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Abstract

A dominating set S of a graph G is a global (strong) defensive alliance if for
every vertex v ∈ S, the number of neighbors v has in S plus one is at least (greater
than) the number of neighbors it has in V \ S. The dominating set S is a global
(strong) offensive alliance if for every vertex v ∈ V \ S, the number of neighbors v
has in S is at least (greater than) the number of neighbors it has in V \ S plus one.
The minimum cardinality of a global defensive (strong defensive, offensive, strong
offensive) alliance is denoted by γa(G) (γâ(G), γo(G), γô(G)).

We compare each of the four parameters γa, γâ, γo, γô to the independent domi-
nation number i. We show that

i(G) ≤ γ2
a(G) − γa(G) + 1 and i(G) ≤ γ2

â(G) − 2γâ(G) + 2 for every graph
i(G) ≤ γ2

a(G)/4+γa(G) and i(G) ≤ γ2
â(G)/4+γâ(G)/2 for every bipartite graph

i(G) ≤ 2γa(G) − 1 and i(G) = 3γâ(G)/2 − 1 for every tree
and describe the extremal graphs,

and that γo(T ) ≤ 2i(T ) − 1 and i(T ) ≤ γô(T ) − 1 for every tree.
We use a lemma stating that β(T ) + 2i(T ) ≥ n + 1 in every tree T of order n

and independence number β(T ).
Keywords: independence, domination, alliance, bipartite graph, tree.

1 Introduction

We consider simple graphs G = (V (G), E(G)) with vertex set V (G), edge set E(G), order
n(G) = |V (G)| and size m(G) = |E(G)| (V , E, n, m when no ambiguity is possible).
The degree in G of a vertex v is denoted by dG(v), or simply d(v), and the number of
neighbors of v in a subset S of V by dS(v).

A subset S of vertices is dominating if every vertex of V \S has at least one neighbor in
S, and independent if no two vertices of S are adjacent. It is well known that a dominating
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set is independent if and only if it is a maximal independent set and that in every graph,
γ(G) ≤ i(G) ≤ β(G) where γ(G) and i(G) are respectively the minimum cardinality
of a dominating set and of an independent dominating set and β(G) is the maximum
cardinality of an independent set. Alliances are defined in [6] as follows. A subset S ⊆ V
is a defensive alliance (respectively strong defensive alliance) if dV \S(v) ≤ dS(v) + 1
(respectively dV \S(v) < dS(v) + 1) for every v ∈ S. In other words, every vertex of S
together with its neighbors in S is as strong as (respectively stronger than) the coalition
of its neighbors out of S. The subset S is an offensive alliance (respectively a strong

offensive alliance) if dS(v) ≥ dV \S(v) + 1 (respectively dS(v) > dV \S(v) + 1) for every
vertex v ∈ V \ S dominated by S. In other words, every vertex out of S and dominated
by S together with its neighbors out of S is not stronger (respectively weaker) than the
coalition of its neighbors in S. Alliances of any sort are global if they dominate G. The
minimal cardinality of a global defensive (respectively strong defensive, offensive, strong
offensive) alliance of G is denoted by γa(G) (respectively γâ(G), γo(G), γô(G)). Clearly
γ(G) ≤ γa(G) ≤ γâ(G) and γ(G) ≤ γo(G) ≤ γô(G) for every graph G. Similar notions
exist under the name of coalitions or monopolies. In particular a monopoly is a global
defensive and offensive alliance [7].

Properties of global alliances can be found in several papers, some of them are refer-
enced below [1, 2, 3, 4, 5, 8, 9], in particular relationships between alliance parameters
and other graph parameters valid for all graphs or in some classes of graphs. In [3], Chel-
lali and Haynes compared in trees the independence number β to the four parameters
γa, γâ, γo, γô by establishing some inequalities between them. They also noticed that for
trees T , the independence domination number i is “incomparable” to some global alliance
parameters in that sense that i(T ) can be smaller than γa(T ) or γo(T ), or greater than
γâ(T ). Our purpose is to replace in the comparisons β by i and to refine the notion of
incomparability by asking for instance if i(G), even when greater than γa(G), cannot be
bounded by a function of γa(G). Moreover, we do not limit ourselves to trees.

The principe of the study is to determine for each value of µ among γa, γâ, γo, γô and
for a class C of graphs whether a function f such that i(G) ≤ f(µ(G)) or µ(G) ≤ f(i(G))
for every G in C can exist, and when the answer is positive, to determine such a function.
We consider the classes of all graphs, bipartite graphs and trees. Each of the following
four sections is devoted to the comparison of i(G) with one of the four alliance parameters.

We give first some more precisions on the notation. The neighborhood N(v) of a vertex
is the set of vertices adjacent with it and the closed neighborhood is N [v] = N(v) ∪ {v}.
If A ⊆ V , NA(v) = N(v)∩A. The subgraph induced by A in G is denoted by G[A] and its
size by m(A). The graph G−A is obtained from G by deleting the vertices of A and the
edges incident with them. If F a subset of edges of G, then G − F is the graph obtained
by deleting all the edges of F from G. In several places we consider a graph G constructed
from a graph S by adding some new vertices and edges. To lighten the writing, we often
use in this case the notation |S| for n(S) or |V (S)|. The corona of a graph is obtained by
attaching a pendant edge at each vertex of G.
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2 Global defensive alliances

For the star G of order n, i(G) = 1, γa(G) = dn
2
e and γâ(G) = dn+1

2
e. Therefore no

general bound of the type γa(G) ≤ f(i(G)) or γâ(G) ≤ g(i(G)) can be satisfied by every
graph, even if we reduce ourselves to the class of trees.

We study now the existence of a function f such that i(G) ≤ f(γa(G)) for every
general graph, bipartite graph or tree.

Definitions 1

(1) F1 is the family of graphs obtained from a clique S ∼ Kk by attaching k = dS(u) + 1
leaves at each vertex u of S.

(2) F2 is the family of bipartite graphs obtained from a balanced complete bipartite
graph S ∼ Kk,k by attaching k + 1 = dS(u) + 1 leaves at each vertex u of S.

(3) F3 is the family of trees obtained from a tree S by attaching a set Lu of dS(u) + 1
leaves at each vertex u of S.

Proposition 1 (1) If G ∈ F1 then i(G) = γ2
a(G) − γa(G) + 1.

(2) If G ∈ F2 then i(G) = γ2
a(G)/4 + γa(G).

(3) If G ∈ F3 then i(G) = 2γa(G) − 1.

Proof: If G ∈ Fi with 1 ≤ i ≤ 3, then V (S) is a minimum dominating set and a defensive
alliance of G. Therefore γ(G) ≤ γa(G) ≤ |S| = γ(G) and thus γa(G) = |S|.

(1) If G ∈ F1, i.e., S ∼ Kk, then i(G) = 1 + (k − 1)k = |S|2 − |S| + 1.

(2) If G ∈ F2, i.e., S ∼ Kk,k, then |S| = 2k and i(G) = k + k(k + 1) = |S|2/4 + |S|.

(3) Let T ∈ F3 be constructed from a tree S with bipartition classes X and Y . Every
maximal independent set I of T can be written as I = (I ∩ V (S)) ∪ (∪u∈V (S)\IL(u)).
Therefore

|I| = |I ∩ V (S)| +
∑

u∈V (S)\I

(dS(u) + 1) = |V (S)| +
∑

u∈V (S)\I

dS(u).

In the sum
∑

u∈V (S)\I dS(u), the edges of S between V (S) \ I and I are counted once and

the m(S − I) edges joining two vertices in V (S) \ I are counted twice. Hence

∑

u∈V (S)\I

dS(u) = m(S) + m(S − I) ≥ m(S), and

|I| ≥ |V (S)| + m(S) = 2n(S) − 1.

For the particular sets I = X ∪ (∪u∈Y L(u)) and I = Y ∪ (∪u∈XL(u)), m(V (S) \ I) = ∅
and |I| = 2n(S) − 1. Therefore, i(T ) = 2n(S) − 1 = 2γa(T ) − 1. �

Theorem 1 (1) Every graph G satisfies i(G) ≤ γ2
a(G) − γa(G) + 1 with equality if and

only if G ∈ F1.
(2) Every bipartite graph G satisfies i(G) ≤ γ2

a(G)/4 + γa(G) with equality if and only if
G ∈ F2.
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(3) Every tree G satisfies i(G) ≤ 2γa(G) − 1 with equality if and only if G ∈ F3.

Proof Let S be a γa(G)-set, W a maximal independent set of G[S], and B a maximal
independent set of G[NV \S(S) \ NV \S(W )]. Then W ∪ B is a maximal independent set
of G and i(G) ≤ |W | + |B|. For each v ∈ S, let L(v) = NV \S(v). Since S is a defensive
alliance, |L(v)| ≤ dS(v)+1 for every v ∈ S, and since the defensive alliance is dominating,

|B| ≤ |NV \S(S \ W )| ≤
∑

v∈S\W |L(v)| ≤
∑

v∈S\W (dS(v) + 1)

≤ |S| − |W | +
∑

v∈S\W dS(v).
(1)

Therefore
i(G) ≤ |S| +

∑

v∈S\W

dS(v). (2)

(1) In every graph, dS(v) ≤ |S| − 1. Therefore i(G) ≤ |S| + (|S| − |W |)(|S| − 1) with
|W | ≥ 1. Hence

i(G) ≤ |S|2 − |S| + 1 = γ2
a(G) − γa(G) + 1.

If i(G) = |S|2 − |S| + 1 then |W | = 1 and dS(v) = |S| − 1 for every v ∈ S \ W ,
i. e., S is a clique and W consists of any vertex w of S. Moreover, for any w ∈ S,
equality in (1) gives |B| = |NV \S(S \ {w})|, i. e., |NV \S(S \ {w}) is independent, and
|NV \S(S \ {w})| =

∑
S\{w} |L(v)| =

∑
S\{w}(dS(v) + 1), i. e., all the sets L(v) for v ∈ S

are disjoint, independent and of order dS(v) + 1. Therefore G ∈ F1. The converse is true
by Proposition 1(1).

(2) Suppose now G bipartite. Let U be the set of isolated vertices of G[S] and X ∪ Y a
bipartition of G[S \ U ]. If we take W = X ∪ U then we get by (2),

i(G) ≤ |S| +
∑

v∈Y

dS(v) = |S| + m(S). (3)

Since G[S] is bipartite, m(S) ≤ |S|2/4 and thus

i(G) ≤ |S|2/4 + |S| = γ2
a(G)/4 + γa(G).

If i(G) = |S|2/4 + |S|, then m(S) = |S|2/4, i.e., U = ∅ and G[S] is a complete balanced
bipartite graph. Moreover, equality in (1) implies that all the sets L(v) for v ∈ Y are
disjoint and of respective orders dS(v) + 1. By symmetry between X and Y , the same
property holds for all v ∈ X. Hence G ∈ F2. The converse is true by Proposition 1(2).

(3) If the bipartite graph G is a tree, then G[S] is a forest. By (3), i(G) ≤ |S| + m(S)
with m(S) ≤ |S| − 1. Therefore

i(G) ≤ 2|S| − 1 = 2γa(S) − 1.

If i(G) = 2|S| − 1, then m(S) = |S| − 1, i. e., G[S] is a tree, the sets L(v) are all disjoint
for v ∈ Y and of respective order dS(v)+1, and the same holds for all v ∈ X by symmetry
between X and Y . Therefore G ∈ F3. The converse is true by Proposition 1(3). �
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3 Global strong defensive alliances

As shown by the example of stars in the previous section, we have only to look for
bounds on the type i(G) ≤ g(γâ(G)) valid for every graph, bipartite graph or tree. Since
γa(G) ≤ γâ(G) for every graph, the increasing functions f such that i(G) ≤ f(γa(G))
which were defined inTheorem 1 are convenient but possibly too large. We are looking
for sharp bounds.

Definitions 2

(1) G1 is the family of graphs obtained from a clique S ∼ Kk by attaching k − 1 = dS(u)
leaves at each vertex u of S.

(2) G2 is the family of bipartite graphs obtained from a complete balanced bipartite graph
S ∼ Kk,k by attaching k = dS(u) leaves at each vertex u of S.

(3) S is the family of trees S such that for every maximal independent set J of S, the
number of components of the forest S − J is at most |S|/2.
G3 is the family of trees obtained from a tree S of S by attaching a set L(u) of dS(u)
leaves at each vertex u of S.

Observation Every tree S in S is balanced since if X and Y are the two classes of the
bipartition of S with |X| ≤ |Y |, then S − X has |Y | components. Every tree T in G3

constructed from S ∈ S is balanced of order |T | = |S| +
∑

u∈V (S)

dS(u) = |S| + 2m(S) =

3|S| − 2.

Lemma 1 Let T be a tree constructed from a balanced tree S by attaching a set L(u) of
dS(u) leaves at each vertex u of S. Let I be a maximal independent set of T and q the
number of components of the forest induced in T by V (S) \ I. Then |I| = 2|S| − q − 1.

Proof Every maximal independent set of T has the form I = (V (S)∩I)∪(∪u∈V (S)\IL(u)).

Hence |I| = |I ∩V (S)|+
∑

u∈V (S)\I

dS(u). As in the proof of Proposition 1(3),
∑

u∈V (S)\I

dS(u)

= m(S) + m(S − I) and thus |I| = |I ∩ V (S)| + m(S) + m(S − I). Since S is a tree
and S − I a forest with q components, m(S) = |S| − 1 and m(S − I) = |V (S) \ I| − q.
Therefore |I| = |I ∩ V (S)| + (|S| − 1) + (|S| − |I ∩ V (S)| − q) = 2|S| − q − 1. �

Proposition 2 (1) Every graph G of G1 satisfies i(G) = γ2
â(G) − 2γâ(G) + 2.

(2) Every graph G of G2 satisfies i(G) = γ2
â(G)/4 + γâ(G)/2.

(3) Every tree G of G3 satisfies i(G) = 3γâ(G)/2 − 1.

Proof If G is a graph of Gi, 1 ≤ i ≤ 3, constructed from a graph S by attaching dS(u)
leaves at each vertex u of S, then V (S) is a global strong defensive alliance and a minimum
dominating set of G. Therefore γ(G) ≤ γâ(G) ≤ |S| = γ(G) and thus γâ(G) = |S|.

(1) If S is a clique Kk, then γâ(G) = k and i(G) = (k − 1)2 + 1 = γ2
â(G) − 2γâ(G) + 2.
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(2) If S is a complete balanced bipartite graph Kk,k, then γâ(G) = 2k and i(G) =
k(k + 1) = γ2

â(G)/4 + γâ(G)/2.

(3) Let S be a tree of S of bipartition X ∪ Y with |X| = |Y | and let I = (V (S) ∩
I) ∪ (∪u∈V (S)\IL(u) be a i(G)-set such that |I ∩ V (S)| is maximum. By Lemma 1, |I| =
2|S|− q−1 where q is the number of components of the forest induced by V (S)\ I. If the
independent set I ∩ V (S) is not maximal in S, let u be a vertex of S not dominated by
I ∩V (S). Then I contains the set L(u) and the maximal independent set (I \L(u))∪{u}
of G is smaller than I if |L(u)| ≥ 2 or contradicts the choice of I if |L(u)| = 1. Therefore
I ∩ V (S) is a maximal independent set J of S. Since S ∈ S, q ≤ |S|/2. Therefore
i(G) = |I| ≥ 3|S|/2 − 1. Now the set X ∪y∈Y L(u) is a maximal independent set of G of
order |G|/2 = 3|S|/2− 1. Hence i(G) = 3|S|/2 − 1 = 3γâ(G)/2 − 1. �

Theorem 2 (1) Every graph G satisfies i(G) ≤ γ2
â(G)− 2γâ(G) + 2 with equality if and

only if G ∈ G1.
(2) Every bipartite graph G without isolated vertices satisfies i(G) ≤ γ2

â(G)/4 + γâ(G)/2
with equality if and only if G ∈ G2.
(3) Every tree G of order n ≥ 2 satisfies i(G) = 3γâ(G)/2− 1 with equality if and only if
G ∈ G3.

Proof We follow the same idea as in the proof of Theorem 1. Let G be a graph,
S a γâ(G)-set, W a maximal independent set of G and B a maximal independent set of
NV \S(S)\NV \S(W ). Then W∪B is a maximal independent set of G and i(G) ≤ |W |+|B|.
Moreover since S is a strong defensive alliance, the set L(v) = NV \S(v) has order at most
dS(v) for every vertex v in S. Therefore

|B| ≤ |NV \S(S \ W )| ≤
∑

v∈S\W

|L(v)| ≤
∑

S\W

dS(v) (4)

and
i(G) ≤ |W | +

∑

v∈S\W

dS(v). (5)

(1) In every graph, dS(v) ≤ |S| − 1. Hence by (5),

i(G) ≤ |W | + (|S| − |W |)(|S| − 1) = |S|(|S| − 1) − |W |(|S| − 2) with |W | ≥ 1.

Therefore
i(G) ≤ |S|2 − 2|S| + 2 = γ2

â(G) − 2γâ(G) + 2.

If i(G) = γ2
â(G) − 2γâ(G) + 2, then |W | = 1 and dS(v) = |S| − 1 for every v ∈ S, i. e., S

is a clique and W consists of any unique vertex w of S. Moreover equality everywhere in
(4) shows that all the sets L(v) for v ∈ S are independent and disjoint. Therefore G ∈ G1.
The converse is true by Proposition 2(1).

(2) Suppose now G bipartite without isolated vertices. Since S is a strong defensive
alliance, G[S] has no isolated vertices. Consider the unique bipartition Xi ∪ Yi of each
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component Si of G[S], 1 ≤ i ≤ p, with |Xi| ≤ |Yi| and let X = ∪1≤i≤pXi, Y = ∪1≤i≤pYi.
Then |X| ≤ |S|/2 ≤ |Y |. By taking W = X, we get by (5)

i(G) ≤ |X| +
∑

v∈Y

dS(v) ≤ |S|/2 + m(S). (6)

Since G[S] is bipartite, m(S) ≤ |S|2/4. Therefore

i(G) ≤ |S|2/4 + |S|/2 = γ2
â(G)/4 + γâ(G)/2.

If i(G) = γ2
â(G)/4+γâ(G)/2, then |X| = |S|/2 and m(S) = |S|2/4, i. e., G[S] is a complete

balanced bipartite graph. Moreover by equality in (4), the sets L(v) have respective order
dS(v) and are all disjoint. By symmetry between X and Y , the same property holds for
all v ∈ X. Therefore G ∈ G2. The converse is true by Proposition 2(2).

(3) If the bipartite graph G is a tree, then G[S] is a forest and m(S) ≤ |S| − 1. By (6),

i(G) ≤ 3|S|/2 − 1 = 3γâ(G)/2 − 1.

If i(G) = 3γâ(G)/2−1, then |X| = |S|/2 and m(S) = |S|−1, i. e., G[S] is a balanced tree.
Moreover the sets L(v) have respective orders dS(v) and are all disjoint. Let J be any
maximal independent set of G[S] and q the number of components of the forest induced

by S \ J . The set I = J
⋃

v∈S\J

L(v) is a maximal independent set of G. By Lemma 1,

|I| = 2|S|− q− 1. Therefore 3|S|/2− 1 = i(G) ≤ 2|S|− q− 1. Hence q ≤ |S|/2, G[S] ∈ S
and G ∈ G3. The converse is true by Proposition 2(3). �

4 Global offensive alliances

The double star T obtained by adding an edge between the centers of two stars K1,p satisfes
i(T ) = 1 + n/2 and γo(T ) = 2. Therefore no general bound of the type i(G) ≤ f(γo(G))
can exist, even if we limit ourselves to the class of trees.

We are now interested in the existence of bounds of the type γo(G) ≤ f(i(G)). The
bipartite graph G obtained by deleting one edge from a complete bipartite graph Kp,p

satisfies i(G) = 2 and γo(G) = n/2. Therefore no general bound γo(G) ≤ f(i(G)) can
exist, even in the class of bipartite graphs. To study the possibility of such a bound valid
for all trees, we first give a result relating β(G) and i(G) in this class.

Lemma 2 For every tree T of order n, β(T ) + 2i(T ) ≥ n + 1 and the bound is sharp.

Proof Let T = (V, E) be a tree of order n ≥ 2, I a i(T )-set and F the set of edges
of T [V \ I]. Then T − F is a forest with q ≤ i(T ) components and since T is a tree,
|F | = q − 1 ≤ i(T ) − 1. Let A be a set of vertices of V \ I containing at least one
extremity of each edge in F and such that |A| ≤ |F |. Each vertex of V \ (A ∪ I) has all
its neighbors in A∪ I. Hence V \ (A ∪ I) is an independent set of order n− (|I|+ |A|) ≥
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n − (|I| + |F |) ≥ n − (2i(T ) − 1). Therefore β(T ) + 2i(T ) ≥ n + 1. The result is clearly
true for n = 1.

The star T ∼ K1,n−1 satisfies β(T )+ 2i(T ) = n + 1. More generally, let T be the trees
obtained from paths P3k+1 = u1u2 · · ·u3k+1 by attaching at each vertex u3i+1, 0 ≤ i ≤ k, a
non-empty set Li of new leaves. For these trees, I = {u1, u4, · · · , u3k+1} is a i(T )-set and
B = (∪0≤i≤kLi)∪ {u2, u5, · · · , u3k−1} is a β(T )-set of order n− |I| − |{u3, u6, · · · , u3k}| =
n − |I| − k. Hence i(T ) = k + 1, β(T ) = n − 2k − 1 and β(T ) + 2i(T ) = n + 1. �

Theorem 3 For every tree T , γo(T ) ≤ 2i(T ) − 1 and the bound is sharp.

Proof As already observed in [3], for every independent set of a connected graph G of
order n ≥ 2, the set V \ S is a global offensive alliance of G. Hence γo(G) ≤ n− β(G). If
the graph is a tree T then, by Lemma 2, γo(T ) ≤ 2i(T )−1 and this result remains clearly
true for n = 1. For the trees satisfying β(T ) + 2i(T ) = n + 1 which are described above,
I ∪ {u3, u6, · · · , u3k} is a γo(G)-set. Therefore they also satisfy γo(T ) = 2i(T ) − 1. �

Remark The inequality γo(G) ≤ n−β(G) in the proof of Theorem 3 shows that γo(G) ≤
β(G) for every graph without isolates such that β(G) ≥ n/2, and in particular for bipartite
graphs. This property was proved in [3] for trees.

5 Global strong offensive alliances

Since all the leaves of any graph G belong to every γô(G)-set, every star T satisfies
γô(T ) = n − 1 while i(T ) = 1. Therefore no general bound γô(G) ≤ f(i(G)) can exist,
even in the class of trees.

We are now interested in the existence of bounds of the type i(G) ≤ f(γô(G)). The
bipartite graph G constructed from a cycle C4 = xyztx by adding an independent set
{u1, · · · , up, v1, · · · , vp} of 2p ≥ 4 vertices and the edges uix, uiz, viy, vit for 1 ≤ i ≤ p
satisfies n = 2p + 4, i(G) = n/2 and γô(G) = 4. Therefore no general bound i(G) ≤
f(γô(G)) can exist, even in the class of bipartite graphs. The following theorem establishes
such a bound in the class of trees.

Theorem 4 For every tree T of order n ≥ 2, i(T ) ≤ γô(T )− 1 and the bound is sharp.

Proof It is proved in [3] that every tree satisfies β(T ) ≤ γô(T ). Hence i(T ) ≤ γô(T ).
We prove that the equality is impossible. If i(T ) = γô(T ) then i(T ) = β(T ) and T is a
well-covered tree. Therefore β(T ) = n/2 and T is the corona of a tree of vertex set W .
Let A be a γô(T )-set. Then A contains the set L of leaves of T and a dominating set
of W since every vertex of V (T ) \ A must have at least two neighbors in A. Therefore
|A| ≥ 1 + n/2 which contradicts β(T ) = γô(T ). Hence i(T ) ≤ γô(T ) − 1.

Equality occurs if i(T ) = β(T ) = γô(T ) − 1, or if i(T ) = β(T ) − 1 and β(T ) = γô(T ).
The coronas of stars, for which γ(W ) = 1, are the only trees satisfying the first equalities.
The subdivided stars, obtained by subdividing once each edge of a star, are examples of
graphs satisfying the second ones. �
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