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Abstract

A star coloring of a graph is a proper coloring such that no path on four vertices

is 2-colored. We prove that every planar graph with girth at least 9 can be star

colored using 5 colors, and that every planar graph with girth at least 14 can be

star colored using 4 colors; the figure 4 is best possible. We give an example of a

girth 7 planar graph that requires 5 colors to star color.
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1 Introduction

Recall that a proper coloring of a graph is an assignment of colors to the vertices of the
graph such that adjacent vertices are assigned different colors. A star coloring of a graph
G is a proper coloring such that no path on four vertices is 2-colored. A k-star coloring
of a graph G is a star coloring of G using at most k colors. The smallest k such that G
has a k -star coloring is the star chromatic number of G.

In 1973 Grünbaum [5] introduced star colorings and acyclic colorings. An acyclic col-
oring is a proper coloring such that no cycle is 2-colored. Every star coloring is an acyclic
coloring but star coloring a graph typically requires more colors than acyclically coloring
the same graph. In general, many star coloring questions are not as well understood as
their acyclic counterparts. For example, Borodin [3] proved that every planar graph can
be acyclically 5-colored. This result is best possible and was conjectured by Grünbaum
[5]. On the other hand, Albertson, Chappell, Kierstead, Kündgen, and Ramamurthi [1]
proved that every planar graph can be star colored using 20 colors, and gave an example
of a planar graph that requires 10 colors to star color; but this gap remains open.
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Planar graphs of high girth are typically easier to color in the sense that fewer colors
are needed. For instance Grötzsch [6] proved that every planar graph of girth at least 4
can be properly colored using 3 colors. Borodin, Kostochka, and Woodall [4] proved that
every planar graph of girth at least 5 can be acyclically colored using 4 colors, and every
planar graph of girth at least 7 can be acyclically colored using 3 colors; the figure 3 is
best possible.

Even under high girth assumptions, the upper bounds for star colorings are not as
tight as the corresponding acyclic bounds. A result by Nešetřil and Ossona de Mendez
[9] implies that every planar graph of girth at least 4 can be star colored using 18 colors;
whereas Kierstead, Kündgen, and Timmons [7] gave an example of a bipartite planar
graph that requires 8 colors to star color. Albertson et al. [1] proved that every planar
graph of girth at least 5 can be star colored using 16 colors, every planar graph of girth
at least 7 can be star colored with 9 colors, and planar graphs of sufficiently large girth
can be star colored using 4 colors; but no specific bound on the girth requirement was
given. They also gave an example of a planar graph of arbitrarily high girth that requires
4 colors to star color.

This paper improves upon the upper bounds for planar graphs of girth at least 9. In
Section 2 we introduce relevant definitions and notation. In Section 3 we prove that every
planar graph of girth at least 14 can be star colored using 4 colors. In Section 4 we prove
that every planar graph of girth at least 9 can be star colored using 5 colors. In Section
5 we give an example of a planar graph of girth 7 that requires 5 colors to star color. In
Section 6 we collect the current best known bounds and present some open problems.

2 Preliminaries

All graphs considered are loopless graphs without multiple edges. We denote the vertex
set and edge set of a graph G by V (G) and E(G) respectively. If G is a planar graph
with a fixed embedding, we denote the set of faces of G by F (G). The length of a face
f , denoted l(f), is the number of edges on the boundary walk of f . If v is a vertex with
degree d then we say v is a d-vertex. We will denote the degree of v by deg(v). Degree 2
vertices will play a prominent role. If v is a d -vertex adjacent to k 2-vertices, we say v is
a d(k)-vertex. A 1-vertex is also called a pendant vertex.

The neighborhood of a vertex v is the set of all vertices in V (G) that are adjacent to
v. Vertices in the neighborhood of v are the neighbors of v. The second neighborhood of
a vertex v is the set of all vertices in V (G) − {v} that are adjacent to a neighbor of v.
A vertex in the second neighborhood of v is a second neighbor of v. A set S ⊂ V (G)
is independent if no two of its vertices are neighbors, and 2-independent if no two of its
vertices are neighbors or second neighbors. If S ⊂ V (G), then G[S] is the subgraph of G
induced by S.

A path on n vertices will be denoted by Pn. A cycle on n vertices will be denoted by
Cn. The graph obtained by adding a pendant vertex to each vertex of Cn will be denoted
by C ′

n. When n is not divisible by 3, it is easy to see that C ′

n requires 4 colors to star
color (see Example 5.3 in [1]).
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Proposition 2.1 There exist planar graphs of arbitrarily high girth that require 4 colors
to star color.

3 Girth 14 planar graphs

Albertson et al. [1] use the idea of partitioning the vertices of a graph into a forest and a
2-independent set to obtain a star coloring. We use this idea to show that planar graphs
of girth at least 14 can be star colored using 4 colors, matching the construction from
Proposition 2.1.

Theorem 3.1 The vertices of a planar graph of girth at least 14 can be partitioned into
two disjoint sets I and F such that G[F ] is a forest and I is a 2-independent set in G.

It is easy to see that G[F ] can be 3-star colored (in each component of G[F ], fix an
arbitrary root and then give each vertex color 1, 2 or 3 according as its distance from the
root is 0, 1 or 2 modulo 3). Now using a fourth color for I gives a 4-star coloring of G, so
we immediately have:

Corollary 3.2 If G is a planar graph of girth at least 14 then G is 4-star colorable.

Proof of Theorem 3.1.

Let G be a minimal counterexample with the smallest number of vertices and give G
a fixed embedding in the plane. We may assume G is connected and has minimum degree
2 since pendant vertices may be put in F .

Claim 1: G has no 2(2)-vertex.
Suppose x is a 2(2)-vertex in G with neighbors y and z. Consider a desired partition

for G− {x, y, z}. We extend the partition to G which provides the needed contradiction.
If possible, put x into I, and put y and z into F . If x cannot be put into I, then a second
neighbor of x must be in I. Put x, y and z into F . G[F ] is acyclic as any new cycle must
pass through both second neighbors of x, but one of these second neighbors is in I. This
extends the desired partition to G, a contradiction.

Claim 2: G has no 3(3)-vertex adjacent to two 2(1)-vertices.
Suppose x is a 3(3)-vertex adjacent to 2(1)-vertices y and z. Label the nearby vertices

as indicated in Figure 3.1, where vertices depicted with ◦ may have other neighbors.
Consider a desired partition for G − {x, x1, y, y1, z, z1}. If possible, put x into I, and put
all other vertices into F . If x cannot be put into I, then it must be that x2 ∈ I. If y2 ∈ F
then put y into I, and put all other vertices into F . If y2 ∈ I then put all vertices into
F . This extends the desired partition to G, a contradiction.
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Figure 3.1: Claim 2

The proof is now finished by a simple discharging argument. Euler’s Formula can be
written in the form

(12|E(G)| − 14|V (G)|) + (2|E(G)| − 14|F (G)|) = −28,

which implies ∑

v∈V (G)

(6deg(v) − 14) +
∑

f∈F (G)

(l(f) − 14) = −28.

Since G has girth 14, l(f) ≥ 14 for each f ∈ F (G). This implies that the right sum is
non-negative and so the left sum must be negative. For each vertex v in V (G), assign a
charge of 6deg(v) − 14 to v. The charge is now redistributed according to the following
rules:

1. Each 2(1)-vertex receives a charge of 2 from its neighbor of degree greater than 2.

2. Each 2(0)-vertex receives a charge of 1 from each neighbor.

The net charge of V (G) after the redistribution is calculated. Let v ∈ V (G).
Case 1: v is a 2-vertex
By Claim 1, v is not a 2(2)-vertex. If v is a 2(1)-vertex, then by Rule 1, v receives

charge 2. Since v does not send out any charge, the charge of v after redistribution is
6 · 2 − 14 + 2 = 0.

If v is a 2(0)-vertex, then by Rule 2, v receives charge 1 from each neighbor. Since v
does not send out any charge, the charge of v after redistribution is 6 · 2− 14 + 1 + 1 = 0.

Case 2: v is a 3-vertex
If v is a 3(3)-vertex, then by Claim 2, v is adjacent to at most one 2(1)-vertex. Then

v at most will send out charge 2 to one 2(1)-vertex, and charge 1 to each of its of other
two neighbors. The charge of v after redistribution is at least 6 · 3 − 14 − 2 − 1 − 1 = 0.

If v is a 3(k)-vertex with k ≤ 2, then at most v will send out charge 2k to k 2(1)-
vertices. The charge of v after redistribution is at least 6 · 3 − 14 − 2k ≥ 0 as k ≤ 2.

Case 3: v has degree greater than 3
At most v sends out charge 2deg(v). The charge of v after redistribution is at least

6deg(v) − 14 − 2deg(v) = 4deg(v) − 14 ≥ 0 as deg(v) ≥ 4.
Cases 1–3 show that the charge of each vertex after redistribution is non-negative so

that the net charge assigned to V (G) is non-negative. This contradicts the fact that the
net charge assigned to V (G) is negative. Thus no such minimal counterexample exists. �
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4 Girth 9 planar graphs

To prove that girth 9 planar graphs can be star colored with 5 colors, we use a similar
approach as used for girth 14 planar graphs, except that the partition is into three sets.

Theorem 4.1 The vertices of a planar graph of girth at least 9 can be partitioned into
three disjoint sets F , I1 and I2 such that G[F ] is a forest, I1 is a 2-independent set in
G[F ∪ I1], and I2 is a 2-independent set in G.

Corollary 4.2 If G is a planar graph of girth at least 9 then G is 5-star colorable.

Proof. Let G be a planar graph with girth at least 9, and consider the partition of G
given by Theorem 4.1. Star color the vertices in F using colors 1, 2 and 3. Assign colors
4 and 5 to the vertices in I1 and I2 respectively. A potentially 2-colored P4 cannot use
color 5 since I2 is a 2-independent set in G. Similarly it cannot use color 4 since I1 is a
2-independent set in G[F ∪ I1]; and colors 1, 2 and 3 form a star coloring of G[F ]. �

Proof of Theorem 4.1.

Let G be a minimal counterexample with the smallest number of vertices and give G
a fixed embedding in the plane. We may assume G is connected and has minimum degree
2.

Claim 1: G has no 2(2)-vertex.
This follows as in Claim 1 of Theorem 3.1 by taking I = I2.

Claim 2: G has no 2(1)-vertex adjacent to a 3-vertex.
Suppose x is a 2(1)-vertex adjacent to a 3-vertex y. Let z be the 2-vertex adjacent to

x. Consider a desired partition for G− {x, z}. If y ∈ I1 ∪ I2, then put x and z into F ; so
assume y ∈ F . If possible, put x into I1 ∪ I2 and put z into F . Assume x cannot be put
into I1 ∪ I2. Then a second neighbor of x must be in I1, and another second neighbor of x
must be in I2. Then x and z may be put into F as any cycle created by adding vertices to
F must pass through two distinct second neighbors of x. This is impossible since x only
has three distinct second neighbors, two of which are in I1 ∪ I2. This extends the desired
partition to G, a contradiction.

Claim 3: G has no 3(3)-vertex.
Suppose x is a 3(3)-vertex with neighbors y, z and t. Consider a desired partition

of the subgraph of G obtained by removing x and its neighbors. If possible, put x into
I1 ∪ I2 and put all other vertices into F . Assume x cannot be put into I1 ∪ I2. Then a
second neighbor of x must be in I1, and another second neighbor of x must be in I2. Then
we may put all vertices into F since any cycle created by adding vertices to F must pass
through two distinct second neighbors of x.

Claim 4: G has no 3(2)-vertex adjacent to another 3(2)-vertex.
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Suppose x and y are adjacent 3(2)-vertices. Label the nearby vertices as indicated in
Figure 4.1. Consider a desired partition for G − {x, x1, x

′

1, y, y1, y
′

1}.
Suppose x2 ∈ I1 ∪ I2. If possible, put y into I1 ∪ I2 and put all other vertices into F .

Assume y cannot be put into I1 ∪ I2. Then {y2, y
′

2} ⊂ I1 ∪ I2 and all vertices may be put
into F .

Therefore x2 /∈ I1 ∪ I2 so that x2 ∈ F . By symmetry, x′

2, y2 and y′

2 must also be in F .
Then we may put x into I1, y into I2, and all other vertices into F .
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Figure 4.1: Claim 4

Claim 5: G has no 3(1)-vertex adjacent to two 3(2)-vertices.
Suppose x is a 3(1)-vertex adjacent to 3(2)-vertices y and z. Label the nearby vertices

as indicated in Figure 4.2. Consider a desired partition for G − {x, x1, z, z1, z
′

1, y, y1, y
′

1}.
If possible, put one of y, z into I1, put the other into I2, and put all other vertices into F .
Suppose this is not possible. Then we may assume {y2, z2} ⊂ I1 ∪ I2 or z2 ∈ I1, z′2 ∈ I2.

First suppose {y2, z2} ⊂ I1 ∪ I2. Put x into I1 if x2 ∈ I2, and into I2 otherwise; and
put all other vertices into F .

Now suppose z2 ∈ I1, z′2 ∈ I2. If y2 or y′

2 is in I1 ∪ I2, then we are back in the previous
case so assume {y2, y

′

2} ⊂ F . Put y into I1, and put all other vertices into F .
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Figure 4.2: Claim 5

Claim 6: G has no 4(4)-vertex adjacent to a 2(1)-vertex.
Suppose x is a 4(4)-vertex adjacent to a 2(1)-vertex y. Consider a desired partition

for the subgraph obtained by removing x, y, and their neighbors. If possible, put x into
I1 ∪ I2, and put all other vertices into F . Assume this is not possible. Then a second
neighbor of x must be in I1 and another second neighbor of x must be in I2. We can put
y into one of I1, I2 since only one of y’s second neighbors was not removed, and we put
all other vertices into F .
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Definition 4.3 A weak d(k)-vertex is a d(k)-vertex all of whose degree 2 neighbors are
2(1)-vertices.

Claim 7: G has no weak 4(3)-vertex adjacent to a 3-vertex.
Suppose x is a weak 4(3)-vertex adjacent to a 3-vertex y. Label the nearby vertices

as indicated Figure 4.3. Consider a desired partition for G − {x, x1, x
′

1, x
′′

1, x2, x
′

2, x
′′

2}. If
possible put x into I1 ∪ I2, and put all other vertices into F . Assume this is not possible.
Then at least two of y, y1 and y′

1 must be in I1 ∪ I2; so assume y1 ∈ I1 ∪ I2.
If y ∈ I1 ∪ I2, then move y into F . If y′

1 ∈ F , then x may be put into one of I1, I2, and
all other vertices may be put into F . Assume y′

1 ∈ I1 ∪ I2. Then any cycle obtained by
adding vertices to F must include at least one of x1, x′

1. If possible, put x1 and x′

1 into
I1 ∪ I2, and put all other vertices into F . Otherwise {x3, x

′

3} ⊂ I1 ∪ I2 and all vertices
may be put into F .
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Figure 4.3: Claim 7

Claim 8: G has no 4(3)-vertex adjacent to a 3(2)-vertex.
Suppose x is a 4(3)-vertex adjacent to a 3(2)-vertex y. Label the nearby vertices as

indicated in Figure 4.4. Consider a desired partition for G − {x, x1, x
′

1, x
′′

1, y, y1, y
′

1}. To
show that the partition can be extended to G, we consider two cases.

Case 1: x has at most one second neighbor in I1 ∪ I2.
Since x has at most one second neighbor in I1 ∪ I2, x can be put into one of I1, I2. If

y2 or y′

2 is in I1∪ I2, then put all remaining vertices into F . Otherwise, y2 and y′

2 are both
in F . Put y into I1 if x ∈ I2, and I2 otherwise; and put all remaining vertices into F .

Case 2: At least two second neighbors of x are in I1 ∪ I2.
If {y2, y

′

2} ⊂ I1 ∪ I2, then put all vertices into F . Otherwise, at least one of y2, y′

2 is
in F so that we may put y into I1 ∪ I2, and all other vertices into F .
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Figure 4.4: Claim 8
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Claim 9: G has no 4(3)-vertex adjacent to a weak 4(3)-vertex.
Suppose x is a 4(3)-vertex adjacent to a weak 4(3)-vertex y. Consider a desired

partition for the subgraph of G obtained by removing y, and its neighbors and second
neighbors. If possible, put x into I1 ∪ I2, put y into I1 if x ∈ I2, and I2 otherwise; and put
all other vertices into F . Assume x cannot be put into I1 ∪ I2. Then a second neighbor
of x is in I1, and another second neighbor of x is in I2. Put y into I1 and put all other
vertices into F .

Claim 10: G has no weak 4(2)-vertex adjacent to two weak 4(3)-vertices.
Suppose x is a weak 4(2)-vertex adjacent to two weak 4(3)-vertices y and z. Consider

a desired partition for the subgraph of G obtained by removing x, y and z, and all their
neighbors and second neighbors. Put x into I2, put y and z into I1, and put all other
vertices into F . Note that I1 is 2-independent in G[F∪I1], although it is not 2-independent
in G.

Claim 11: G has no weak 4(2)-vertex adjacent to a weak 4(3)-vertex and a 3(2)-vertex.
Suppose x is a weak 4(2)-vertex adjacent to a weak 4(3)-vertex y and a 3(2)-vertex z.

Consider a desired partition for the subgraph of G obtained by removing x and y, and all
their neighbors and second neighbors. If possible, put z and y into I1, put x into I2, and
put all other vertices into F . Assume it is not possible to put z into I1. Then a second
neighbor of z must be in I1. Put x into I1, put y into I2, and put all other vertices into
F .

Claim 12: G has no 5(5)-vertex adjacent to four 2(1)-vertices.
Suppose x is a 5(5)-vertex adjacent to four 2(1)-vertices and a 2-vertex y. Let z be the

neighbor of y where z 6= x. Consider a desired partition for the subgraph of G obtained
by removing x, all of its neighbors and second neighbors except for z. Since only one
second neighbor of x was not removed, x can be put into one of I1, I2, and we put all
other vertices into F .

Claim 13: G has no weak 5(4)-vertex adjacent to a weak 4(3)-vertex.
Suppose x is a weak 5(4)-vertex adjacent to weak 4(3)-vertex y. Consider a partition

for the subgraph of G obtained by removing x and y, and all their neighbors and second
neighbors. Put x into I1, put y into I2, and put all other vertices into F .

The proof is now finished by a discharging argument. Euler’s formula can be written
in the form

(14|E(G)| − 18|V (G)|) + (4|E(G)| − 18|F (G)|) = −36,

which implies ∑

v∈V (G)

(7deg(v) − 18) +
∑

f∈F (G)

(2l(f) − 18) = −36.

Since G has girth 9, l(f) ≥ 9 for each face f ∈ F (G). This implies that the right sum
is non-negative and so the left sum must be negative. For each vertex v in V (G), assign
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a charge of 7deg(v)− 18 to v. The charge is now redistributed according to the following
rules:

1. Each 2(0)-vertex receives a charge of 2 from each neighbor.

2. Each 2(1)-vertex receives a charge of 4 from the neighbor of degree greater than
two.

3. Each 3(2)-vertex receives a charge of 1 from the neighbor of degree greater than
two.

4. Each weak 4(3)-vertex receives a charge of 2 from the neighbor of degree greater
than two.

The net charge of V (G) after the redistribution is calculated. Let v ∈ V (G).
Case 1: v is a 2-vertex
By Claim 1, v is not a 2(2)-vertex. If v is a 2(1)-vertex, then v receives charge 4

from its neighbor of degree greater than two and v does not send out any charge. The
charge of v after redistribution is 7 · 2 − 18 + 4 = 0. If v is a 2(0)-vertex, then v receives
charge 2 from each neighbor and v does not send out any charge. The charge of v after
redistribution is 7 · 2 − 18 + 2 + 2 = 0.

Case 2: v is a 3-vertex
By Claim 2, v is not adjacent to a 2(1) vertex. By Claim 7, v is not adjacent to a weak

4(3)-vertex. Thus v will only send charge to 2(0)-vertices and 3(2)-vertices. By Claim 3,
v is not a 3(3)-vertex.

If v is a 3(2)-vertex, then v sends out charge 4 to two 2(0)-vertices and receives charge
1 from its neighbor of degree greater than two. By Claim 4, v will not send out any charge
to another 3(2)-vertex. The charge of v after redistribution is 7 · 3 − 18 − 4 + 1 = 0.

If v is a 3(1)-vertex, then v sends out charge 2 to a 2(0)-vertex and by Claim 5, v will
send out at most charge 1 to a 3(2)-vertex. The charge of v after redistribution is at least
7 · 3 − 18 − 2 − 1 = 0.

If v is a 3(0)-vertex then at most v will send out charge 3 to three 3(2)-vertices. The
charge of v after redistribution is at least 7 · 3 − 18 − 3 = 0.

Case 3: v is a 4-vertex
If v is a 4(4)-vertex then by Claim 6, v is not adjacent to a 2(1)-vertex. Therefore v

sends out charge 8 to four 2(0)-vertices. The charge of v after redistribution is 7·4−18−8 =
2.

If v is a 4(3)-vertex then we consider three subcases.
Subcase 3.1a: v is adjacent to three 2(1)-vertices i.e. v is a weak 4(3)-vertex

By Rule 2, v sends charge 12 to three 2(1)-vertices. By Claim 7, v is not adjacent
to a 3-vertex so that v does not send any charge to a 3(2)-vertex. By Claim 9, v is not
adjacent to a weak 4(3)-vertex so that v does not send any charge to a weak 4(3)-vertex.
By Rule 4, v receives charge 2 from its neighbor of degree greater than two. The charge
of v after redistribution is 7 · 4 − 18 − 12 + 2 = 0.
Subcase 3.1b: v is adjacent to two 2(1)-vertices and a 2(0)-vertex
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By Claim 8, v is not adjacent to a 3(2)-vertex so that v does not send any charge to a
3(2)-vertex. By Claim 9, v is not adjacent to a weak 4(3)-vertex so that v does not send any
charge to a weak 4(3)-vertex. The charge of v after redistribution is 7·4−18−4−4−2 = 0
Subcase 3.1c: v is adjacent to at most one 2(1)-vertex

In this case, v will at most send out charge 4 to a 2(1)-vertex and at most charge
2 to each of its remaining neighbors. The charge of v after redistribution is at least
7 · 4 − 18 − 4 − 2 − 2 − 2 = 0.

If v is a 4(2)-vertex then we consider two subcases.
Subcase 3.2a: v is adjacent to two 2(1)-vertices

By Claim 10, v is not adjacent to two weak 4(3)-vertices. By Claim 11, v is not
adjacent to a weak 4(3)-vertex and a 3(2)-vertex. Suppose v is adjacent to a weak 4(3)-
vertex. Then v sends charge 8 to two 2(1)-vertices, and charge 2 to a weak 4(3)-vertex.
The charge of v after redistribution is 7 ·4−18−8−2 = 0. Now suppose v is not adjacent
to a weak 4(3)-vertex. Then v may be adjacent to two 3(2)-vertices. The charge of v after
redistribution is at least 7 · 4 − 18 − 8 − 1 − 1 = 0.
Subcase 3.2b: v is adjacent to at most one 2(1)-vertex

In this case, v will send out charge of at most 4 to a 2(1)-vertex, and at most 2
to each of its other three neighbors. The charge of v after redistribution is at least
7 · 4 − 18 − 4 − 6 = 0.

If v is a 4(1)-vertex, then v sends out charge of at most 4 to a 2(1)-vertex and at
most 2 to each of its other three neighbors. The charge of v after redistribution is at least
7 · 4 − 18 − 4 − 6 = 0.

If v is a 4(0)-vertex, then v sends out charge of at most 8 to four weak 4(3)-vertices.
The charge of v after redistribution is at least 7 · 4 − 18 − 8 = 2.

Case 4: v is a 5-vertex
If v is a 5(5)-vertex, then by Claim 12, v is adjacent to at most three 2(1)-vertices.

Therefore v will send out charge of at most 12 to three 2(1)-vertices, and at most 4 to
two other vertices. The charge of v after redistribution is at least 7 · 5− 18− 12− 4 = 1.

If v is a 5(4)-vertex then we consider two subcases.
Subcase 4.1: v is a weak 5(4)-vertex.

By Claim 13, v is not adjacent to a weak 4(3)-vertex so that v will send out charge
of at most 16 to four 2(1)-vertices, and at most 1 to a 3(2)-vertex. The charge of v after
redistribution is at least 7 · 5 − 18 − 16 − 1 = 0.
Subcase 4.2: v is not a weak 5(4)-vertex

By definition, v is adjacent to at most three 2(1)-vertices, and v will send out charge
at most 2 to each remaining neighbor. The charge of v after redistribution is at least
7 · 5 − 18 − 12 − 2 − 2 = 1.

If v is a 5(k)-vertex with k ≤ 3, then v sends out charge at most 4k to k 2(1)-vertices,
and at most (5 − k) · 2 to its other neighbors. The charge of v after redistribution is at
least 7 · 5 − 18 − 4k − (5 − k) · 2 ≥ 7 · 5 − 18 − 12 − 4 = 1 as k ≤ 3.

Case 5: v is a vertex of degree greater than 5
At most v will send out charge 4deg(v). The charge of v after redistribution is at least

7deg(v) − 18 − 4deg(v) = 3deg(v) − 18 ≥ 0 as deg(v) ≥ 6.
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Cases 1–5 show that the charge of each vertex after redistribution is non-negative so
that the net charge assigned to V (G) is non-negative. This contradicts the fact that the
net charge assigned to V (G) is negative. Thus no such minimal counterexample exists. �

5 A construction

In this section we give an example of a planar graph of girth 7 that requires 5 colors to
star color. We begin with two definitions that play a key role in the construction.

Definition 5.1 A k-cluster with center v is a graph C together with a star coloring f
such that:

1. C has vertex set {v, x1, x2, . . . , xk, x
′

1, x
′

2, . . . , x
′

k} where the x′

i’s need not be distinct;

2. v has k distinct neighbors x1, x2, . . . , xk;

3. each neighbor xi of v is adjacent to a vertex x′

i 6= v with f(x′

i) = f(v).

Call the k neighbors of v the special neighbors of v. The edge xix
′

i is said to be a leg
of the k-cluster.

r r

r r r

r
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�
�

�
�

�
�
@

@
@

@

1 1

2 3 4

1 v

x′

1 x′

2 = x′

3

x1 x2 x3

Figure 5.1: A 3-cluster with center v and legs x1x
′

1, x2x
′

2 and x3x
′

3

k-clusters are useful for our purposes as they can forbid colors to appear on neighbors
of the center of the cluster that are not contained in the cluster. For example, if v is as in
Figure 5.1, then any neighbor of v not in 3-cluster cannot be assigned colors 1, 2, 3 or 4
without creating a 2-colored P4 or an improper coloring. Thus we make use of k-clusters
by attaching them to existing graphs in a specific fashion. The center of the k-cluster
is identified with a vertex in the graph, but the other vertices in the k-cluster are new
vertices not contained in the vertex set of the graph. We formalize this idea in the next
definition.

Definition 5.2 Let v be the center of a k-cluster C with legs x1x
′

1, . . . , xkx
′

k. Let G be
a graph and let v be a vertex in G with x1, x2, . . . , xk, x

′

1, x
′

2, . . . , x
′

k not in G. Attaching
C to v in G results in a graph with vertex set V (G) ∪ V (C), where V (G) ∩ V (C) = {v},
and edge set E(G) ∪ E(C), in which V (C) is colored as in C.

the electronic journal of combinatorics 15 (2008), #R124 11



A 1-cluster attached to x and a 1-cluster attached to y in the graph H1 can be seen
in Figure 5.2.

We now proceed to the construction. First we construct a graph G2 such that any
4-star coloring of G2 contains a 2-cluster. We then construct a graph G3 such that if a
2-cluster is attached to G3, then a coloring of the 2-cluster cannot be extended to a 4-star
coloring of G3. Lastly we construct G using G2 and |V (G2)| copies of G3, where each copy
of G3 is associated with a vertex of G2. Then in any 4-star coloring of G, the induced
copy of G2 contains a 2-cluster, say with center v, and the copy of G3 associated with v
cannot be colored.

G2 will be constructed from copies of two smaller graphs H1 and H2. We first prove
three lemmas regarding these smaller graphs before showing that any 4-star coloring of
G2 contains a 2-cluster.

Let b1, b2, . . . , b10 be the vertices of P10, and let x and y be two isolated vertices. For
i ∈ {1, 4, 7, 10} add edges xbi and ybi, and subdivide xbi and ybi with ai and ci respectively.
Call this graph H1. Later in the construction of H2, we will add copies of H1 between
two specific vertices. When we add a copy of H1 between two vertices, say u and w, we
are identifying u and w with x and y respectively.

Lemma 5.3 Let f be a 4-star coloring of H1 such that f(ai) = f(ai+3) and f(ci) =
f(ci+3) for some i ∈ {1, 4, 7}. Then H1 contains a 2-cluster.

Proof. If f(ai) = f(ci), then ai is the center of a 2-cluster with legs xai+3 and bici;
so assume f(ai) 6= f(ci). If any of bi, bi+1, bi+2, bi+3 receives color f(ai) or f(ci), then
we have either an improper coloring or a 2-cluster centered at one of ai, ci, ai+3, ci+3.
However, it is not possible to star color the path induced by bi, bi+1, bi+2 and bi+3 with
only two colors. �

Lemma 5.4 Attach a 1-cluster to x and a 1-cluster to y in H1 with legs x1x
′

1 and y1y
′

1

respectively. Let f be a 4-star coloring of the clusters such that f(x) = f(y). Then f
cannot be extended to a 4-star coloring of H1 without creating a 2-cluster.

Proof. Suppose f can be extended to a 4-star coloring of H1 without creating a 2-cluster.
Let f(x) = f(y) = 1 and f(x1) = 2 where x1 is the special neighbor of x (see Figure 5.2).
Observe that for each i ∈ {1, 4, 7, 10}, f(ai) /∈ {1, 2} and f(ci) /∈ {1, f(y1)} where y1 is
the special neighbor of y.

Suppose f(ai) = f(ai+3) = 3 with i ∈ {1, 4, 7}. If f(ci) = 3, then ai is the center of a
2-cluster with legs bici and xai+3. Similarly, f(ci+3) 6= 3. By Lemma 5.3, f(ci) 6= f(ci+3)
so assume f(ci) = 2 and f(ci+3) = 4. If f(bi) = 1 or f(bi+3) = 1, then x is the center of a
2-cluster. Therefore f(bi) = 4 and f(bi+3) = 2. If f(bi+1) = 2, then bi+1 is the center of
a 2-cluster with legs bici and bi+2bi+3. If f(bi+1) = 3, then ai is the center of a 2-cluster
with legs bibi+1 and xai+3. Thus f(bi+1) = 1 and similarly, f(bi+2) = 1 and we have an
improper coloring.

Hence f(ai) 6= f(ai+3) and so we may assume f(a1) = f(a7) = 3 and f(a4) = f(a10) =
4. Observe that if f(ai) = f(ci) for some i ∈ {1, 4, 7, 10} then ai is the center of a
2-cluster.
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Suppose f(y1) = 2. By a similar argument as used in the previous paragraph, we
must have f(c1) = f(c7) = 4 and f(c4) = f(c10) = 3. This forces f(b4) = f(b7) = 2. If
f(b5) = 3 or f(b5) = 4, then c4 or a4, respectively, is the center of a 2-cluster; so f(b5) = 1.
Similarly, f(b6) = 1 and we have an improper coloring. Therefore f(y1) 6= 2 and so we
may assume f(y1) = 3. Then we must have f(c1) = f(c7) = 4 and f(c4) = f(c10) = 2,
so that f(b1) = 2 and f(b4) = 3. If f(b2) = 3 then b2 is the center of a 2-cluster, and if
f(b2) = 4 then c1 is the center of a 2-cluster. Thus f(b2) = 1, and similarly f(b3) = 1 and
we have an improper coloring. �

r r r r r r r r r r

r 1y′

1

ry1

r

y 1
PPPPPPPPP

���������

((((((((((((((((((r r r r

r r r r

rx 1���������

PPPPPPPPP

hhhhhhhhhhhhhhhhhh

rx1 2

r 1x′

1

f(y1)

c1 c4 c7 c10

a1 a4 a7 a10

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Figure 5.2: Lemma 5.4, 1-clusters attached to x and y in H1

We now construct H2. Let b1, b2, . . . , b22 be the vertices of P22, and let x and y be two
isolated vertices. For i ≡ 1 modulo 3, add edges xbi and ybi, and subdivide xbi and ybi

with ai and ci respectively. For i ≡ 0, 2 modulo 3, add copies of H1 between x and bi,
and between y and bi. Call this graph H2. In the construction of G2 we will add copies
of H2 between two specific vertices. When we add a copy of H2 between two vertices, say
u and w, we are identifying u and w with x and y respectively.

Lemma 5.5 Attach a 1-cluster to x and a 1-cluster to y in H2 with legs x1x
′

1 and y1y
′

1

respectively. Let f be a 4-star coloring of the clusters such that f(x1) = f(y1). Then f
cannot be extended to a 4-star coloring of H2 without creating a 2-cluster.

Proof. Suppose f can be extended to a 4-star coloring of H2 without creating a 2-cluster.
If f(x) = f(y) then since x and y have an induced copy of H1 between them, we may
apply Lemma 5.4 to this copy of H1. Assume f(x) 6= f(y), say f(x) = 1, f(y) = 3, and
f(x1) = f(y1) = 2.
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Suppose f(ai) = f(aj) = 4 for some i < j with {i, j} ⊂ {4, 7, 10, 13, 16, 19}. If
f(bi) = 1 or f(bi) = 3 then x or y, respectively, is the center of a 2-cluster; so f(bi) = 2.
Similarly, f(bj) = 2. If f(ci) = 4 then ai is the center of a 2-cluster with legs bici and
xaj; so f(ci) = 1, and similarly f(cj) = 1. If f(bi−1) = 1 or f(bi+1) = 1, then ci is the
center of a 2-cluster, and if f(bi−1) = 4 or f(bi+1) = 4 then ai is the center of a 2-cluster;
so f(bi−1) = 3 and f(bi+1) = 3. Since bi+1 and y are centers of 1-clusters with legs bibi−1

and y1y
′

1, respectively, and f(bi+1) = f(y), we can apply Lemma 5.4 to the induced copy
of H1 between bi+1 and y.

Hence we may assume that all but at most one ai with i ∈ {4, 7, 10, 13, 16, 19} receives
color 3. Similarly, all but at most one ci with i ∈ {4, 7, 10, 13, 16, 19} receives color 1.
But there are six vertices ai and six vertices ci with i ∈ {4, 7, 10, 13, 16, 19}. So there
is a j such that f(aj) = f(aj+3) = 3 and f(cj) = f(cj+3) = 1 and we may apply
Lemma 5.3 to the copy of H1 induced by x, y, aj+k, cj+k, bj+l where k ∈ {−3, 0, 3, 6} and
l ∈ {−3,−2, . . . , 5, 6}. �

We now construct G2. Let u1, . . . , u7 be the vertices on the 7-cycle in C ′

7 (the graph
obtained by adding a pendant vertex to each vertex on C7). For 1 ≤ i ≤ 7, let ui+7 be
the pendant vertex adjacent to ui. Add an isolated vertex x. For 1 ≤ i ≤ 14, add five
pendant vertices u1

i , . . . , u
5
i to ui, and add five pendant vertices x1

i , . . . , x
5
i to x (At this

point deg(ui) = 8 for 1 ≤ i ≤ 7, deg(ui) = 6 for 8 ≤ i ≤ 14, and deg(x) = 70). For each
i, j, add a copy of H2 between uj

i and xj
i . This completes the construction of G2. It is

easy to see that G2 is planar.

Lemma 5.6 Any 4-star coloring of G2 must contain a 2-cluster.

Proof. Let f be a 4-star coloring of G2 and assume f(x) = 1. Since C ′

7 requires 4 colors
to star color, there is an i ∈ {1, 2, . . . , 14} such that f(ui) = 1. Observe {f(uj

i ), f(xj
i )} ⊂

{2, 3, 4} for 1 ≤ j ≤ 5.
If there exists a k 6= j such that f(uj

i ) = f(uk
i ), then uj

i is the center of a 1-cluster
with leg uiu

k
i ; and there are at most two values of j for which there does not exist such a

k. Similarly, there are at most two values of j for which xj
i is not the center of a 1-cluster

with special neighbor x. Thus there is at least one j for which both uj
i and xj

i are centers
of 1-clusters with special neighbors ui and x respectively. By Lemma 5.5, the copy of H2

between the centers of 1-clusters uj
i and xj

i must contain a 2-cluster. �

G3 is constructed in a similar fashion as G2. Before constructing G3, we need to
construct a smaller graph H3, and prove a technical lemma.

Let b1, b2, . . . , b10 be the vertices of P10, and let x and y be two isolated vertices. For
each i ∈ {1, . . . , 10}, add edges xbi and ybi. For each i ∈ {1, . . . , 10}, subdivide xbi twice
with ai and si so that si is adjacent to x, and subdivide ybi twice with ci and ti so that ti
is adjacent to y. Call this graph H3. Later in the construction of G3, we will add copies
of H3 between two specific vertices. When we add a copy of H3 between two vertices, say
u and w, we are identifying u and w with x and y respectively.
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Lemma 5.7 Attach a 2-cluster to x in H3 with legs x1x
′

1, x2x
′

2 and attach a 2-cluster to
y in H3 with legs y1y

′

1, y2y
′

2 where y1 = x. Let f be a 4-star coloring of the clusters such
that f(y) /∈ {f(x), f(x1), f(x2)}. Then f cannot be extended to a 4-star coloring of H3.

Proof. Suppose f can be extended to a 4-star coloring of H3. Let f(x) = 1, f(x1) =
f(y2) = 2, f(x2) = 3, and f(y) = 4. Since x and y are both 2-clusters, we must have
f(si) = 4 and f(ti) = 3 for all i. An important observation is that only colors 2 and 3
are available for each ai, and only colors 1 and 2 are available for each ci.

First we show f(bi) 6= 2 for i ∈ {4, 5, 6, 7}. Suppose f(bi) = 2 and f(bi+1) = 1 for
some i ∈ {4, 5, 6, 7}. Then f(ci) = 1 and f(ci+1) = 2; but then cibibi+1ci+1 is 2-colored.
Similarly, if f(bi) = 2 and f(bi+1) = 3, then f(ai) = 3, f(ai+1) = 2 and aibibi+1ai+1

is 2-colored. Therefore, if f(bi) = 2, we must have f(bi−1) = f(bi+1) = 4. This forces
f(ai+1) = 3 and f(ci+1) = 1, f(bi+2) = 1, and f(ci+2) = 2. Clearly f(bi+3) 6= 1, and
if f(bi+3) = 4 then ci+1bi+1bi+2bi+3 is 2-colored. If f(bi+3) = 2 then f(ci+3) = 1 and
ci+2bi+2bi+3ci+3 is 2-colored; so f(bi+3) = 3. This forces f(ai+3) = 2 but then ci+3 cannot
be colored. We conclude that f(bi) 6= 2 whenever i ∈ {4, 5, 6, 7}.

The path b4b5b6b7 requires 3 colors to star color so that f(bi) = 3 for some i ∈
{4, 5, 6, 7}. This forces f(ai) = 2 and f(ci) = 1. If f(bi+1) = 2 then f(ai+1) = 3 and
aibibi+1ai+1 is 2-colored; so f(bi+1) = 4. Similarly, f(bi−1) = 4. This forces f(ai+1) = 2,
f(ci+1) = 1, f(bi+2) = 1, and f(ci+2) = 2. If f(bi+3) = 2 then f(ci+3) = 1; but then
ci+2bi+2bi+3ci+3 is 2-colored. So f(bi+3) = 3 which forces f(ci+3) = 2; but then ai+3

cannot be colored. �

We now construct G3. Let u1, . . . , u7 be the vertices on the 7-cycle in C ′

7 and let
ui+7 be the pendant vertex adjacent to ui for 1 ≤ i ≤ 7. Add an isolated vertex x. For
i ∈ {8, . . . , 14}, add edges xui and subdivide xui with wi. For i ∈ {8, . . . , 14}, add a copy
of H3 between x and wi. This completes the construction of G3.

Lemma 5.8 Attach a 2-cluster to x in G3 with special neighbors x1 and x2 and let f be
a 4-star coloring of the 2-cluster. Then f cannot be extended to a 4-star coloring of G3.

Proof. Suppose f can be extended to a 4-star coloring of G3. Assume f(x) = 1, f(x1) = 2
and f(x2) = 3. Observe that f(wi) = 4 for i ∈ {8, . . . , 14}. Since C ′

7 requires 4 colors
to star color, there is an i ∈ {1, . . . 7} with f(ui) = 4. Then wi+7 is the center of a
2-cluster with legs ui+7ui and xwi+8 (i + 8 reduced modulo 7 if necessary). Observe
f(wi+7) /∈ {1, 2, 3} and that x is a special neighbor of wi+7. Therefore by Lemma 5.7, the
induced copy of H3 between x and wi+7 cannot be 4-star colored. �

We now construct G using G2 and |V (G2)| copies of G3. For each vertex v in G2, attach
a copy of G3 by identifying x with v, where x is as in the description of the construction
of G3.

Theorem 5.9 G is a planar graph of girth 7 that is not 4-star colorable.
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Proof. Suppose f is a 4-star coloring of G. By Lemma 5.6, the induced copy of G2 in G
must contain a 2-cluster, say with center v. By Lemma 5.8, the copy of G3 attached to v
cannot be 4-star colored, a contradiction. �

The above construction and argument depends heavily on the idea of a k-cluster. k-
clusters are used in [7] to construct a bipartite planar graph that requires 8 colors to star
color, and in [10] to construct a planar graph of girth 5 requiring 6 colors to star color.

6 Known bounds and open problems

The table below shows the current best known bounds for the star chromatic number for
planar graphs of a given girth. The best known bound is given along with the correspond-
ing reference. Bounds without reference are established in this paper.

Girth Best known bounds
g lower bound upper bound
3 10 [1] 20 [1]
4 8 [7] 18 [9]
5 6 [10] 16 [1]
6 5 8 [8]
7 5 7 [10]
8 4 [1] 6 [10]

9-13 4 [1] 5
14+ 4 [1] 4

Table 6.1: Best known bounds

Problem 1: Determine the smallest girth g such that any planar graph of girth at
least g can be partitioned into a forest and a 2-independent set.

Theorem 3.1 shows that all planar graphs of girth at least 14 admit such a partition,
while Theorem 5.9 gives an example of girth 7 graph that does not admit such a partition.
We believe that girth 14 is too high and that Theorem 3.1 can be improved.

Problem 2: Determine the smallest girth g such that any planar graph of girth at
least g can be star colored with 4 colors.

Corollary 3.2 shows that planar graphs of girth at least 14 can be star colored with 4
colors, while Theorem 5.9 shows that there is a girth 7 planar graph that requires 5 colors
to star color. We believe that any planar graph with girth at least 8 can be star colored
with 4 colors.

Problem 3: Determine the smallest k such that any planar graph has a star coloring
with k colors.

While Corollary 4.2, Corollary 3.2, and [10] improve upon the upper bounds for planar
graphs of high girth, less is known about planar graphs of low girth. As mentioned in
the introduction, Albertson et al. [1] show the star chromatic number for planar graphs
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is somewhere from 10 to 20. The gap is also wide for bipartite planar graphs. In [7], it is
shown that bipartite planar graphs can be star colored using 14 colors, and an example
of a bipartite planar graph requiring 8 colors to star color is given.
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