1}.

If δ = 1, then this follows directly from Lemma 9.
If δ = 0, then suppose the claim is false. Lemma 13, part (3) gives that there is

a v0 ∈ V (G) \ S such that S0 := {v0} ∪ (S \ {yk}) and G[S0] ≈ H. In this case,
|N(v0) ∩ (S \ {y1, y2})| ≤ δ + 1 = 1, so v0 ∼ {y1, y2} and Lemma 13, part (2) also
gives that y1 is the unique isolated vertex in G[S]. We have the freedom to choose y2 to
be any degree-one vertex in G[S], hence v0 is adjacent to every vertex of degree at most
one in G[S].

As a result, G[S0] has no isolated vertices, a contradiction to the claim that G[S0] ≈ H.
This proves Claim 1.

Claim 2. |H3| = 1, H3 ∼ H2.
If δ = 1, this follows directly from Lemma 9. If δ = 0, this comes from Claim 1 and

Lemma 13, part (1). This proves Claim 2.
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CASE 1. δ = 0.
By Lemma 13, part (2), the graph G[S] has a unique isolated vertex, y1. Since |H3| = 1,

the component containing yk has an odd number of degree-one vertices.
If the component of G[S] containing yk has 3 degree-one vertices, call two of them y2

and y3. Let S ′ = {v1} ∪ (S \ {y2, y3}), where v1 as in Claim 1. The graph G[S ′] has no
isolated vertices. Since |S ′| = k − 1 and e(S ′) = e(H) − 1, the Deck Lemma implies that
S ′ is obtained by deleting a degree-one vertex from H, which would yield at least one
isolated vertex, a contradiction.

Therefore, we may assume that the component of G[S] containing yk has exactly
1 degree-one vertex. Since all degree-two vertices must be adjacent to yk, the vertex
set {yk, yk−1, yk−2}, for two degree-two vertices yk−1 and yk−2, induces a triangle. Let
S ′′ = {v1}∪(S \ {yk−1, yk−2}). The graph G[S ′′] has no isolated vertices. Since |S ′′| = k−1
and e(S ′′) = e(H)− 2, the Deck Lemma implies that S ′′ is obtained by deleting a degree-
two vertex from H, which would yield at least one isolated vertex, a contradiction.

Hence, there is no graph in CASE 1.

CASE 2. δ = 1.
If y1 6∼ yk, then let S ′ = {v1}∪(S \ {yk, y1}), where v1 as in Claim 1. Since |S ′| = k−1

and e(S ′) = e(H) − 4, the Deck Lemma is contradicted. Therefore, we may assume that
y1 ∼ yk.

If H is not connected, then since every degree-two vertex in G[S] is adjacent to yk,
every connected component of G[S] not containing yk must be an isolated edge. Let
{y2, y3} be a component of G[S] not containing yk. If S ′′ = {v1} ∪ (S \ {y2, y3}), then
e(S ′′) = e(H), contradicting the Deck Lemma. Therefore, we may also assume that H is
connected.

Since H3 ∼ H2, y1 ∼ yk and H is connected, there are only three possibilities for H:
one for each of k = 4, 5, 6. If k ≤ 4, then H ≈ Λ. If k ∈ {5, 6} then Figure 3 gives these
graphs and the possible ways for v1 to be adjacent to S.

y

y

y1

v1

y65y

4y 4

1

v1

3y 3y

y2
5yy2

HH

Figure 3: Small graphs, δ = 1, ∆ = 3 in Lemma 12

In the case where k = 5, the vertex set {v1, y1, y3, y4} induces the graph 2K2, which
is not in deck(H). In the case where k = 6, the vertex set {v1, y1, y2, y3, y6} induces the
graph P3 + 2K1, which again is not in deck(H).

Hence, the only graph in CASE 2 is H ≈ Λ, which must be excluded because Λ ∈ F∞.
�
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6 Concluding remarks

Open question: H ≈ Λ, H ≈ Λ
It is still an open problem to determine Arrow(Λ) and Arrow(Λ). We see by Lemma 6
that C4 +K1 −→ Λ; it is shown in [2], that for each t ≥ 1 there is a graph G on 7t vertices
such that G −→ Λ. A case analysis, which we neglect to include in this paper, gives that
for any G of order 6, G 6−→ Λ.

Thus, even the weaker problem of determining {n : |V (G)| = n and G −→ Λ} is still
open.

Generalizing the problem
A natural generalization of this problem is as follows: Let H be a set of k-vertex
graphs and define G −→ H so that if V (G) is colored with k colors, then there is an
H ∈ H such that G contains a rainbow induced subgraph isomorphic to H. Determine
Arrow(H) = {G : G −→ H}, for interesting sets H of graphs.
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