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Abstract

New cyclic n-digit Gray codes are constructed over {0, 1, . . . , R − 1} for all
R ≥ 2, n ≥ 3. These codes have the property that the distribution of digit changes
(transition counts) between two successive elements is close to uniform. For R = 2,
the construction and proof are simpler than earlier balanced cyclic binary Gray
codes. For R ≥ 3 and n ≥ 2, every transition count is within 2 of the average Rn/n.
For even R > 2, the codes are as close to uniform as possible, except when there
are two anomalous transition counts for R ≡ 2 (mod 4) and Rn is divisible by n.

1 Introduction

For fixed integers R, n ≥ 2, an n-digit R-ary Gray code is an ordering of all n-strings
with digits from {0, 1, . . . , (R−1)} such that any two consecutive strings differ in only one
digit and that difference is ±1. When the last and first strings also satisfy this property,
the code is called cyclic. For example,

20, 21, 22, 12, 02, 01, 11, 10, 00 (1.1)

is a cyclic 2-digit ternary Gray code. We only consider cyclic codes here.
In the mid-twentieth century Frank Gray [7] designed the eponymous Binary Reflected

Gray Code to facilitate relaying information through many repeaters. His code can be
generalized to R ≥ 3, and is cyclic when R is even. The term “Gray code” is now often
used to describe listings of combinatorial objects in which successive elements differ in
some prescribed minimal way (cf. [11]), but here the term is not used in that general
sense.

The transition sequence of a cyclic Gray code records the succession of digit changes
d1, . . . , dRn in the code; the number of times a digit occurs in the transition sequence is
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called its transition count; and the collection of transition counts is the transition

spectrum of the code. For example, the transition spectrum of the ternary code in (1.1)
is (5, 4).

For each pair R, n there are many Gray codes. An important distinguishing charac-
teristic among them is the relative uniformity of transition spectrum. Applications of
relatively uniform Gray codes are given in [2, 11]. For instance, in many present-day par-
allel machines two processor nodes A = (a1 . . . an) and B = (b1 . . . bn) are connected if
and only if they are consecutive elements in a Gray code, and the relative balance of com-
munication loads among different configurations is measured by the relative uniformity of
the transition spectrum of the underlying Gray code.

The fact that the code is cyclic implies the sum of all digit changes in any fixed digit-
position is congruent to 0 (mod R). Since in a Gray code the possible digit changes are
0,±1, for even R every transition count must therefore be even. Several authors, among
them [1, 2, 8, 10, 14], constructed balanced cyclic n-digit binary Gray codes in which
the difference of any pair of transition counts is at most 2. Exponentially balanced

binary codes have also been studied [13, 15] where the transition spectrum either has one
element or consists of two consecutive powers of 2. Non-binary Gray codes have been
considered, for example [4, 3, 5, 6, 8, 9, 12, 14].

In [10] John Robinson and Martin Cohn give a method for producing balanced (n+2)-
digit binary codes from n-digit ones. The procedure relies on a subsequence of the original
transition sequence that satisfies certain properties, and Girish Bhat and Carla Savage’s
later proof [2] of the existence of the subsequence was completed by Kiran Kedlaya. More
recently it has been noted that the construction (and proof) had already appeared in [1]
where it is attributed to T. Bakos. A comment by a referee for our earlier paper [6]
motivated us to return to the binary case, and in Section 2 we construct simpler balanced
binary codes. More importantly, our proof is much simpler since to obtain the (n+2)-digit
codes the proof relies only on transition count information from the n-digit case.

When all transition counts are equal (the common value must be Rn/n), the code
is called uniform or completely balanced. In [10, 16] uniform n-digit binary codes are
constructed for every possible n (a power of 2), but there are few published constructions
of uniform codes for arbitrary R. For even R and n dividing Rn, in Theorem 9 we obtain
uniform codes when R ≡ 0 (mod 4) and the construction gives two anomalous transition
counts equal to Rn/n ± 2 when R ≡ 2 (mod 4).

When Rn is not divisible by n, uniform cyclic n-digit codes cannot exist and it is
reasonable to ask for well-balanced codes in which every transition count is bRn/nc
or dRn/ne. In [6] we produced well-balanced 2-digit R-ary Gray codes for every R ≥ 2
using a natural inductive process in which (R + 2)-ary codes are constructed from R-ary
ones. In Section 4 we obtain what we call nearly-uniform codes whose transition counts
TC(1), . . . , TC(n) satisfy

∣

∣

∣
TC(j) −

Rn

n

∣

∣

∣
≤ 2 for all 1 ≤ j ≤ n . (1.2)

(Note that every balanced code is necessarily nearly-uniform.) This continues the work
begun in [6], where we constructed codes in which each transition count is within R − 1
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of the average. While proofs of previous constructions involved delicate combinatorial
arguments, our use of Rn/n as a reference point allows simpler proofs based on balancing
inequalities.

2 The Binary Case

For any n ≥ 2 and R ≥ 2, consider the graph whose vertices are all R-ary (n + 2)-strings,
in which two vertices are adjacent if and only if they differ in one position by ±1 (mod R).
The (n + 2)-digit R-ary Gray codes are the Hamiltonian paths in this Gray graph.

Some binary constructions can be easily described by arranging the vertices of the
Gray graph into a 2n × 4 rectangular grid in which the rows are labelled by an n-digit
binary Gray code and the columns numbered consecutively by the cyclic 2-digit code
00 01 11 10. Vertices that are “toroidally adjacent” in this grid are also adjacent in the
Gray graph. For instance, the argument in [2] shows there is a choice of 4-digit binary
code a1, . . . , a16 for which the 6-digit code graphed in Figure 1 is balanced. (We have
labelled the rows in this graph so that the transition digit between a15 and a16 is the one
labelled t1 in [2].)

Figure 1: Redrawing the balanced cyclic 6-digit binary code in [2, Figure 1].

For n = 2, 3, Gray’s original n-digit codes are balanced:

00, 01, 11, 10 and 000, 001, 011, 010, 110, 111, 101, 100 ,
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with spectra (2, 2) and (2, 2, 4) respectively. They can be used to obtain the balanced
cyclic 4- and 5-digit binary codes graphed in Figure 2. The 4-digit code is uniform, and
the 5-digit code has the balanced spectrum (6, 6, 8, 6, 6). (Note that denoting the row-
indexing n-digit code by a1, . . . , a2n , we have used arrow heads to indicate the inclusion
of the three edges:

a2n01 to a101 ; a111 to a2n11 ; a2n00 to a2n10 ,

corresponding to respective digit changes 1, 1, n + 1.)

Figure 2: Balanced cyclic 4- and 5-digit binary Gray codes.

The subgraph consisting of the first and last rows of vertices and incident edges is
the same in both graphs in Figure 2. Introducing this “notch” yields a uniform spectrum
when 2n/n is an integer, and the idea of using this notch is inherent in earlier binary
constructions. (cf. Figure 1.)

We will construct (n+2)-digit balanced codes inductively from n-digit ones. For this it
is helpful to consider partitions of the n-digit code a1, . . . , aRn into an even number L ≥ 2
of blocks of the form

B1 := {a1},B2 := {a2, . . . , ai2}, . . . ,BL−1 := {aiL−2+1, . . . , a2n
−1},BL := {a2n} , (2.1)

where (as in [6]) the transition digits demarcating the partition blocks are called the
connecting digits of the partition and the connecting multiplicity mj refers to the
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number of times the digit j occurs as a connecting digit. For example, in the graphs in
Figure 2, the partition blocks B2, . . .BL−1 are:

{a2}, {a3} and {a2, a3}, {a4, a5}, {a6}, {a7} ,

and the connecting digits for the partition are

d1, d2, d3, d4 and d1, d3, d5, d6, d7, d8

with connecting multiplicities

m1 = 2, m2 = 2 and m1 = 1, m2 = 1, m3 = 4 .

Note that d1, d2n
−1, d2n are connecting digits in all our partitions.

These partitions are used to describe Hamiltonian paths on the (2n−2)×3 rectangular
grid obtained by deleting the first and last rows and the last column of the Gray graph
in the following way: Beginning with the vertex a200, traverse all vertices in the first
column that belong to the block B2, ending with ai200. After connecting to ai201 in the
second column, traverse (in a backward direction) all vertices in the second column that
belong to the block B2, and then continue down the third column. This ends at ai211
which can then be connected to ai2+111, the first third-column vertex in the third block.
This process is continued through the blocks B3, . . . ,BL−1 of the partition (2.1), yielding
a Hamiltonian path on the (2n−2)×3 grid which we call the partition path on the grid.
It is completed to a Hamiltonian cycle as indicated in the examples in Figure 2. Namely,
since L is even, a2n

−100 is always the terminal vertex for the path already constructed.
From that vertex, connect to a2n00, over to a2n10 in the last column, up through the last
column to a110 and over to a111. Consecutively proceeding through

a2n11, a2n01, a101, a100, a200

gives a Hamiltonian cycle, which we will call the cycle induced by the partition.
Most reported n-digit binary codes (for instance, those in [2, 8, 10, 14, 15]) exhibit some
partitioning behavior.

Theorem 1. The transition spectrum (TC(1), . . . , TC(n + 2)) of the Gray code induced
by a partition of an n-digit code with transition spectrum (t1, . . . , tn) and connecting mul-
tiplicities m1, . . . , mn has transition counts

TC(i) =

{

4ti − 2mi if i ≤ n

L if i > n
.

Proof. Scanning across the rows, the (vertical) edges corresponding to a connecting digit
are used twice, while the edges corresponding to non-connecting digit changes are used
four times. Therefore, each digit i ≤ n occurs

2mi + 4(ti − mi) = 4ti − 2mi

times in the induced Gray code. Further, every block that partitions the rows contains
two horizontal edges of the cycle, one corresponding to each of the digits n+1, n+2.
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Theorem 1 and its proof is an adaptation of [6, Theorem 3] to the binary case.

Example 2. Here we produce a balanced 6-digit binary code from the uniform 4-digit code
in Figure 2. Consider any partition of the 4-digit code in which every connecting multiplic-
ity is 2, giving L = 8 blocks. Since each original transition count ti equals 4 , Theorem 1
implies the induced 6-digit code has TC(i) = 12 for all i ≤ 4 and TC(5) = T (6) = L = 8,
an unbalanced transition spectrum. If the partition is modified by increasing two of the
connecting multiplicities by 1, say m1 = m2 = 3, which is possible since each ti = 4),
the number of blocks in the new partition is the even number L = 10 and the balanced
transition spectrum (10, 10, 12, 12, 10, 10) is obtained. By comparison, the 6-digit code
in [2] has a larger notch. (cf. Figure 1.)

Theorem 3. For every n ≥ 2, there exists a cyclic balanced n-digit binary Gray code.

Proof. Note that we’ve already demonstrated such codes for all 2 ≤ n ≤ 6. We will
actually prove that for every n ≥ 5, every cyclic balanced n-digit binary Gray code can
be partitioned in a way so that the induced (n + 2)-digit code is balanced.

As in Example 2, the first step is to obtain an initial guess for the connecting multi-
plicities. For this, for all i ≤ n we define the integer mi by

0 ≤ 4ti −
2n+2

n + 2
− 2mi < 2 . (2.2)

Then mi can be used as a connecting multiplicity for the i-th digit if and only if 0 ≤ mi ≤
ti. Recalling that our 5-digit code has transition spectrum (6, 6, 8, 6, 6), it can be checked
that for this choice 0 < mi < ti holds for all i. For any n, −2 < ti − 2n/n < 2 since the
original transition spectrum is balanced. It can be checked that this combined with (2.2)
gives 0 < mi < ti for all n ≥ 6. Therefore, there are (many) partitions that have the
positive connecting multiplicities m1, . . . , mn.

In the case when (n + 2) divides 2n+2, since each 4ti −
2n+2

n+2
is an even integer, the

equality on the left-side of (2.2) holds for all i ≤ n. This implies every mi is even (and so
L is even), and TC(i) = 2n+2/(n + 2) for all i ≤ n by Theorem 1. Also,

2n+2 =
n+2
∑

i=1

TC(i) =
n

n + 2
2n+2 + 2L

gives TC(n + 1) = TC(n + 2) = 2n+2/(n + 2), and the induced code is uniform.
In the remainder of the proof we assume 2n+2/(n + 2) is not an integer, and each mi

defined by

0 < 4ti −
2n+2

n + 2
− 2mi < 2 .

If L is odd, the fact that mn < tn allows us to change the partition slightly by increasing
the connecting multiplicity of n by 1, giving a partition with an even number of blocks.

the electronic journal of combinatorics 15 (2008), #R128 6



In any case, by Theorem 1 a partition with these connecting multiplicities induces a cyclic
Gray code whose transition counts satisfy

0 < TC(i) −
2n+2

n + 2
< 2 for all i < n ; −2 < TC(n) −

2n+2

n + 2
< 2 ; (2.3)

TC(n + 1) = TC(n + 2) = L; and
∑n+2

i=1
TC(i) = 2n+2. Therefore,

2n+2

n + 2
− L =

1

2

n
∑

i=1

(

TC(i) −
2n+2

n + 2

)

,

which by (2.3) lies in the interval (−1, n), and so M := b2n+2/(n + 2) − Lc satisfies
−1 ≤ M < n. When −1 ≤ M < 2, the code is balanced. For M ≥ 2, according to
whether M is even or odd we increase either all m1, . . . , mM or all m1, . . . , mM−1 by 1 to
get a partition with an even number blocks for which the induced code is balanced.

3 An Extension of the Binary Construction

For the remainder of this paper, we consider the question of constructing close-to-uniform
cyclic n-digit R-ary Gray codes for R ≥ 3. Similar to the binary case, it is helpful to
picture the vertices of the n-digit R-ary Gray graph as arranged in a rectangular grid.
Here the columns are labelled as 0 1 . . . R−1 and the rows are indexed by a cyclic n-digit
Gray code. Setting ρ to be the even integer of R − 2, R − 1, in [6] we used a partition of
the rows to construct a Hamiltonian path on the first ρ + 1 columns of the R-ary Gray
graph. This allowed us (in [6, Theorem 4]) to obtain (n + 1)-digit codes in which every
transition count is strictly within ρ of the average Rn+1/(n + 1) (and so is balanced for
R = 4).

Here we extend the binary construction given in the last section to R ≥ 3 by con-
sidering triples of consecutive columns. This will be used in Section 4 to produce codes
in which each transition count is at most 2 from the average. For even R, this is a bal-
anced code except when R ≡ 2 (mod 4) and Rn/n is an integer. (cf. Theorem 11.) The
spectrum is often less balanced for odd R (Theorem 12).

Earlier work [6, Theorem 4] allows us to assume R ≥ 5 and n ≥ 3. Let q, r be a fixed
choice of non-negative integers such that R = 3q+r. (Note that q, r are not necessarily the
usual “quotient” and “remainder”; that is, r ≥ 3 is possible.) Consider the decomposition
of the Rn × R grid into q triplets of three consecutive columns with r residual columns.
Within each triplet, the rows will be partitioned using possibly different partitions In
each such partition we require that the number of blocks is congruent to R + 1 (mod 2)
and in which {aRn} is a block when R is odd. In what follows, such partitions are called
permissible. The total number of times a digit j ≤ n occurs as a connecting digit in the
union of the q partitions will be called its total connecting multiplicity.
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Figure 3: The structure of 3-digit codes for R = 3 · 1 + 2 and R = 3 · 1 + 3.

For our description of the construction it’s helpful to set M := Rn − 1, Rn, whichever
is even. First, on each of the q column triplets use a permissible partition to construct a
partition path on the first M rows of the triplet. Since each partition has R + 1 (mod 2)
blocks, each of these paths is based on an odd number of partition blocks. The induced
path on the first triplet therefore begins with a10 and ends with aM2, and so can be
connected to aM3. Then the (backward) partition path on the second triplet can be
traced, ending with the vertex a15. This process can be continued through all q triplets,
creating a Hamiltonian path on the M × 3q grid that terminates in either a1(3q − 1) or
aM(3q − 1), according to whether q is even or odd. (Here we’re using the fact that a
triplet contains an odd number of columns.) Figure 3 depicts continuations of the path
to Hamiltonian cycles for the decompositions R = 5 = 3 · 1 + 2 and R = 6 = 3 · 1 + 3.

Continuing as in the figure, we extend the path from the M × 3q grid to the M × R
grid by going up and down the residual r columns of the M × r grid in succession. Since
q + r ≡ 3q + r = R (mod 2), this ends at either a1(R − 1) or aM(R − 1) according to
whether R is even or odd. When R is even, the terminus a1(R − 1) can be connected
by a horizontal edge to the initial vertex, and the choice of M = Rn means this is a
Hamiltonian cycle on the Gray graph. When R is odd, the path ends at aRn

−1(R − 1).
It is completed to a cycle on the Gray graph by connecting to aRn(R − 1), traversing the
rest of the last row backward, and then connecting to a10. These cycles will be called the
Hamiltonian cycles induced by the decomposition R = 3q + r and the q (permissible)
partitions of the n-digit code.

This construction depends heavily on the fact that triplets have an odd number of
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columns. A different choice of an odd number of columns would result in different tran-
sition counts from those in Theorem 5. In particular, the summands 2Mi would change
and result in less ability to balance.

In what follows it is convenient to assume the given n-digit code is in standard

form, in which its last two transition digits are dRn
−1 = 2 and dRn = 1. This can be

accomplished by cycling through the code to get dRn
−1 6= dRn and then permuting digits

as needed. It is useful to refer to 1 as an eccentric digit, and when R is odd, 2 will also
be called eccentric .

Example 4. For the 3-digit codes illustrated in Figure 3, q = 1 and well-balanced 2-
digit codes can be used to label the rows, with transition spectra (12, 13) for R = 5 and
(18, 18) for R = 6. For R = 5, any partition with connecting multiplicities m1 = 8,
m2 = 10 is permissible, and the 3-digit 5-ary code induced by such a partition has
spectrum (42, 43, 40). Note that the choice of m1 = 9, m2 = 11 also yields a permissible
partition, but the induced code has the less-desirable spectrum (40, 41, 44). For R = 6,
choosing m1 = 16, m2 = 17 produces a 6-ary 3-digit code with spectrum (72, 74, 70) that
is not uniform. In Theorem 11 we will prove our method cannot construct a uniform
3-digit 6-ary code.

Theorem 5. Let n ≥ 2, R ≥ 5, and let a1, . . . , aRn be a cyclic n-digit R-ary Gray code
written in standard form with transition spectrum (t1, . . . , tn). Then for any decomposition
R = 3q+r and any q permissible partitions with total connecting multiplicities M1, . . . , Mn,
the transition spectrum (TC(1), . . . , TC(n+1)) of the Hamiltonian cycle induced by these
partitions has transition counts

TC(i) =

{

Rti − 2Mi if i ≤ n is non-eccentric

Rti − 2Mi − δ if i is eccentric

where δ equals either q + r or q + r − 1 whichever is even.

Proof. In order to calculate the transition counts, we divide the construction of the cycle
into three stages: The induced Hamiltonian path on the M × 3q grid; the path on the
columns of the M × r grid; and the additional edges that complete the cycle. Note that
the q triplets and r residual columns are connected by horizontal edges corresponding to
the digit n + 1 and so are ignored here.

Let m1j , . . . , mnj be the connecting multiplicities of the partition in the j-th triplet.
Within the j-th triplet, the transition count of each non-eccentric digit i ≤ n is 3ti−2mij,
giving a total of 3qti − 2Mi for the first 3q columns. In each of the remaining r columns,
the non-eccentric digit i occurs ti times and so TC(i) = Rti − 2Mi, as claimed. When i
is eccentric, it occurs ti − 1 times in a1, . . . , aM and so its transition count in the M × R
grid is

q
∑

j=1

(3(ti − 1) − 2(mij − 1)) +
r

∑

j=1

(ti − 1) = Rti − 2Mi − q − r .
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When R is even, the cycle is completed by adding only horizontal edges; when R is odd,
exactly one edge is added for each eccentric digit. Since q+r ≡ R (mod 2), this completes
the proof.

Corollary 6. For any R ≥ 5 and n ≥ 3, the last transition count in the Hamiltonian
cycle induced by R = 3q + r and any choice of q permissible partitions of a cyclic n-digit
R-ary Gray code is

TC(n + 1) =

{

2L + 2(q + r − 1) ≡ 0 (mod 4) if R is odd

2L + q + r ≡ R (mod 4) if R is even
, (3.1)

where L is the total number of partition blocks.

Proof. We note the transition spectrum (TC(1), . . . , TC(n + 1)) of any cyclic (n + 1)-
digit Gray code satisfies

∑n+1

i=1
TC(i) = Rn+1, and that R = 3q + r ≡ q + r (mod 2). If

M1, . . . , Mn are the total connecting multiplicities then L =
∑n

i=1
Mi. Also, by definition

of permissible partition,
L ≡ q(R + 1) (mod 2) . (3.2)

When R is even, i = 1 is the only eccentric digit, and Theorem 5 implies

n
∑

i=1

TC(i) = R
n

∑

i=1

ti − 2
n

∑

i=1

Mi − δ = Rn+1 − 2L − δ

since the sum of transition counts of an n-digit code is Rn. Then

TC(n + 1) = Rn+1 −

n
∑

i=1

TC(i) = 2L + δ ≡ 2q(R + 1) + δ ≡ 3q + r = R (mod 4) ,

by (3.2). Similarly, for odd R,

TC(n + 1) = 2(L + δ) ≡ 2(q(R + 1) + (q + r − 1)) ≡ 0 (mod 4)

since both R + 1 and q + r − 1 are even.

When R is odd, TC(n + 1) is always divisible by 4 and so the construction can never
construct uniform codes. When R is even and Rn+1/(n + 1) is an integer, it is always
divisible by 4 and so the induced codes cannot be uniform for R ≡ 2 (mod 4). This is an
artifact of the construction that is independent of the chosen decomposition R = 3q + r.
We return to these observations in Theorems 11 and 12.

4 Nearly-uniform codes

In what follows, we will use the decomposition R = 3q + r with 0 ≤ r < 3 exclusively. As
in the proof of Theorem 3 for the binary case, the strategy here is to obtain q permissible
partitions of nearly-uniform n-digit codes for which the (n + 1)-digit induced code is
nearly-uniform. The first step is to identify an initial choice of the total connecting
multiplicities.
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Lemma 7. Let R ≥ 5 with R = 3q + r where 0 ≤ r < 3, and δ = q + r − 1 or q + r,
whichever is even. Let t be a transition count of either a well-balanced 2-digit code or a
nearly-uniform n-digit code when n ≥ 3. For either ρ = 0 or ρ = δ, the integer M defined
by

0 ≤ Rt −
Rn+1

n + 1
− ρ − 2M < 2

satisfies 2q < M < q(t − 1) − 1 provided (R, n) 6= (5, 2).

Proof. Since

Rt −
Rn+1

n + 1
− ρ − 2 < 2M ≤ Rt −

Rn+1

n + 1
− ρ ,

it suffices to show that

Rt −
Rn+1

n + 1
− ρ − 2 > 4q and Rt −

Rn+1

n + 1
− ρ < 2q(t − 1) − 2 . (4.1)

The first inequality in (4.1) follows from ρ + 4q ≤ 5q + r ≤ 5R/3 and t ≥ Rn/n − 2:

Rt −
Rn+1

n + 1
− ρ − 2 − 4q ≥

R3

6
−

11R

3
− 2 =

R(R2 − 22) − 12

6
> 0

by n ≥ 2 and R ≥ 5. Since q ≥ (R − 2)/3 and ρ ≥ 0, for the second inequality in (4.1) it
suffices to prove that

Rn+1

n + 1
− Rt +

2(R − 2)

3
(t − 1) − 2 =

Rn+1

n + 1
−

2R + 2

3
−

(R + 4)t

3
> 0 . (4.2)

When n = 2, then R 6= 5, and t ≤ (R2 + 1)/2 gives

(R + 4)t ≤ (R3 + 4R2 + R + 4)/2 .

Therefore, (4.2) is true since

R3

3
−

2R + 2

3
−

R3 + 4R2 + R + 4

6
=

R3 − 4R2 − 5R − 8

6
,

a strictly increasing function on R ≥ 6 that is positive at R = 6.
When n ≥ 3,

(R + 4)t ≤ (R + 4)(Rn/n + 2) = (Rn+1 + 4Rn)/n + 2R + 8

and so
Rn+1

n + 1
−

2R + 2

3
−

(R + 4)t

3
≥

Rn

3n

(

R
2n − 1

n + 1
− 4

)

−
4R + 10

3
,

which is an increasing function of n ≥ 3, and at n = 3 can be checked to be positive for
all R ≥ 5.
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Lemma 8. Let q, n and t1, . . . , tn be positive integers. If M1, . . . , Mn are integers such
that 2q < Mi < q(ti − 1) for all i, then for any integer a there exists an n × q integer
matrix [mij] satisfying all of the following:
(a) 1 ≤ mij ≤ ti, for all 1 ≤ i ≤ n and 1 ≤ j ≤ q;
(b) for all 1 ≤ i < n, the row-sum

∑q

j=1
mij equals Mi and the last row-sum equals

either Mn or Mn + 1;
(c) for all j = 1, . . . , q, the column-sum

∑n

i=1
mij ≡ a (mod 2).

Proof. For fixed i, let u, v be the integers such that Mi = uq + v with 0 ≤ v < q, and
define

mij =

{

u + 1 if 1 ≤ j ≤ v

u if v < j ≤ q
;

that is, “distribute the Mi as uniformly as possible across the columns of the i-th row”.
For this choice of entries in the i-th row,

∑q

j=1
mij = Mi holds, and 2q < Mi < q(ti − 1)

implies 2 ≤ u < ti − 1. Therefore, 2 ≤ mij < ti for all 1 ≤ j ≤ q and the matrix [mij] has
the first two properties.

Consider all columns j1 < . . . < jT for which the column-sum Lj :=
∑n

i=1
mij is not

congruent to a (mod 2). For any pair j1 < j2, we can modify the choices of mnj1 and mnj2

(both in the last row) by subtracting 1 from mnj1 and adding 1 to mnj2. This conserves
the sum Mn. Since 2 ≤ mij ≤ ti, property (a) still holds for all new mij and the parity
of both Lj1 and Lj2 has been changed to a (mod 2). Since pairs of pathological Lj can
be modified in this way, it remains to consider odd T . In that case, increasing mnjT

by
1 increases the row-sum Mn by 1, and changes the congruence class of LjT

(mod 2) to a
(mod 2).

Theorem 9. For each R ≥ 3, n ≥ 1 there exists a nearly-uniform cyclic (n + 1)-digit
R-ary Gray code. In particular, its transition counts TC(1), . . . , TC(n + 1) satisfy

−2 ≤ TC(j) −
Rn+1

n + 1
< 2 for all j ≤ n and − 2 < TC(n + 1) −

Rn+1

n + 1
≤ 2 . (4.3)

Proof. For fixed R, the proof is by induction on n ≥ 2. By Theorem 1 in [6], there exists
a well-balanced 2-digit code for all R ≥ 2. As mentioned earlier, Theorem 4 in [6] allows
us to assume R ≥ 5. Since a nearly-uniform cyclic 3-digit 5-ary code was constructed in
Example 4, we may also assume (R, n) 6= (5, 2).

Let q, r be the integers with R = 3q + r and 0 ≤ r < 3, and let a1, . . . , aRn be any
nearly-uniform n-digit code in standard form with transition spectrum (t1, . . . , tn), which
is assumed to be well-balanced when n = 2. For 1 ≤ i ≤ n, define ρi = 0 when i is a
non-eccentric digit and ρi = δ when i is eccentric. Since (R, n) 6= (5, 2) and each pair ti, ρi

satisfies the hypothesis of Lemma 7, there exist integers k1, . . . , kn such that for all i ≤ n

2q < ki < q(ti − 1) − 1 (4.4)

and Ti := Rti − ρi − 2ki satisfies

0 ≤ Ti −
Rn+1

n + 1
< 2 . (4.5)
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Defining M := b
∑n

j=1
(Tj −

Rn+1

n+1
)/2c,

2M ≤
n

∑

j=1

(

Tj −
Rn+1

n + 1

)

< 2M + 2 (4.6)

and (4.5) implies 0 ≤ M < n. Setting M ∗ to be either M or M + 1, whichever satisfies

n
∑

i=1

ki + M∗ ≡ q(R + 1) (mod 2) , (4.7)

then 0 ≤ M∗ ≤ M + 1 ≤ n allows us to define the integers M1, . . . , Mn by

Mi =

{

ki + 1 if 1 ≤ i ≤ M ∗

ki if M∗ < i ≤ n
,

where
n

∑

i=1

Mi ≡ q(R + 1) (mod 2) (4.8)

by (4.7), and 2q < Mi < q(ti − 1) for all i by (4.4).
For a := q(R + 1), let [mij] be a matrix that satisfies the conclusions of Lemma 8.

Property (a) implies for each j there exist partitions of the n-digit code with (positive)
connecting multiplicities m1j , . . . , mnj. Since every digit is chosen at least once as a
connecting digit, when R is odd we can restrict ourselves to partitions in which {aRn}
is a partition block. Property (c) therefore implies every such partition is permissible.
By property (b), Mi is the row-sum for all i < n; that is, M1, . . . , Mn−1 are the total
connecting multiplicities for the first n− 1 digits. Finally, by property (c) the sum of the
column-sums is congruent to q(R+1) (mod 2), and so (4.8) then implies the last row-sum
cannot be Mn + 1. Therefore, M1, . . . , Mn are the total connecting multiplicities of the
q permissible partitions and Theorem 5 can be applied.

The induced cyclic (n + 1)-digit Gray code therefore has transition counts

TC(i) =

{

Ti − 2 if i ≤ M∗

Ti if M∗ < i ≤ n
,

and by (4.5)

−2 ≤ TC(i) −
Rn+1

n + 1
< 0 for i ≤ M∗ and 0 ≤ TC(i) −

Rn+1

n + 1
< 2 for M∗ < i ≤ n .

As for the last transition count, remember
∑n+1

i=1
TC(i) = Rn+1 and so

Rn+1

n + 1
− TC(n + 1) =

n
∑

i=1

(

TC(i) −
Rn+1

n + 1

)

=

n
∑

i=1

(

Ti −
Rn+1

n + 1

)

− 2M∗ .
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By (4.6) the choice of M ∗ = M, M + 1 therefore gives

−2 ≤ 2(M − M ∗) ≤
Rn+1

n + 1
− TC(n + 1) < 2(M − M ∗) + 2 ≤ 2 ,

proving the induced code is nearly-uniform.

Example 10. We use the method in the proof of Theorem 9 to construct nearly-uniform
3-digit Gray codes for R = 6, 8 and well-balanced 4-digit codes for R = 5.

When R is even, i = 1 is the only eccentric digit and so for n = 2,

T1 = Rt1 − (q + r) − 2k1 and T2 = Rt2 − 2k2 , (4.9)

both even integers. Also, by (4.5),

R3

3
≤ Ti <

R3

3
+ 2 . (4.10)

For R = 8, we begin with a uniform 2-digit code with transition counts t1 = t2 = 32. Since
T1, T2 are even, T1 = T2 = 172 by (4.10), and R = 2 · 3 + 2 gives q + r = 4. Solving (4.9)
yields k1 = 40; k2 = k1 + (q + r)/2 = 42, and k1 + k2 is even as required. However,
the residual 83 − 344 = 168 is not within 2 of the average R3/3. In order to balance
while maintaining the evenness of k1 + k2, each of the original k1, k2 must be increased
by 1, giving total multiplicities 41, 43. Lemma 7 can now be used to find the actual code:
For instance, since t1 = t2 = 32, multiplicities m11 = m21 = 32 could be chosen for the
partition on the first column triplet, leaving m12 = 41 − 32 = 9 and m22 = 43 − 32 = 11
for the second.

When R = 6, (4.10) implies T1 = T2 = 72. Since q + r = 2 then k1 = k2 + 1, giving
an odd sum. Therefore, one of the ki must be increased, resulting in the nearly-uniform
spectrum (70, 72, 74). (For instance, k1 = 17, k2 = 19 can be used.) In Theorem 11, we
prove our construction cannot yield a uniform 3-digit code for R = 6.

Finally, we show the 3-digit 5-ary code in Example 4 can be used to construct a well-
balanced 4-digit one. Since b54/4c = 156 then Corollary 6 combined with (4.5) implies
the codes constructed by our method must have TC(4) = 156. It therefore suffices to
show there exist total multiplicities k1, k2, k3 such that k1 + k2 + k3 is even and

156 = T1 = 5t1 − 2 − 2k1 , 157 = T2 = 5t2 − 2 − 2k2 , 156 = T3 = 5t3 − 2k3

where t1 = 42, t2 = 43, t3 = 40, from Example 4. Considering each of these equations
modulo 4, it can be seen that each ki is even and so their sum is even. (In fact, k1 =
26, k2 = 28, k3 = 22.)

Theorem 11. Let n ≥ 3 and R ≥ 4 be even.
(a) If n does not divide Rn, our construction yields a balanced cyclic n-digit R-ary Gray

code.
(b) If n divides Rn, our construction yields a uniform cyclic n-digit R-ary Gray code

when R ≡ 0 (mod 4). When R ≡ 2 (mod 4) the construction yields a code in which
all but two transition counts equal Rn/n.
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Proof. Every transition count is even, and by definition of a nearly-uniform code, every
transition count lies in the interval [Rn/n − 2, Rn/n + 2]. When Rn/n is not an integer,
the interval contains only two even integers and so the code must be balanced

When Rn/n is an integer, it is divisible by 4. Since TC(n + 1) ≡ R (mod 4) by
Corollary 6, then (4.3) implies

TC(n) =

{

Rn/n if R ≡ 0 (mod 4)

Rn/n + 2 if R ≡ 2 (mod 4)
.

Also, for i ≤ n, from (4.3) we see that for i < n the only possibilities for TC(i) are Rn/n
and Rn/n − 2, and the result follows from the fact that the sum of the transition counts
is Rn.

In Corollary 6 it was proved that for odd R the last transition count in the induced
codes is always divisible by 4. Because of this, the codes are never uniform but the next
result shows our construction admits further uniformization.

Theorem 12. If R ≥ 5 is odd and n ≥ 3 is such that Rn/n is an integer then the
construction can be used to obtain a balanced code.

Proof. From the proofs of Lemma 8 and Theorem 9, there is a nearly-uniform cyclic
n−digit R−ary code in which at least one column triplet has a partition with all connect-
ing multiplicities satisfying 1 ≤ mij < ti, and so every connecting multiplicity in that par-
tition can be changed by ±1. Therefore, if i, k < n are digits with TC(i) < Rn/n < TC(k),
there exists another induced code in which the transition count for i is TC(i) + 2, the
count for j is TC(j)−2, and all other transition counts are unchanged. We use this “pair
balancing” in what follows.

Let a := Rn/n. Since a is an odd integer, Corollary 6 implies TC(n) = a±1. Therefore,
by way of contradiction we may assume there exists at least one digit i < n such that
TC(i) 6∈ {a, a ± 1}. We may assume i = n − 1. If TC(n − 1) = a − 2 then

0 =

n
∑

i=1

(TC(i) − a) =

n−2
∑

i=1

(TC(i) − a) − 2 ± 1 ,

and there exists j ≤ n − 2 such that TC(j) ∈ {a + 1, a + 2}. Using pair balancing on
TC(j) and TC(n − 1) results in an induced n-digit code in which TC(n − 1) = a and
TC(j) ∈ {a−1, a}. A similar argument works for TC(n−1) = a+2, and can be continued
to obtain a code in which all transition counts are in the set {a, a ± 1}.
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