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Abstract

Distance-regularity of a graph is in general not determined by the spectrum of
the graph. The spectral excess theorem states that a connected regular graph is
distance-regular if for every vertex, the number of vertices at extremal distance (the
excess) equals some given expression in terms of the spectrum of the graph. This
result was proved by Fiol and Garriga [From local adjacency polynomials to locally
pseudo-distance-regular graphs, J. Combinatorial Th. B 71 (1997), 162-183] using
a local approach. This approach has the advantage that more general results can
be proven, but the disadvantage that it is quite technical. The aim of the current
paper is to give a less technical proof by taking a global approach.

1 Introduction

It is known that distance-regularity of a graph is in general not determined by the spec-
trum of the graph, cf. [7] and [11] for recent results on spectral characterizations of
distance-regular graphs.

By the spectral excess theorem we mean the remarkable result by Fiol and Garriga
[13] that a connected regular graph with d + 1 distinct eigenvalues is distance-regular
if for every vertex, the number of vertices at distance d from that vertex (the excess)
equals a given expression in terms of the spectrum. So besides the spectrum, a simple
combinatorial property suffices for a graph to be distance-regular.

The first result in this direction was obtained by Cvetković [2] and by Laskar [18], who
showed that for a Hamming graph with diameter three (and consequently a Doob graph
with diameter three), distance-regularity is determined by the spectrum and having the
correct number of vertices at distance two (or, equivalently, three) from each vertex.
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This result was generalized to all distance-regular graphs with diameter three by
Haemers [16], after which he and the author [5] showed the spectral excess theorem for
graphs with four distinct eigenvalues. The difference between the two results is that in
the latter it is not assumed that the graph has the spectrum of a distance-regular graph.

At the same time, Fiol et al. [14] showed that a graph with d + 1 distinct eigenvalues
is distance-regular if each vertex has at least one vertex at distance d and its distance-d
adjacency matrix Ad is a polynomial of degree d in the adjacency matrix A. This result is
halfway towards the spectral excess theorem, which was then proved by Fiol and Garriga
in [13]. A slight improvement of it, which is proved here as Theorem 1, was later proved
in [11].

Similar spectral characterization results on three-class association schemes were ob-
tained by the author [4], which were generalized again by Fiol [10]. Fiol [9] also obtained
a more specific result for antipodal distance-regular graphs.

The usefulness of the spectral excess theorem is for example demonstrated in the re-
cent discovery of a new family of distance-regular graphs with the same parameters of
particular Grassmann graphs, cf. [8]. It is shown there that the new graphs have the
same spectrum as the Grassmann graphs, and then counting the number of vertices at
extremal distance proves the distance-regularity.

The goal of this paper is to give an elementary and global proof of the spectral excess
theorem. The original proof by Fiol et al. [13, 14] has a local approach and is quite
technical because of that. It turns out that restricting to regular graphs allows some
shortcuts and makes a global approach towards a proof possible. We want to stress
however that the essential steps in the given proof are by Fiol et al. The intention here
is to give a streamlined, accessible, and self-contained proof as far as possible. We also
remark that by their local approach, Fiol et al. manage to prove more results.

We assume the reader has basic knowledge of linear algebra and spectra of graphs. For
background on the latter we refer the reader to the book by Cvetković, Doob, and Sachs
[3]. For distance-regular graphs, see the book by Brouwer, Cohen, and Neumaier [1]. For
several topics on algebraic combinatorics, such as distance-regular graphs and orthogonal
polynomials, the book by Godsil [15] will be useful. Finally, we refer the reader who has
become interested in the topic to recent surveys by Fiol [11, 12].

2 Basic preliminaries

We only consider simple undirected graphs, i.e., there are no loops or multiple edges.

2.1 Distance-regular graphs

A connected graph Γ is called distance-regular, with diameter d, if there are constants
ai, bi, ci, i = 0, 1, . . . , d such that for any i = 0, 1, . . . , d, and any two vertices x and y at
distance i, among the neighbours of y, there are ci at distance i− 1 from x, ai at distance
i, and bi at distance i + 1. A distance-regular graph is regular with valency k := b0.
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We denote the number of vertices of Γ by n. The mentioned constants are called the
intersection parameters.

Let us denote by Γi the distance-i graph of Γ, i.e., x and y are adjacent in Γi if and
only if they are at distance i in Γ. Also, let Γi(x) be the set of vertices at distance i from
x, and let Γ(x) = Γ1(x) be the set of neighbours of x.

In order to translate the definition of distance-regularity into a more algebraic one,
we define the distance-i adjacency matrix Ai as the adjacency matrix of Γi. Thus (Ai)xy

equals one if x and y are at distance i in Γ, and zero otherwise. We denote by A = A1 the
usual adjacency matrix. Now the above definition of distance-regular graphs is equivalent
to the equations

AAi = ci+1Ai+1 + aiAi + bi−1Ai−1 for i = 0, 1, . . . , d.

The so-called distance polynomials of a distance-regular graph form a family of orthog-
onal polynomials. These distance polynomials pi, i = 0, 1, . . . , d are defined by p0(θ) = 1,
and the three-term recurrence relation θpi = ci+1pi+1 + aipi + bi−1pi−1 for i = 0, 1, . . . , d
(to be precise we have to take b−1p−1 = cd+1pd+1 = 0). This is clearly motivated by the
above equations for the distance-i matrices, which now satisfy Ai = pi(A), i = 0, 1, . . . , d.

Now let us define an inner product on the vector space of polynomials of degree
at most d by 〈p, q〉 = 1

n
tr(p(A)q(A)). Then the distance polynomials satisfy 〈pi, pj〉 =

1
n
tr(pi(A)pj(A)) = 1

n
tr(AiAj) = 0 if i 6= j, i.e., they are a set of orthogonal polynomials.

In Section 4.1, we shall define orthogonal polynomials for any regular graph, using
the spectrum of the graph, in an attempt to generalize the distance polynomials. These
othogonal polynomials will form the key component of the spectral excess theorem.

2.2 Spectrum of a graph

Let Γ be a connected regular graph with adjacency matrix A and spectrum

Σ = {λm0
0 , λm1

1 , . . . , λmd

d },

where the superscripts mi denote the multiplicities of the distinct eigenvalues λi, i =
0, 1, . . . , d, and where k := λ0 is the valency (and largest eigenvalue), with multiplicity
m0 = 1.

By Ei we denote the matrix representing the projection onto the eigenspace ker(A −
λiI), i.e., Ei = UiU

>
i , where Ui has as columns an orthonormal basis of the eigenspace.

It now follows that EiEj = O for i 6= j, E2
i = Ei, tr(Ei) = mi, and p(A) =

∑d
i=0 p(λi)Ei

for any polynomial p.
It is known that the intersection parameters of a distance-regular graph determine its

spectrum. In particular, if its diameter is d, then it has d + 1 distinct eigenvalues. It
also works the other way around: the spectrum of a distance-regular graph determines its
intersection parameters. However, it is in general not true that the spectrum of a graph
determines that it is distance-regular. In the following section we give an example where
it does not. We shall use this example as an illustration of the spectral excess theorem.
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3 The four-dimensional cube and the Hoffman graph

The four-dimensional cube, or Hamming graph H(4, 2), is a distance-regular graph with
spectrum Σ = {41, 24, 06,−24,−41}. Hoffman [17] determined all graphs with this spec-
trum, thus finding another graph, that is now called the Hoffman graph. As an introduc-
tion to the spectral excess theorem, we will have a closer look at the properties of graphs
with spectrum Σ.

Let Γ be a graph with spectrum Σ. From basic theory of graph spectra (cf. [6]), we find
that Γ is a connected, bipartite, regular graph with valency 4, on 16 vertices, with diameter
at most 4. Hoffman [17] introduced the now-called Hoffman-polynomial to determine that
the adjacency matrix A of Γ satisfies the equation (A − 2I)A(A + 2I)(A + 4I) = 24J ,
which can also be written as A4 + 4A3 − 4A2 − 16A = 24J . Let us now think about
the constants ai, bi, ci that we would like to have in order for Γ to be distance-regular.
Trivially b0 = k = 4 and c1 = 1 are well-defined (that is, they satisfy the properties as in
the definition of a distance-regular graph). Because Γ is bipartite, ai = 0 is well-defined
for each relevant i. This implies that also b1 = k − a1 − c1 = 3 and c4 = k − a4 = 4
are well-defined. Moreover, the bipartiteness and the fact that the diameter is at most
4 together imply that each vertex has 4 (= 16

2
− 4) vertices at distance 3. Now we fix

a vertex x, and let c2(x, y) be the number of common neighbours of x and y, for y at
distance 2 from x. Between the neighbours of x and the vertices at distance 2 from x
there are kb1 = 12 edges, so it follows that

∑

y∈Γ2(x)

c2(x, y) = 12.

Because (A`)xx counts the number of so-called closed walks from x to itself of length `, it
follows that (A`)xx = 0 for all odd ` (in fact, this is how bipartiteness from the spectrum
can be proven, as tr(A`) = 0 for odd ` implies that there are no odd cycles). Specifying the
Hoffman-polynomial for the diagonal position of x gives that (A4)xx = 4(A2)xx +24 = 40.
Elementary counting of the closed walks of length 4 from x to itself now gives that

∑

y∈Γ2(x)

c2(x, y)2 = 24.

If ki(x) denotes the number of vertices at distance i from x, then it follows from Cauchy’s
inequality that

24 =
∑

y∈Γ2(x)

c2(x, y)2 ≥
1

k2(x)





∑

y∈Γ2(x)

c2(x, y)





2

=
144

k2(x)
,

hence k2(x) ≥ 6, and more importantly, if equality holds, then c2(x, y) is the same for all
y ∈ Γ2(x). The conclusion is that if k2(x) = 6 for all x, or equivalently, if k4(x) = 1 for all
x, then c2 = 2 is well-defined, and then it follows easily that Γ is distance-regular. This
conclusion is the spectral excess theorem for this case.
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By further working out the cases, Hoffman determined that besides the distance-
regular 4-dimensional cube, there is one other - non-distance-regular - graph with spec-
trum Σ. An easy construction of this Hoffman graph is obtained by “switching” the
12 edges and 12 non-edges between the neighbours and vertices at distance 2 of a fixed
vertex, cf. [7].

4 More ingredients

Let us now prepare some more necessary ingredients for the spectral excess theorem.

4.1 Inner product, orthogonal polynomials, three-term recur-

rence

From the spectrum Σ = {λm0
0 , λm1

1 , . . . , λmd

d } we define an inner product on the vector
space of polynomials of degree at most d by

〈p, q〉 =
1

n

d
∑

i=0

mip(λi)q(λi).

This is indeed a well-defined inner product (a symmetric bilinear product for which
〈p, p〉 ≥ 0 with equality if and only if p = 0). Moreover, for any graph with adjacency
matrix A and spectrum Σ, we have that

〈p, q〉 =
1

n
tr(p(A)q(A)),

which agrees with the definition for distance-regular graphs in Section 2.1.

With respect to this inner product, there is a unique system of orthogonal polynomials
pi, i = 0, 1, . . . , d, where pi has degree i and

〈pi, pi〉 = pi(λ0) for i = 0, 1, . . . , d.

This system can be obtained by applying the Gram-Schmidt procedure to the basis of
monomials 1, θ, . . . , θd and normalizing. The latter can be done because pi(λ0) > 0 (this
is well-known: if pi changes sign at values θj, j = 1, 2, . . . , h in the interval (λd, λ0), and

q(θ) =
∏h

j=1(θ − θj), then pi(θ)q(θ) ≥ 0 for λd ≤ θ ≤ λ0 and even better 〈pi, q〉 > 0,
which implies that h = i, and that all roots of pi are distinct and in the interval (λd, λ0);
moreover, the leading term of pi is positive).

As with the distance-regular graphs, we can obtain a three-term recurrence relation for the
orthogonal polynomials. This is well-known from the theory of orthogonal polynomials
(cf. [15]), but also easily explained as follows. The defined inner product on polynomials
satisfies an extra useful property, namely that 〈θp, q〉 = 〈p, θq〉. This can be used when
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we consider the polynomial θpi which is of degree i + 1, and hence can be expressed as
θpi =

∑i+1
j=0 αijpj for certain αij. These satisfy αij〈pj, pj〉 = 〈θpi, pj〉 = 〈pi, θpj〉. The right

hand side is zero for j < i − 1, and hence so is αij. Thus only three terms remain in
the expression of θpi. After renaming the constants, we obtain the (familiar) three-term
recurrence relation

θpi = ci+1pi+1 + aipi + bi−1pi−1 for i = 0, 1, . . . , d.

In the above, we have to be a bit more careful in the cases i = 0 and i = d. In the
first case, the above arguments are valid if we take b−1p−1 = 0. In the latter case, the
polynomial θpd is however not a polynomial of degree at most d, and hence it seems
that we cannot take inner products with this polynomial. However, we can reduce the
polynomial to a polynomial of degree at most d by subtracting an appropriate multiple
of the minimal polynomial m(θ) =

∏d
i=0(θ−λi). This does not change the inner product,

and it also does not change the application of the polynomial to the adjacency matrix
A with spectrum Σ, because m(A) = O. We thus may take cd+1 = 0. (In fact, we are
working with the set of all polynomials modulo the minimal polynomial.)

It furthermore follows that ci+1 = 〈θpi,pi+1〉
〈pi+1,pi+1〉

6= 0 for i < d and bi−1 = 〈θpi,pi−1〉
〈pi−1,pi−1〉

=
〈pi,θpi−1〉
〈pi−1,pi−1〉

6= 0 for i > 0.

We note that in general, there seems to be no easy combinatorial interpretation of the
obtained constants ai, bi, ci, except for distance-regular graphs, of course.

4.2 Optimality of the polynomials, and the Hoffman-polynomial

In the case of distance-regular graphs, we have that
∑d

i=0 pi(A) = J , the all-one matrix.
We shall show that this holds for any (connected) regular graph. This follows from an
optimality property of the partial sums of the polynomials pi. Let these partial sums be
defined by qi =

∑i
j=0 pj. We thus claim that

qd(A) = J,

or in other words, qd is the well-known Hoffman-polynomial [17].
To prove the claim, we first show that qi is the (unique) polynomial p of degree i that

maximizes p(k) subject to the constraint that 〈p, p〉 = 〈qi, qi〉. To show this property,
write a polynomial p of degree i as p =

∑i
j=0 αjpj for certain αj (for fixed i). Then the

problem reduces to maximizing p(k) =
∑i

j=0 αjpj(k) subject to
∑i

j=0 α2
jpj(k) = 〈qi, qi〉.

Now Cauchy’s inequality implies that

p(k)2 =

[

i
∑

j=0

αjpj(k)

]2

≤

[

i
∑

j=0

α2
jpj(k)

] [

i
∑

j=0

pj(k)

]

= qi(k)2,

with equality if and only if all αj are equal. The constraint and the fact that pj(k) > 0
for all j guarantees that qi is the optimal p.
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On the other hand, since 〈p, p〉 = 1
n
p(k)2 + 1

n

∑d
j=1 mjp(λj)

2, the objective of the

optimization problem is clearly equivalent to minimizing
∑d

j=1 mjp(λj)
2. For i = d, there

is a trivial solution for this: take the polynomial that is zero on λj for all j = 1, 2, . . . , d.
Hence we may conclude that qd(λj) = 0 for j = 1, 2, . . . , d, and from the constraint it
further follows that qd(k) = n.

Now qd(A) =
∑d

i=0 qd(λi)Ei = qd(k)E0 = J.

4.3 Moving forward to go back: the conjugate polynomials

The earlier mentioned reduction of polynomials modulo the minimal polynomial will turn
out to be crucial in the proof of the spectral excess theorem. Loosely speaking, it will
be used to move back from the vertices at extremal distance d to the vertices at any
other fixed distance d − i by moving “forward” i steps. For now, this will be presented
in the form of the existence of the so-called conjugate polynomials pi of degree i, for
i = 0, 1, . . . , d, with the property that

pd−i(A) = pi(A)pd(A) for i = 0, 1, . . . , d.

We shall prove this by induction. For i = 0, the existence is trivial. From the three-term
recurrence it follows that pd−i−1(A) = 1

bd−i−1
[(A−ad−iI)pd−i(A)− cd−i+1pd−i+1(A)], which

provides the induction steps (for i = 0 it gives the step from 0 to 1 because cd+1 = 0).

5 The spectral excess theorem

We are ready now for the spectral excess theorem. We shall state and prove it in a bit
stronger form than earlier stated.

Theorem 1. Let Γ be a connected k-regular graph on n vertices with spectrum Σ with
corresponding orthogonal polynomials pi, i = 0, 1, . . . , d. If kd(x) is the number of vertices
at distance d from x, then

n
∑

x
1

n−kd(x)

≥ n − pd(k),

with equality if and only if Γ is distance-regular.

So, instead of requiring that kd(x) = pd(k) for all x, we require that the harmonic mean
of the n − kd(x) equals n − pd(k). We shall prove the theorem in two steps:

Lemma 1. n
P

x

1
n−k

d
(x)

≥ n − pd(k) with equality if and only if Ad = pd(A).

Proof. We have that

qd−1(k) = 〈qd−1, qd−1〉 =
1

n
tr(qd−1(A)2) =

1

n

∑

x

(qd−1(A)2)xx =
1

n

∑

x

∑

y/∈Γd(x)

(qd−1(A)xy)
2
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≥
1

n

∑

x

1

n − kd(x)





∑

y/∈Γd(x)

qd−1(A)xy





2

=
1

n

∑

x

1

n − kd(x)
[qd−1(k)]2.

The stated inequality now follows from the fact that n − pd(k) = qd−1(k). If equality
holds, then it follows from the above that for each x the values of qd−1(A)xy are the same
for all y /∈ Γd(x). This implies that qd−1(A)xy is the same for each pair of vertices x and
y at distance less than d. Since qd−1(A) has constant row sums (qd−1(k)), it follows that
each vertex has the same number of vertices at distance less than d. From the equality
it follows that this number must be qd−1(k), and hence qd−1(A)xy = 1 if x and y are at
distance less than d. Thus qd−1(A) = J − Ad, and hence Ad = pd(A). Conversely, if
Ad = pd(A) then the row sums give that kd(x) = pd(k) for every vertex x, and equality
holds.

We then use the conjugate polynomials to prove the following.

Lemma 2. If Ad = pd(A), then Ai = pi(A) for all i = 0, 1, . . . , d.

Proof. Because pi is a polynomial of degree i, it follows that if x and y are two vertices
at distance larger than i, then pi(A)xy = 0. Suppose now that Ad = pd(A). Then
pi(A) = pd−i(A)Ad. If the distance between x and y is smaller than i, then for all vertices
z at distance d from y, we have that the distance between z and x is more than d− i (by
the triangle inequality), hence (pd−i)xz = 0. Thus

(pi(A))xy = (pd−i(A)Ad)xy =
∑

z

(pd−i(A))xz(Ad)zy = 0.

Because this holds for all i = 0, 1, . . . , d and because
∑d

i=0 pi(A) = qd(A) = J , it follows
that pi(A) = Ai for all i = 0, 1, . . . , d.

Now the proof of the spectral excess theorem is complete: if Ai = pi(A) for all i, then
the three-term recurrence relation for the polynomials becomes the required recurrence
for the adjacency matrices Ai, which proves the distance-regularity.

6 An expression for the spectral excess

The spectral excess pd(k) can be computed from the spectrum more directly as

pd(k) =
n

π2
0

[

d
∑

i=0

1

miπ2
i

]−1

,

where πi =
∏

j 6=i |λi − λj| for i = 0, 1, . . . , d. We can derive this expression by considering
the polynomials hi =

∏

j 6=0,i(x − λj), for i = 1, 2, . . . , d. These polynomials have degree
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d − 1, hence they are orthogonal to pd. Thus,

0 = n〈pd, hi〉 =

d
∑

j=0

mjpd(λj)hi(λj) = pd(k)hi(k) + mipd(λi)hi(λi),

which implies that pd(λi) = −pd(k)hi(k)
mihi(λi)

for i = 1, 2, . . . , d. By substituting this into the

equation pd(k) = 1
n

∑d
i=0 mipd(λi)

2, and working out the details, the above expression
follows.

7 Open problem

For so-called walk-regular graphs, the inequality in Lemma 1 can be improved to an in-
equality for each vertex. A graph is called walk-regular if for each `, the number of closed
walks of length ` from a vertex x to itself is the same for each x. In other words, if A` has
constant diagonal for every `. If this is the case, then qd−1(A)2 also has constant diagonal,
and after adjusting the proof of Lemma 1, it follows that kd(x) ≤ pd(k) for every vertex x.
It is however an open problem whether these inequalities hold for all regular graphs. Note
that all regular graphs with at most four distinct eigenvalues are walk-regular, and so are
the bipartite regular graphs with five eigenvalues, such as the four-dimensional cube and
the Hoffman graph (where we indeed derived the inequalities).
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