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Abstract

Degree constrained orientations are orientations of an (undirected) graph where
the in-degree function satisfies given lower and upper bounds. For finite graphs
Frank and Gyárfás (1976) gave a necessary and sufficient condition for the existence
of such an orientation. We extend their result to countable graphs.

1 Introduction

Orientations of finite graphs are well-studied. An early result is the theorem of Rob-
bins [10] on the existence of a strongly connected orientation. This result has been widely
generalised by Nash-Williams [8] in 1960, who described orientations satisfying global or
(symmetric) local edge-connectivity requirements. Ford and Fulkerson [4] investigated
when a partial orientation can be completed to a di-eulerian one. As a last example, let
us cite Frank [5] who characterised the graphs that can be oriented in such a way that
there are k directed paths between a specified vertex and every other vertex.

In contrast, not much is known about orientations of infinite graphs. An exception is an
old result of Egyed [3] that extends Robbins’ theorem on strongly connected orientations.
We mention also Thomassen [11] who raised some related conjectures.

In this paper, we will focus on degree constrained orientations in infinite (but count-
able) graphs. These are orientations where the in-degree function, i.e. the function count-
ing the number of ingoing edges at each vertex, satisfies given lower and upper bounds.
Degree constrained orientations have a close relationship to Hall’s marriage theorem, and
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are also used by Berg and Jordán [1] in the context of graph rigidity. For finite graphs,
Frank and Gyárfás [7] gave a necessary and sufficient condition for the existence of a
degree constrained orientation. In infinite graphs, however, their condition is no longer
sufficient. By strengthening the Frank-Gyárfás condition we will recover sufficiency while
maintaining necessity.

Let us briefly recall some standard notation. For subsets U, W of the vertex set of
a graph G = (V, E) denote by iG(U) the number of edges in G having both endvertices
in U and by dG(U, W ) the number of edges in G with one endvertex in U \ W and the

other in W \ U . For a directed graph ~G and X ⊆ V ( ~G) let ρ ~G(X) (resp. δ ~G(X)) denote
the number of edges entering (resp. leaving) the set X. If x is a vertex, we write ρ ~G(x)

instead of ρ ~G({x}), and if no confusion can arise we will omit the subscripts G and ~G. For
a function m : V → R and X ⊆ V we will use the notation m(X) to mean

∑
x∈X m(x).

Unfortunately, this notation is slightly inconsistent, in so far as ρ ~G
(X) is, in general, not

the same as
∑

x∈X ρ ~G(x).

Theorem 1 (Frank and Gyárfás [7]). Let G = (V, E) be a finite graph, and let

l, u : V (G) → Z be such that l(v) ≤ u(v) for all v ∈ V . Then

(i) there exists an orientation ~G of G such that l(v) ≤ ρ ~G(v) ≤ u(v) for each vertex v
if and only if

(ii) l(X) ≤ i(X) + d(X, V \ X) and u(X) ≥ i(X) for all X ⊆ V (G).

For a proof see also Frank [6].
The result carries over to locally finite graphs (graphs that while possibly infinite have

finite degree in each vertex) by an easy compactness argument. For non-locally finite
graphs, however, the condition (ii) is too weak for the lower bound, as can be seen by
considering an infinite star and setting l ≡ 1. There is no orientation satisfying the lower
bounds while (ii) clearly holds.

Before we look at this example in more depth, let us rephrase Theorem 1. If we define
the surplus to be s(X) = i(X) + d(X, V \ X) − l(X) for a graph G = (V, E) and a set
X ⊆ V , then the theorem states that there is an orientation satisfying the lower bounds
if and only if there is no set of negative surplus. Our aim is to find a condition in this
vein.

Compare the infinite star with a finite star with the same lower bound of 1 everywhere.
The whole finite star has negative surplus of −1, showing that there is no orientation
satisfying the lower bound. Instead of computing this surplus directly let us do it in two
steps. First, we observe that the set L of all leaves has surplus s(L) = 0. Now, if we
add the centre c to L we do not gain any new edges since every edge is already incident
with a leaf but since l(c) > 0 the demand for ingoing edges increases. Hence, L ∪ {c} has
negative surplus.

Let us try to do the same for the infinite star. We immediately encounter the problem
that the set L of all leaves is incident with infinitely many edges but has infinite demand
for ingoing edges, i.e. l(L) = ∞. This results in s(L) = ∞−∞, for which it is not clear
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which value this should be. So, let us compute the surplus of L in a similar stepwise
fashion as above. Indeed, enumerate the leaves of the infinite star and denote by Ln the
set of the first n leaves, which then has surplus 0. As L is the limit of the sets Ln it seems
justified to define the surplus of L as the limit of s(Ln), which therefore yields 0. Now,
adding the centre c to L we see as for the finite star that the set L ∪ {c} has negative
surplus. Consequently, the set L∪{c} is a witness for the non-existence of an orientation
respecting the lower bounds.

We will now turn the ad hoc reasoning in the preceding paragraph into a formal
condition. Fix a graph G = (V, E), and for an ordinal number θ call a family Uθ := (Uµ)µ≤θ

of subsets of V a queue in G if

• U0 = ∅;

• Uµ ⊆ Uλ for all µ ≤ λ ≤ θ;

• Uλ =
⋃

µ<λ Uµ for each limit ordinal λ ≤ θ.

We write Uλ for the initial segment up to λ of Uθ, i.e. Uλ = (Uµ)µ≤λ.
Let l : V → Z be a non-negative function, and let Uθ = (Uλ)λ≤θ be a queue in G.

Putting η(U0, l) = 0, we define by transfinite induction a function η such that

η(Uλ+1, l) = η(Uλ, l) + i(Uλ+1 \ Uλ) + d(Uλ+1 \ Uλ, V \ Uλ+1) − l(Uλ+1 \ Uλ)

and such that η(Uλ, l) = lim infµ<λ η(Uµ, l) for limit ordinals λ. In the computation of η we
might need to calculate with ∞; we use the convention that ∞−∞ = ∞. Sometimes, if
confusion can arise, we will write ηG to specify the underlying graph. We remark that for
a finite vertex set the η-function provides merely an overly complicated way of computing
its surplus. For infinite sets, however, η can be seen as a refinement of the surplus.

A set U ⊆ V will be called l-deficient (or simply deficient if l is clear from the context)
if there exists a queue Uθ = (Uλ)λ≤θ with U = Uθ and η(Uθ, l) < 0. Deficient sets will play
the same role as sets of negative surplus in the finite case.

We can now state our main result, which we will prove in the next section:

Theorem 2. Let G = (V, E) be a countable graph, and let l, u : V → Z ∪ {∞} be

non-negative functions with l ≤ u. Then the following statements are equivalent:

(i) there exists an orientation ~G of G such that l(v) ≤ ρ ~G(v) ≤ u(v) for each vertex v;
and

(ii) there are no l-deficient sets and u(X) ≥ i(X) for all finite X ⊆ V (G).

We mention that the theorem is very much in spirit of [9], in which Nash-Williams
extends Hall’s marriage theorem to countable graphs. This is perhaps not at all surprising
since for finite graphs Theorem 1 can be reduced to the marriage theorem and vice versa.
For infinite graphs, there are several versions of Hall’s theorem. From the one in [9] one
can indeed obtain our main result. However, as our proof is not a simple translation of
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Nash-Williams’ arguments and as the reduction of Theorem 2 to Nash-Williams’ theorem
is not at all immediate (it takes about two pages), we see merit in providing a direct
proof.

Nash-Williams’ idea to refine a finite condition by using transfinite sequences is also
used in Wojciechowski [12], who investigates when an infinite family of matroids on the
same ground set has a system of disjoint bases.

2 Proof of main result

The graphs we consider are allowed to have parallel edges and loops and may be infinite.
For general graph theoretic notation and terms we refer the reader to Diestel [2]. In this
section G will always denote a graph with vertex set V and edge set E, and l, u : V →
Z ∪ {∞} will always be non-negative functions such that l ≤ u.

We shall prove the main result in the course of this section. Let us start with the
observation that the function η satisfies a submodularity-type inequality (a set function
b : 2V → R is called submodular if b(X)+b(Y ) ≥ b(X ∩Y )+b(X∪Y ) for any X, Y ⊆ V ).
More precisely, it is easy to see that for the surplus function it holds that

s(U) + s(W ) = s(U ∪ W ) + s(U ∩ W ) + d(U \ W, W \ U),

where U, W are vertex sets. (Clearly, this implies that s is submodular.) The lemma
below states that a similar relation is true for η.

For a set X ⊆ V , we will denote its complement V \X by X if the base set V is clear
from the context. To ease notation further, we will say that U = (Uλ)λ≤θ is a queue for

a set U if U = Uθ. For a successor ordinal λ, we write (slightly abusing notation) λ − 1
for the ordinal µ for which λ = µ + 1. We also introduce the notation U ′

λ := Uλ \ Uλ−1.

Lemma 3. Let U = (Uλ)λ≤θ be a queue for U and W = (Wλ)λ≤κ be a queue for W .

Define queues X = (Xλ)λ≤κ with Xλ = U ∩ Wλ for every λ ≤ κ and Y = (Yλ)λ≤θ+κ with

Yλ = Uλ for λ ≤ θ and Yθ+λ = U ∪ Wλ for λ ≤ κ. Then

η(U , l) + η(W, l) ≥ η(X , l) + η(Y, l) + d(W \ U, U \ W ).

Proof. We shall show that

η(U , l) + η(Wλ, l) ≥ η(Xλ, l) + η(Yθ+λ, l) + d(Wλ \ U, U \ Wλ) (1)

for all λ ≤ κ, which will give the statement with λ = κ.
We have η(W0, l) = η(X0, l) = 0, η(Yθ, l) = η(U , l) and d(W0 \ U, U \ W0) = 0 since

W0 = ∅. Therefore, (1) holds with equality for λ = 0. We proceed by transfinite induction.
Let λ be the smallest ordinal for which (1) is not yet shown.

First, assume λ to be a successor ordinal. Observe that

dx := d(X ′
λ, Xλ) = d(X ′

λ, Wλ \ U) + d(X ′
λ, Wλ).

the electronic journal of combinatorics 15 (2008), #R122 4



λX’

W’λ
Y’θ+λ

Wλ

U

...

Figure 1: Relevant sets in Lemma 3

and

dy := d(Y ′
θ+λ, Yθ+λ) = d(W ′

λ \ U, U ∪ Wλ).

We use these two relations in what follows:

d(X ′
λ, Wλ \ U) + d(W ′

λ, Wλ)

= d(X ′
λ, Wλ \ U) + d(Y ′

θ+λ, Yθ+λ)

+d(Y ′
θ+λ, U \ Wλ) + d(X ′

λ, Wλ)

= dx + dy + d(Y ′
θ+λ, U \ Wλ)

Noting that
i(W ′

λ) = i(X ′
λ) + i(Y ′

θ+λ) + d(X ′
λ, Y

′
θ+λ),

and that
d(X ′

λ, Wλ \ U) = d(X ′
λ, Y

′
θ+λ) + d(X ′

λ, Wλ−1 \ U),

we obtain

d(X ′
λ, Wλ−1 \ U) + d(W ′

λ, Wλ) + i(W ′
λ)

= dx + i(X ′
λ) + dy + i(Y ′

θ+λ) + d(Y ′
θ+λ, U \ Wλ)

(2)

Using this and the induction hypothesis for λ − 1 we get

η(U , l) + η(Wλ, l) = η(U , l) + η(Wλ−1, l) + d(W ′
λ, Wλ) + i(W ′

λ) − l(W ′
λ)

(1)

≥ η(Xλ−1, l) + η(Yθ+(λ−1), l) + d(Wλ−1 \ U, U \ Wλ−1)

+d(W ′
λ, Wλ) + i(W ′

λ) − l(W ′
λ)

= η(Xλ−1, l) + η(Yθ+(λ−1), l) + d(Wλ−1 \ U, U \ Wλ)

+d(Wλ−1 \ U, X ′
λ) + d(W ′

λ, Wλ) + i(W ′
λ) − l(W ′

λ)
(2)
= η(Xλ−1, l) + dx + i(X ′

λ) − l(X ′
λ)

+η(Yθ+(λ−1), l) + dy + i(Y ′
θ+λ) − l(Y ′

θ+λ)

+d(Wλ−1 \ U, U \ Wλ) + d(Y ′
θ+λ, U \ Wλ)

= η(Xλ, l) + η(Yθ+λ, l) + d(Wλ \ U, U \ Wλ).

the electronic journal of combinatorics 15 (2008), #R122 5



This proves the induction step when λ is a successor ordinal.
Second, assume that λ is a limit ordinal. Then

η(U , l) + η(Wλ, l) = η(U , l) + lim inf
µ<λ

η(Wµ, l)

≥ lim inf
µ<λ

(η(Xµ, l) + η(Yθ+µ, l) + d(Wµ \ U, U \ Wµ))

≥ η(Xλ, l) + η(Yθ+λ, l) + lim inf
µ<λ

d(Wµ \ U, U \ Wµ).

Furthermore, for any µ < λ we get

d(Wµ \ U, U \ Wµ) = d(Wµ \ U, U \ Wλ) + d(Wµ \ U, U ∩ (Wλ \ Wµ))

≥ d(Wµ \ U, U \ Wλ).

It is easy to see that lim infµ<λ d(Wµ\U, U \Wλ) = d(Wλ\U, U \Wλ) since Wλ =
⋃

µ<λ Wµ.
Putting all this together we obtain (1).

We call a vertex set U l-tight if (it is not l-deficient and) there exists a queue (Uλ)λ≤θ

for U with η(Uθ, l) = 0. If it is clear in regard to which function l a set is tight, we
will suppress the l. Tight sets are the most critical sets, and it can be seen that in an
orientation respecting the lower bound l there can be no edge leaving a tight set.

Lemma 3 immediately implies that the intersection and the union of two tight sets is
tight, too. We will need a little bit more, namely that this also holds for the union of
countably many tight sets:

Lemma 4. Assume that there are no deficient sets in G, and let U1, U2, . . . be countably

many tight sets. Then also their union is tight.

Proof. Let U i = (U i
λ)λ≤θi

be queues witnessing the tightness of Ui for each i, i.e. η(U i, l) =
0 and U i

θi
= Ui. For any n ∈ N, set κn =

∑n

i=1 θi and κ =
∑∞

i=1 θi. Then we can define
the queue Y = (Yλ)λ≤κ with Yκn−1+λ = Yκn−1

∪ Un
λ if λ ≤ θn (where κ0 = 0 and Y0 = ∅)

and Yκ =
⋃∞

n=1 Yκn
. By Lemma 3 and induction we get η(Yκn

, l) = 0 for all n ≥ 0:

η(Yκn
, l) ≤ η(Yκn−1

, l) + η(Un, l) = 0 + 0.

(Note, that there are no deficient sets.) From this it follows that

η(Y, l) = lim inf
λ<κ

η(Yλ, l) ≤ 0.

Again, as there are no deficient sets, this implies that Yκ =
⋃∞

i=1 Ui is tight.

As for the lower bound we will define deficiency and tightness of sets with respect to
the upper bound, too. We call a finite vertex set X u-faulty, if u(X)− i(X) < 0, and we
call it u-taut if u(X) − i(X) = 0. Again, if u is clear from the context, we will omit it.

In the last lemma we saw that the union of tight sets is tight. In contrast, for taut
sets we will need that their intersection is taut:
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Lemma 5. If there are no faulty sets in G then the following is true:

(i) if X and Y are two taut sets then X ∩Y is taut and there is no edge between X \ Y
and Y \ X; and

(ii) the intersection of arbitrarily many taut sets is taut.

Proof. (i) On the one hand, we get

i(X) + i(Y ) = u(X) + u(Y ) = u(X ∪ Y ) + u(X ∩ Y ) ≥ i(X ∪ Y ) + i(X ∩ Y )

and on the other hand, i is supermodular, i.e. it holds that:

i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ).

Thus, we have equality everywhere. In particular, if there was an edge between X \ Y
and Y \ X then i(X) + i(Y ) < i(X ∪ Y ) + i(X ∩ Y ), which is not the case.

(ii) Let Xi, i ∈ I be taut sets. Since by definition each of the Xi is finite, their
intersection is also finite. Hence, there are already finitely many Xj, j ∈ J ⊆ I with⋂

i∈I Xi =
⋂

j∈J Xj. Therefore, we only need to check that the intersection of two taut
sets is taut, which is true by (i).

In Theorem 2 (ii) the conditions regarding the lower and the upper bound are in-
dependent of each other. The following lemma provides a link between tight and taut
sets.

Lemma 6. Let there be neither deficient sets nor faulty sets in G, and let U be a taut set

and L be a tight set. Then U \ L is taut and L \ U is tight.

Proof. Since the proof is technical but not too hard, we only give an indication of how
the lemma is proved.

Let L = (Lλ)λ≤θ be a queue with η(L, l) = 0 and Lθ = L, and define M = (Lλ \U)λ≤θ.
Using transfinite induction and arguments similar to those in the proof of Lemma 3, one
can show that for any ordinal λ ≤ θ we have

η(Lλ, l) ≥ η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ).

Now, for λ = θ this yields

0 = η(L, l) + u(U) − i(U)

≥ η(M, l) + i(L ∩ U) − l(L ∩ U) + u(U) − i(U) + d(L ∩ U, L)

≥ η(M, l) + u(U \ L) − i(U \ L) + (u − l)(L ∩ U)

Since η(M, l) ≥ 0, u ≥ l and since u(U \L) ≥ i(U \L) it follows that U \L is taut. This
then also implies that η(M, l) = 0, and hence L \ U is tight.
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Lemma 7. Let there be no u-faulty sets. Assume that for an edge e with endvertices v, w
there is no u-taut set U with v ∈ U but w /∈ U . Then, setting u′(x) = u(x) for all vertices

x 6= v and u′(v) = u(v) − 1, there are no u′-faulty sets in G − e.

Proof. If u(v) = ∞ then for every set X ⊆ V we get u(X) = ∞, and thus there cannot
be any u′-faulty set in G − e. So, let u(v) < ∞, and suppose U is u′-faulty in G − e.
Clearly, v ∈ U but w /∈ U since there are no u-faulty sets in G. But then U is u-taut
in G, a contradiction.

We can finally prove our main result:

Proof of Theorem 2. (ii)⇒(i) Let v1, v2, . . . be a sequence of the vertices of G such that
every vertex v appears exactly l(v) times in it. Putting l0 = l and u0 = u we recursively

(a) set ln(v) = ln−1(v) if v 6= vn and ln(vn) = ln−1(vn) − 1;

(b) set un(v) = un−1(v) if v 6= vn and un(vn) = un−1(vn) − 1; and

(c) find distinct edges e1, e2, . . . such that Gn := G − {e1, . . . , en} has no ln-deficient and
no un-faulty sets and such that en is incident with vn.

Assume that this has been achieved for i < n. It is not difficult to check directly that
picking any loop at vn for en we satisfy (a)–(c). However, if we agree that vn is a neighbour
of itself if there is a loop at vn then what follows covers also loops.

For each neighbour w of vn in Gn−1 for which this is possible pick an ln−1-tight set X
with w ∈ X but vn /∈ X, and consider the union L of these sets. By Lemma 4, L is still
ln−1-tight. In a similar way, consider a minimal un−1-taut set U that contains vn (where
we set U = ∅ if there is no such set). From Lemma 5 (ii) it follows that for a neighbour w
of vn in Gn−1 for which there is an un−1-taut set Y with vn ∈ Y but w /∈ Y it holds that
w /∈ U . By Lemma 6, U \ L is un−1-taut, too. As U is minimal this implies U = U \ L
and therefore that U and L are disjoint.

Next, if U 6= ∅ then there is a neighbour wn of vn in Gn−1 with wn ∈ U . For if that
was not the case, then, recalling that u(vn) > 0 by definition of vn, we would have

i(U \ {vn}) = i(U) = u(U) > u(U \ {vn}),

which is a contradiction, as there are no un−1-faulty sets. Note that wn /∈ L since U
and L are disjoint. If, on the other hand, U = ∅ then there is a neighbour wn /∈ L
of vn in Gn−1. Indeed, suppose not. Let L := (Lλ)λ≤θ be a queue with η(L, ln−1) = 0
and Lθ = L (recall, that L is ln−1-tight). Put Lθ+1 = L ∪ {vn}, and observe that
i(Lθ+1 \ Lθ) = 0 (since there is no loop at vn) and dGn−1

(Lθ+1 \ Lθ, V (Gn−1) \ Lθ+1) = 0.
Thus, η(Lθ+1, ln−1) = −ln−1(vn) < 0, (from the definition of our sequence v1, v2, . . . it
follows that ln−1(vn) > 0). Consequently, Lθ+1 is ln−1-deficient, contrary to our induction
hypothesis. In any case, let en be any edge between vn and wn and observe that, by
Lemma 7, there are no un-faulty sets in Gn. In addition, by construction of L and
because of wn /∈ L we get

there is no ln−1-tight set X in Gn−1 with wn ∈ X but vn /∈ X (3)
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Let us check that there are also no ln-deficient sets in Gn. So, suppose there is a
ln-deficient set M in Gn, and let Mθ = (Uλ)λ≤θ be a queue in Gn with M = Mθ and
ηGn

(Mθ, ln) < 0. Since Gn differs from Gn−1 only in the edge en we get, if neither vn ∈ M
nor wn ∈ M , that ηGn−1

(Mθ, ln−1) = ηGn
(Mθ, ln), which is impossible since M is not

ln−1-deficient in Gn−1. In a similar way, if ln−1(vn) < ∞ we can exclude the case when
vn ∈ M as we lose an edge but also have less demand of ingoing edges. If, on the other
hand, ln−1(vn) = ∞ we can get rid of this case, too: Denote by λ the smallest ordinal
for which vn ∈ Mλ, which is a successor ordinal, by definition of a queue. Then as
ηGn−1

(Mλ, ln−1) ≥ 0 and as

ηGn−1
(Mλ, ln−1) = ηGn−1

(Mλ−1, ln−1) + i(M ′
λ) + d(M ′

λ, Mλ) −∞

it follows that ηGn−1
(Mλ, ln−1) = ∞, and hence ηGn−1

(Mθ, ln−1) = ∞. Because ηGn−1
and

ηGn
can differ by at most one, we obtain ηGn

(Mθ, ln) = ∞, a contradiction.
Therefore, we may assume that wn ∈ M but vn /∈ M (independent of the value of

ln−1(vn)). Now, let λ be the smallest ordinal for which wn ∈ Mλ, which is a successor
ordinal. Then,

dGn−1
(Mλ \ Mλ−1, Mλ) = dGn

(Mλ \ Mλ−1, Mλ) + 1,

and thus ηGn−1
(Mλ, ln−1) = ηGn

(Mλ, ln)+1 (since vn /∈ Mλ implies that ln−1(Mλ\Mλ−1) =
ln(Mλ \ Mλ−1)). Hence, ηGn−1

(Mθ, ln−1) = ηGn
(Mθ, ln) + 1. Now, since ηGn

(Mθ, ln) < 0
but ηGn−1

(Mθ, ln−1) ≥ 0 we obtain that ηGn−1
(Mθ, ln−1) = 0. Therefore, M is an ln−1-

tight set with vn /∈ M but wn ∈ M , contradicting (3). Thus, there are no ln-deficient sets
in Gn, as required.

Having terminated the transfinite induction, we put G0 = G − {e1, e2, . . .}. We think
of each edge en as already directed towards vn. In this way, each vertex v has an indegree
of exactly l(v) (by definition of the vertex enumeration). So, what remains is to direct
the edges in G0 in such a way, that the reduced upper bound u0 := u − l is respected.

First, let us show that there are no u0-faulty sets in G0. Indeed, consider a finite
vertex set U in G0. Then there is an N such that uN(U) = u0(U) and iGN

(U) = iG0(U),
and thus u0(U) ≥ iG0(U) since uN(U) ≥ iGN

(U). As a u0-faulty set is by definition finite,
there is therefore no such set.

Second, let f1, f2, . . . be an enumeration of the edges of G0. Denote the endvertices of
f1 by x and y, and observe that if there is a u0-taut set X with x ∈ X but y /∈ X then
there is no u0-taut set Y with x /∈ Y but y ∈ Y , by Lemma 5 (i).

Now, if there is such a set X, then direct f1 towards y, and define u1(v) = u0(v) for
v 6= y and u1(y) = u0(y)− 1. If not, direct f1 in the other way, and define u1 accordingly.
Lemma 7 ensures that G1 = G0 − f1 has no u1-faulty sets. Continuing in this way, we
obtain the desired orientation. Indeed, suppose a vertex v receives more ingoing edges
than u(v). Then there is an N such that uN(v) < 0, which implies that {v} is uN -faulty,
a contradiction.

(i)⇒(ii) Let ~G be an orientation as in (i). Then trivially u(X) ≥
∑

v∈X ρ ~G(v) ≥ i(X)
holds for any finite set X ⊆ V . In order to prove that there is no l-deficient set, pick any
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queue Uθ := (Uλ)λ≤θ. We will show by transfinite induction that η(Uλ, l) ≥ δ ~G(Uλ) for
every λ ≤ θ. (Recall that δ ~G(U) denotes the number of edges leaving U .) This is true for
λ = 0. Let λ be the smallest ordinal for which this is not yet shown.

First, let λ be a successor ordinal, and assume that
∑

v∈U ′

λ

ρ ~G(v) < ∞. Then

η(Uλ, l) = η(Uλ−1, l) + i(U ′
λ) + d(U ′

λ, Uλ) − l(U ′
λ)

≥ δ ~G(Uλ−1) + i(U ′
λ) + d(U ′

λ, Uλ) −
∑

v∈U ′

λ

ρ ~G(v)

= δ ~G(Uλ−1) + d(U ′
λ, Uλ) − ρ ~G(U ′

λ) = δ ~G(Uλ).

If, on the other hand,
∑

v∈U ′

λ

ρ ~G(v) = ∞ then either there are infinitely many edges

directed from Uλ−1 to U ′
λ, in which case η(Uλ−1, l) ≥ δ ~G(Uλ−1) = ∞, or i(U ′

λ) = ∞, or
there are infinitely many edges directed from Uλ towards U ′

λ, which implies d(U ′
λ, Uλ) = ∞.

In all of these cases we obtain

η(Uλ, l) = η(Uλ−1, l) + i(U ′
λ) + d(U ′

λ, Uλ) − l(U ′
λ) ≥ ∞−∞ = ∞.

Next, let λ be a limit ordinal. Denoting by A(X, Y ) the edges directed from X ⊆ V
to Y ⊆ V we obtain

η(Uλ, l) = lim inf
µ<λ

η(Uµ, l) ≥ lim inf
µ<λ

(δ ~G(Uµ))

≥ lim inf
µ<λ

|A(Uµ, Uλ)| = δ ~G(Uλ).

Finally, with λ = θ we get η(Uθ, l) ≥ δ ~G(Uθ) ≥ 0, as desired.

3 Open questions

Let us formulate two directions for future research. First, Theorem 2 treats only countable
graphs, and indeed our proof does not seem to be adaptable to higher cardinalities. On the
other hand, we do not have any example showing that our condition fails in uncountable
graphs.

Problem 8. Can Theorem 2 be extended to uncountable graphs?

Second, in finite graphs, Theorem 1 allows to impose lower bounds on the in-degree
and the out-degree at the same time. Indeed, d(v)−u(v) gives a lower bound on the out-
degree of a vertex v. In contrast, for a vertex v of infinite degree we can only demand all
or nothing. Setting u(v) to a finite value in Theorem 2 is the same as requiring infinitely
many outgoing edges at v, whereas putting u(v) = ∞ will not impose any restrictions on
the out-degree at all. To regain a finer control, we propose the following conjecture:
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Conjecture 9. Let G be a countable graph, and let l, r : V (G) → N ∪ {∞} be two

non-negative functions with l(v) + r(v) ≤ d(v) for all vertices v. Then

(i) there exists an orientation ~G of G such that ρ ~G
(v) ≥ l(v) and δ ~G

(v) ≥ r(v) for each

vertex v

if and only if

(ii) there are no l-deficient sets and no r-deficient sets.
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