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Abstract
In this paper we give an alternate combinatorial description of the “(`, 0)-Carter

partitions” (see [4]). The representation-theoretic significance of these partitions
is that they indicate the irreducibility of the corresponding specialized Specht
module over the Hecke algebra of the symmetric group (see [7]). Our main
theorem is the equivalence of our combinatoric and the one introduced by James
and Mathas ([7]), which is in terms of hook lengths. We use our result to find
a generating series which counts such partitions, with respect to the statistic of a
partition’s first part. We then apply our description of these partitions to the crystal
graph B(Λ0) of the basic representation of ŝl`, whose nodes are labeled by `-regular
partitions. Here we give a fairly simple crystal-theoretic rule which generates all
(`, 0)-Carter partitions in the graph B(Λ0).

1 Introduction
1.1 Preliminaries
Let λ be a partition of n and ` ≥ 2 be an integer. We will use the convention (x, y)
to denote the box which sits in the xth row and the yth column of the Young diagram
of λ. Throughout this paper, all of our partitions are drawn in English notation. P
will denote the set of all partitions. An `-regular partition is one in which no nonzero
part occurs ` or more times. The length of a partition λ is defined to be the number of
nonzero parts of λ and is denoted len(λ).
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The hook length of the (a, c) box of λ is defined to be the number of boxes to the right
of or below the box (a, c), including the box (a, c) itself. It is denoted hλ

(a,c).
The rim of λ are those boxes at the ends of their rows or columns. An `-rim hook is

a connected sequence of ` boxes in the rim. It is removable if when it is removed from
λ, the remaining diagram is the Young diagram of some other (non-skew) partition. To
lighten notation, we will abbreviate and call a removable `-rim hook an `-rim hook.

A partition which has no removable `-rim hooks is called an `-core. The set of all
`-cores is denoted C`.
Remark 1.1.1. A necessary and sufficient condition that λ be an `-core is that ` - hλ

(a,c) for
all (a, c) ∈ λ (see [6]).

Every partition has a well defined `-core, which is obtained by successively remov-
ing any possible `-rim hooks. The `-core is uniquely determined from the partition,
independently of choice of the order in which one successively removes `-rim hooks.
The number of `-rim hooks which must be removed from a partition λ to obtain its
core is called the weight of λ. See [6] for more details.

Removable `-rim hooks whose boxes all sit in one row will be called horizontal `-rim
hooks. Equivalently, they are also commonly called `-rim hooks with leg length 0, or
`-ribbons with spin 0. Removable `-rim hooks which are not horizontal will be called
non-horizontal `-rim hooks.
Definition 1.1.2. An `-partition is a partition λ such that:

• λ has no non-horizontal `-rim hooks;

• when any number of horizontal `-rim hooks are removed from λ, the remaining
diagram has no non-horizontal `-rim hooks.

We remark that an `-partition is necessarily `-regular.
Example 1.1.3. Any `-core is also an `-partition.
Example 1.1.4. (5, 4, 1) is a 6-core, hence a 6-partition. It is a 2-partition, but not a
2-core. It is not a 3-, 4-, 5- or 7-partition. It is an `-core for ` > 7.

To understand the representation-theoretic significance of `-partitions, it is neces-
sary to introduce the Hecke algebra of the symmetric group.
Definition 1.1.5. For a fixed field F and 0 6= q ∈ F, the finite Hecke algebra Hn(q) is
defined to be the algebra over F generated by T1, ..., Tn−1 with relations

TiTj = TjTi for |i − j| > 1
TiTi+1Ti = Ti+1TiTi+1 for i < n − 1
T 2

i = (q − 1)Ti + q for i ≤ n − 1.
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In this paper we will always assume that q 6= 1, that q ∈ F is a primitive `th root of
unity (so necessarily ` ≥ 2) and that the characteristic of F is zero.

Similar to the symmetric group, a construction of the Specht module Sλ = Sλ[q]
exists for Hn(q) (see [3]). For k ∈ Z, let

ν`(k) =

{
1 ` | k
0 ` - k.

It is known that the Specht module Sλ indexed by an `-regular partition λ is irreducible
if and only if

(?) ν`(h
λ
(a,c)) = ν`(h

λ
(b,c)) for all pairs (a, c), (b, c) ∈ λ

(see [7] Theorem 4.12). Partitions which satisfy (?) have been called in the literature
(`, 0)-Carter partitions. So, a necessary and sufficient condition for the irreducibility
of the Specht module indexed by an `-regular partition is that the hook lengths in a
column of the partition λ are either all divisible by ` or none of them are, for every
column (see [4] for general partitions, when ` ≥ 3).

We remark that a Specht module Sλ is both irreducible and projective if and only if
λ is an `-core (one can easily see that the characterization of `-cores given in Remark
1.1.1 is a stronger condition than (?)).

All of the irreducible representations of Hn(q) have been constructed when q is a
primitive `th root of unity. For `-regular λ, Sλ has a unique simple quotient, denoted
Dλ, and all simples can be obtained in this way (see [3] for more details). In particular
Dλ = Sλ if and only if Sλ is irreducible and λ is `-regular.

Let ν ′
p(k) = max{m : pm | k}. In the symmetric group setting, for a prime p, the

requirement for the irreducibility of the Specht module indexed by a p-regular partition
over the field Fp is that

ν ′
p(h

λ
(a,c)) = ν ′

p(h
λ
(b,c)) for all pairs (a, c), (b, c) ∈ λ

(see [6]).
Note that ν` is related to ν ′

` in that ν`(k) = max{m : [`]mz | [k]z}, where z is an
indeterminate and [k]z = zk−1

z−1
∈ C[z].

From Example 2, we can see that S(5,4,1) is irreducible over H10(−1), but it is
reducible over F2S10. This highlights how the problem of determining the irreducible
Specht modules is different for FpSn and Hn(q) where q = e

2πi
p . This paper restricts its

attention to Hn(q).
Because (`, 0)-Carter partitions have a significant representation-theoretic interpre-

tation, it is natural to ask if these partitions exhibit interesting behavior in the crystal
graph of the basic representation of ŝl`. This crystal is a combinatorial object that, in
addition to describing the basic representation, parameterizes the irreducible repre-
sentations of Hn(q), n ≥ 0 and encodes various representation-theoretic subtleties. The
nodes of the crystal can be labeled by `-regular partitions and edges encode partial
information about the functors of restriction and induction.
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By way of analogy, in the crystal the `-cores are exactly the extremal nodes, or
in other words given by the orbit of the highest weight node under the action of Ŝ`,
the affine symmetric group. The (`, 0)-Carter partitions do not behave as nicely with
respect to the Ŝ`-action, but do share many similarities with `-cores from this point of
view. The theorems of Section 4 explain precisely how.

We remark that the crystal does not depend on the characteristic of the underlying
field that Hn(q) is defined over, but the characterization of (`, 0)-Carter partitions does.
Thus we expect some inherent asymmetry in the behavior of these partitions in the
crystal, which we indeed see. The pattern was also interesting in its own right, so
worth including just for this consideration.

1.2 Outline
Here we summarize the main results of this paper. Section 2 shows the equivalence of
`-partitions and (`, 0)-Carter partitions (see Theorem 2.1.6). Section 3 gives a different
classification of `-partitions which allows us to give an explicit formula for a generating
function for the number of `-partitions with respect to the statistic of a partition’s first
part. In Section 4 we describe the crystal-theoretic behavior of `-partitions. There
we explain where in the crystal graph B(Λ0) one can expect to find `-partitions (see
Theorems 4.3.1, 4.3.3 and 4.3.4). Section 5 gives a representation-theoretic proof of
Theorem 4.3.1. Finally, in Section 6, we mention how our results can be generalized to
all Specht modules (not necessarily those indexed by `-regular partitions) which stay
irreducible at a primitive `th root of unity (for ` > 2), which relies on recent results of
Fayers (see [4]) and Lyle (see [11]).

2 `-partitions
In this section, we prove that a partition is an `-partition if and only if it satisfies (?).
To prove this, we will first need two lemmas which tell us when we can add/remove
horizontal `-rim hooks to/from a diagram. Henceforth, we will no longer use the term
“(`, 0)-Carter partition” when referring to condition (?).

2.1 Equivalence of the combinatorics
Lemma 2.1.1. Suppose λ is a partition which does not satisfy (?), and that µ is a partition
obtained by adding a horizontal `-rim hook to λ. Then µ does not satisfy (?).

Proof. If λ does not satisfy (?), it means that somewhere in the partition there are two
boxes (a, c) and (b, c) with ` dividing exactly one of hλ

(a,c) and hλ
(b,c). We will assume

a < b. Here we prove the lemma in the case where ` | hλ
(a,c) and ` - hλ

(b,c), the other case
being similar.
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Case 1

It is easy to see that adding a horizontal `-rim hook in row i for i < a or a < i < b will
not change the hook lengths in the boxes (a, c) and (b, c). In other words, hλ

(a,c) = hµ

(a,c)

and hλ
(b,c) = hµ

(b,c).

Case 2

If the horizontal `-rim hook is added to row a, then hλ
(a,c) + ` = hµ

(a,c) and hλ
(b,c) = hµ

(b,c).
Similarly if the new horizontal `-rim hook is added in row b, hλ

(a,c) = hµ

(a,c) and hλ
(b,c)+` =

hµ

(b,c). Still, ` | hµ

(a,c) and ` - hµ

(b,c).

Case 3

Suppose the horizontal `-rim hook is added in row i with i > b. If the box (i, c) is not in
the added `-rim hook then hλ

(a,c) = hµ

(a,c) and hλ
(b,c) = hµ

(b,c). If the box (i, c) is in the added
`-rim hook, then there are two sub-cases to consider. If (i, c) is the rightmost box of the
added `-rim hook then ` | hµ

(a,c−`+1) and ` - hµ

(b,c−`+1). Otherwise (i, c) is not at the end
of the added `-rim hook, in which case ` | hµ

(a,c+1) and ` - hµ

(b,c+1). In all cases, µ does not
satisfy (?).
Example 2.1.2. Let λ = (14, 9, 5, 2, 1) and ` = 3. This partition does not satisfy (?). For
instance, looking at boxes (2, 3) and (3, 3) highlighted below, we see that 3 | hλ

(3,3) = 3

but 3 - hλ
(2,3) = 8. Let λ[i] denote the partition obtained when adding a horizontal `-rim

hook to the ith row of λ (when it is still a partition). Adding a horizontal 3-rim hook
in row 1 will not change hλ

(2,3) or hλ
(3,3) (Case 1 of Lemma 2.1.1). Adding a horizontal

3-rim hook to row 2 will make h
λ[2]
(2,3) = 11, which is congruent to hλ

(2,3) modulo 3 (Case
2 of Lemma 2.1.1). Adding in row 3 is also Case 2. Adding a horizontal 3-rim hook to
row 4 will make h

λ[4]
(2,3) = 9 and h

λ[4]
(3,3) = 4, but one column to the right, we see that now

h
λ[4]
(2,4) = 8 and h

λ[4]
(3,4) = 3 (Case 3 of Lemma 2.1.1).

18 16 14 13 12 10 9 8 7 5 4 3 2 1

12 10 8 7 6 4 3 2 1

7 5 3 2 1

3 1

1

Lemma 2.1.3. Suppose λ does not satisfy (?). Let a, b, c be such that ` divides exactly one of
hλ

(a,c) and hλ
(b,c) with a < b. Suppose ν is a partition obtained from λ by removing a horizontal

`-rim hook, and that (b, c) ∈ ν. Then ν does not satisfy (?).
As the proof of Lemma 2.1.3 is similar to that of Lemma 2.1.1, we leave it to the

reader.
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Remark 2.1.4. In the proof of Lemma 2.1.1 we have also shown that when adding a
horizontal `-rim hook to a partition which does not satisfy (?), the violation to (?)
occurs in the same rows as in the original partition. It can also be shown in Lemma
2.1.3 that when removing a horizontal `-rim hook (in the cases above), the violation
will stay in the same rows as in the original partition. This will be useful in the proof
of Theorem 2.1.6.

Example 2.1.5. We illustrate here the necessity of our hypothesis that (b, c) ∈ ν. λ =
(5, 4, 1) does not satisfy (?) for ` = 3. The boxes (1, 2) and (2, 2) are a violation of
(?). Removing a horizontal 3-rim hook will give the partition ν = (5, 1, 1) which does
satisfy (?). Note that this does not violate Lemma 2.1.3, since ν does not contain the
box (2, 2).

7 5 4 3 1

5 3 2 1

1

7 4 3 2 1

2

1

Theorem 2.1.6. A partition is an `-partition if and only if it satisfies (?).

Proof. Suppose λ is not an `-partition. We may remove horizontal `-rim hooks from λ
until we obtain a partition µ which has a non-horizontal `-rim hook.

We label the upper rightmost box of the non-horizontal `-rim hook (a, c) and lower
leftmost box (b, d) with a < b. Then hµ

(a,d) = ` and hµ

(b,d) < `, so µ does not satisfy (?).
From Lemma 2.1.1, since λ is obtained from µ by adding horizontal `-rim hooks, λ also
does not satisfy (?).

Conversely, suppose λ does not satisfy (?). Let (a, c), (b, c) ∈ λ be such that ` divides
exactly one of hλ

(a,c) and hλ
(b,c). Let us assume that λ is an `-partition and we will derive

a contradiction.

Case 1

Suppose that a < b and that ` | hλ
(a,c). Then without loss of generality we may assume

that b = a + 1. By the equivalent characterization of `-cores mentioned in Section
1.1, there exists at least one removable `-rim hook in λ . By assumption it must be
horizontal. If an `-rim hook exists which does not contain the box (b, c) then let λ(1) be λ
with this `-rim hook removed. By Lemma 2.1.3, since we did not remove the (b, c) box,
λ(1) will still not satisfy (?). Then there are boxes (a, c1) and (b, c1) for which ` | hλ(1)

(a,c1)

but ` - hλ(1)

(b,c1). By Remark 2.1.4 above, we can assume that the violation to (?) is in the
same rows a and b of λ(1). We apply the same process as above repeatedly until we
must remove a horizontal `-rim hook from the partition λ(k) which contains the (b, ck)
box, and in particular we cannot remove a horizontal `-rim hook from row a. Let d be
so that h(b,d) = 1. Such a d must exist since we can remove a horizontal `-rim hook from
this row. Since (b, ck) is removed from λ(k) when we remove the horizontal `-rim hook,
hλ(k)

(b,ck) < ` (` does not divide hλ(k)

(b,ck) by assumption, so in particular hλ(k)

(b,ck) 6= `). Note that
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hλ(k)

(a,ck) = hλ(k)

(b,ck) + hλ(k)

(a,d) − 1, ` | hλ(k)

(a,ck) and ` - hλ(k)

(b,ck), so ` - (hλ(k)

(a,d) − 1). If hλ(k)

(a,d) − 1 > `
then we could remove a horizontal `-rim hook from row a, which we cannot do by
assumption. Otherwise hλ(k)

(a,d) < `. Then a non-horizontal `-rim hook exists starting at
the rightmost box of the ath row, going left to (a, d), down to (b, d) and then left. This is
a contradiction as we have assumed that λ was an `-partition.

Case 2

Suppose that a < b and that ` | hλ
(b,c). We will reduce this to Case 1. Without loss

of generality we may assume that b = a + 1 and that ` | hλ
(n,c) for all n > a, since

otherwise we are in Case 1. Let m be so that (m, c) ∈ λ but (m+1, c) 6∈ λ. Then because
hλ

(m,c) ≥ `, the list hλ
(a,c), h

λ
(a,c+1) = hλ

(a,c) − 1, . . . , hλ
(a,c+`−1) = hλ

(a,c) − ` + 1 consists of `

consecutive integers. Hence one of them must be divisible by `. Suppose it is hλ
(a,c+i).

Note ` - hλ
(m,c+i), since hλ

(m,c+i) = hλ
(m,c) − i and ` | hλ

(m,c). Then we may apply Case 1 to
the boxes (a, c + i) and (m, c + i).

Remark 2.1.7. This result can actually be obtained using a more general result of James
and Mathas ([7], Theorem 4.20), where they classified which Sλ remain irreducible for
λ `-regular. However, we have included this proof to emphasize the simplicity of the
theorem and its simple combinatorial proof in this context.
Remark 2.1.8. When q is a primitive `th root of unity, and λ is an `-regular partition, the
Specht module Sλ of Hn(q) is irreducible if and only if λ is an `-partition. This follows
from what was said above concerning the James and Mathas result on the equivalence
of (?) and irreducibility of Specht modules, and Theorem 2.1.6.

3 Generating functions
Let L` denote the set of `-partitions. In this section, we study the generating function
of `-partitions with respect to the statistic of the first part of the partition. We thank
Richard Stanley for suggesting that we compute the generating function.

3.1 Counting `-cores
We will count `-cores first, with respect to the statistic of the first part of the partition.
Let

C`(x) =

∞∑

k=0

c`
kx

k

where c`
k = #{λ ∈ C` : λ1 = k}. Note that this does not depend on the size of the

partition, only its first part. Also, the empty partition is the unique partition with first
part 0, and is always an `-core, so that c`

0 = 1 for every `.
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Example 3.1.1. For ` = 2, all 2-cores are of the form λ = (k, k − 1, . . . , 2, 1). Hence
C2(x) =

∑∞
k=0 xk = 1

1−x
.

Example 3.1.2. For ` = 3, the first few cores are
∅, (1), (1, 1), (2), (2, 1, 1), (2, 2, 1, 1), . . .

so C3(x) = 1 + 2x + 3x2 + . . .

For a partition λ = (λ1, ..., λs) with λs > 0, the β-numbers (β1, ..., βs) of λ are defined
to be the hook lengths of the first column (i.e. βi = hλ

(i,1)). Note that this is a modified
version of the β-numbers defined by James and Kerber in [6], where all definitions
in this section can be found. We draw a diagram ` columns wide with the numbers
{0, 1, 2, . . . , ` − 1} inserted in the first row in order, {`, ` + 1, . . . , 2` − 1} inserted in the
second row in order, etc. Then we circle all of the β-numbers for λ. The columns of this
diagram are called runners, the circled numbers are called beads, the uncircled numbers
are called gaps, and the diagram is called an abacus . It is well known that a partition λ
is an `-core if and only if all of the beads lie in the last `− 1 runners and there is no gap
above any bead.
Example 3.1.3. λ = (4, 2, 2, 1, 1) has β-numbers 8, 5, 4, 2, 1. In the abacus for ` = 3 the
first runner is empty, the second runner has beads at 1 and 4, and the third runner has
beads at 2, 5 and 8 (as pictured below). Hence λ is a 3-core.

λ = 8 5 2 1

5 2

4 1

2

1

0 1 2
3 4 5
6 7 8
9 10 11

l
l

l

l
l

... ......

Young diagram and abacus of λ = (4, 2, 2, 1, 1)

Proposition 3.1.4. There is a bijection between the set of `-cores with first part k and the set
of (` − 1)-cores with first part ≤ k.
Proof. Using the abacus description of cores, we describe our bijection as follows:

Given an `-core with largest part k, remove the whole runner which contains the
largest bead (the bead with the largest β-number). In the case that there are no beads,
remove the rightmost runner. The remaining runners can be placed into an `−1 abacus
in order. The remaining abacus will clearly have its first runner empty. This will
correspond to an (` − 1)-core with largest part at most k. This map gives a bijection
between the set of all `-cores with largest part k and the set of all (` − 1)-cores with
largest part at most k.

To see that it is a bijection, we will give its inverse. Given the abacus for an (` − 1)-
core λ and a k ≥ λ1, insert the new runner directly after the kth gap, placing a bead on
it directly after the kth gap and at all places above that bead on the new runner.
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Corollary 3.1.5. c`
k =

(
k+`−2

k

)
.

Proof. This proof is by induction on `. For ` = 2, as the only 1-core is the empty
partition, by Proposition 3.1.4 c2

k = 1 =
(

k

k

)
. Note this was also observed in Example

3.1.1. For the rest of the proof, we assume that ` > 2.
It follows directly from Proposition 3.1.4 that

(]) c`
k =

k∑

j=0

c`−1
j .

Recall the fact that
(

`+k−2
k

)
=

(
`−3
0

)
+

(
`−2
1

)
+ · · · +

(
`+k−3

k

)
for ` > 2. Applying our

inductive hypothesis to all of the terms in the right hand side of (]) we get that c`
k =∑k

j=0 c`−1
j =

∑k

j=0

(
`+j−3

j

)
=

(
`+k−2

k

)
. Therefore, the set of all `-cores with largest part k

has cardinality
(

k+`−2
k

)
.

Remark 3.1.6. The bijection above between `-cores with first part k and (` − 1)-cores
with first part ≤ k has several other descriptions, using different interpretations of `-
cores. Together with Brant Jones, we have a paper on some of these descriptions. See
[1] for more details.

Example 3.1.7. Let ` = 3 and λ = (4, 2, 2, 1, 1). The abacus for λ is:

0 1 2
3 4 5
6 7 8
9 10 11

l
l

l

l
l

... ......

The largest β-number is 8. Removing the whole runner in the same column as the 8,
we get the remaining diagram with runners relabeled for ` = 2

0 1
2 3
4 5
6 7

l
l

l

l
l

×
×
×

...... .

This is the abacus for the partition (2, 1), which is a 2-core with largest part ≤ 4.

From Corollary 3.1.5 , we obtain C`(x) =
∑

k≥0

(
k+`−2

k

)
xk and so conclude the

following.

Proposition 3.1.8.
C`(x) =

1

(1 − x)`−1
.
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3.2 Decomposing `-partitions
We now describe a decomposition of `-partitions. We will use this to build `-partitions
from `-cores and extend our generating function to `-partitions.

Lemma 3.2.1. Let λ be an `-core and r > 0 an integer. Then

1. ν = (λ1 + r(` − 1), λ1 + (r − 1)(` − 1), . . . , λ1 + (` − 1), λ1, λ2, . . . ) is an `-core;

2. µ = (λ2, λ3, . . . ) is an `-core.

Proof. For 1 ≤ i ≤ r, νi − νi+1 = ` − 1, so the ith row of ν can never contain part of
an `-rim hook. Because λ is an `-core, ν cannot have an `-rim hook that is supported
entirely on the rows below the rth row. Hence ν is an `-core.

For the second statement of the lemma, note the partition µ is simply λ with its first
row deleted. In particular, hµ

(a,b) = hλ
(a+1,b) for all (a, b) ∈ µ, so that by Remark 1.1.1 it is

an `-core.

We now construct a partition λ from a triple of data (µ, r, κ) as follows. Let µ =
(µ1, . . . , µs) to be any `-core where µ1 − µ2 6= `− 1. For an integer r ≥ 0 we form a new
`-core ν = (ν1, . . . νr, νr+1, . . . , νr+s) by attaching r rows above µ so that:

νr = µ1 + ` − 1, νr−1 = µ1 + 2(` − 1), . . . , ν1 = µ1 + r(` − 1),

νr+i = µi for i = 1, 2, . . . , s.

By Lemma 3.2.1, ν is an `-core.
Fix a partition κ = (κ1, . . . , κr+1) with at most (r+1) parts. Then the new partition λ

is obtained from ν by adding κi horizontal `-rim hooks to row i for every i ∈ {1, . . . , r+
1}. In other words λi = νi + `κi for i ∈ {1, 2, . . . , r + 1} and λi = νi for i > r + 1.

From now on, when we associate λ with the triple (µ, r, κ), we will think of µ ⊂ λ as
embedded in the rows below the rth row in λ. We introduce the notation λ ≈ (µ, r, κ)
for this decomposition.

Theorem 3.2.2. Let µ, r and κ be as above. Then λ ≈ (µ, r, κ) is an `-partition. Conversely,
every `-partition corresponds uniquely to a triple (µ, r, κ).

Proof. Suppose λ ≈ (µ, r, κ) were not an `-partition. Then after removal of some
number of horizontal `-rim hooks we obtain a partition ρ which has a removable non-
horizontal `-rim hook. Note that for 1 ≤ i ≤ r, λi − λi+1 ≡ −1 mod `, and likewise
ρi − ρi+1 ≡ −1 mod `. Suppose the non-horizontal `-rim hook had its rightmost
topmost box in the jth row of ρ. Necessarily it is the rightmost box in that row. Clearly
we must have j ≤ r since µ is an `-core. If ρj − ρj+1 > ` − 1 then this `-rim hook must
lie entirely in the jth row, i.e. be horizontal. If ρj − ρj+1 = ` − 1 then the `-rim hook is
clearly not removable.

Conversely, if λ is an `-partition, then let κi denote the number of removable
horizontal `-rim hooks which must be removed from row i to obtain the `-core ν of
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λ. Let r denote the index of the first row for which νr − νr+1 6= `− 1. Let µ = (νr+1, . . . ).
Then λ ≈ (µ, r, κ).

Example 3.2.3. For ` = 3, µ = (2, 1, 1) is a 3-core with µ1 − µ2 6= 2. We may add three
rows (r = 3) to it to obtain ν = (8, 6, 4, 2, 1, 1), which is still a 3-core. Now we may add
three horizontal `-rim hooks to the first row, three to the second, one to the third and
one to the fourth (κ = (3, 3, 1, 1)) to obtain the partition λ = (17, 15, 7, 5, 1, 1), which is a
3-partition.

µ = 4 1

2

1

ν = 13 10 8 7 5 4 2 1

10 7 5 4 2 1

7 4 2 1

4 1

2

1

µ ⊂ ν is highlighted.

λ = 22 19 18 17 16 14 13 11 10 9 8 7 6 5 4 2 1

19 16 15 14 13 11 10 8 7 6 5 4 3 2 1

10 7 6 5 4 2 1

7 4 3 2 1

2

1

The 3-partition constructed above, with cells from κ highlighted.

Remark 3.2.4. In the proofs of Theorems 4.3.1 and 4.3.4 we will prove that a partition is
an `-partition by giving its decomposition into (µ, r, κ).

3.3 Counting `-partitions
We derive a closed formula for our generating function B` by using our `-partition
decomposition described above. First we note that

x`−1C`(x) =
∑

µ∈C` : µ1−µ2 = `−1

xµ1 .

Therefore,
∑

µ∈C`: µ1−µ2 6= `−1

xµ1 = (1 − x`−1)C`(x). Hence the generating function for all

cores µ with µ1 − µ2 6= ` − 1 is 1 − x`−1

(1 − x)`−1
.
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We are now ready to describe the generating function for `-partitions with respect
to the statistic of the first part. Let B`(x) =

∑∞
k=0 b`

kx
k where b`

k = #{λ ∈ L` : λ1 = k},
i.e. B`(x) =

∑
λ∈L`

xλ1 .

Theorem 3.3.1.
B`(x) =

1 − x`−1

(1 − x)`−1(1 − x`−1 − x`)
.

Proof. We will follow our construction of `-partitions from Section 3.2. Note that if λ ≈
(µ, r, κ), then the first part of λ is µ1 + `κ1 + r(` − 1). Hence λ contributes xµ1+`κ1+r(`−1)

to B`.
Fix a core µ with µ1 − µ2 6= ` − 1. Let r and κ1 be fixed non-negative integers. Let

γr,κ1 be the number of partitions with first part κ1 and length less than or equal to r +1.
γr,κ1 counts the number of `-partitions with r and κ1 fixed that can be constructed from
µ. Note that γr,κ1 is independent of what µ is.

γr,κ1 is the same as the number of partitions which fit inside a box of height r and
width κ1. Hence γr,κ1 =

(
r+κ1

r

)
. Fixing µ and r as above, the generating function for the

number of `-partitions with core (µ, r, ∅) with respect to the number of boxes added to

the first row is
∞∑

κ1=0

γr,κ1x
κ1` =

1

(1 − x`)r+1
.

Now for a fixed µ as above, the generating function for the number of `-partitions
which can be constructed from µ with respect to the number of boxes added to the first

row is
∞∑

r=0

xr(`−1) 1

(1 − x`)r+1
. Multiplying through by 1 − x`−1 − x`, one can check that

∞∑

r=0

xr(`−1) 1

(1 − x`)r+1
=

1

1 − x`−1 − x`
.

Therefore B`(x) is just the product of the two generating functions (1 − x`−1)C`(x)
and 1

1−x`−1−x` . Hence

B`(x) =
1 − x`−1

(1 − x)`−1(1 − x`−1 − x`)
.

Remark 3.3.2. It would be desirable to obtain a formula for
∑

λ∈L`
x|λ|, but experimental

evidence for ` = 2 and 3 showed this to be quite difficult.

3.4 Counting `-partitions of a fixed weight and fixed core
Independently of the authors, Cossey, Ondrus and Vinroot have a similar construction
of partitions associated with irreducible representations. In [2], they gave a construc-
tion analogous to our construction on `-partitions from Section 3.2 for the case of the
symmetric group over a field of characteristic p. After reading their work and noticing
the similarity to our own, we decided to include the following theorem, which is an
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analogue of their theorem for symmetric groups. The statement is a direct consequence
of our construction, so no proof will be included.

Theorem 3.4.1. For a fixed core ν satisfying νi − νi+1 = ` − 1 for i = 1, 2, . . . r and νr+1 −
νr+2 6= ` − 1, the number of `-partitions of a fixed weight w is the number of partitions of
w with at most r + 1 parts. The generating function for the number of `-partitions of a fixed

`-core ν with respect to the statistic of the weight of the partition is thus
r+1∏

i=1

1

1 − xi
. Hence the

generating function for all (`, 0)-Carter partitions with fixed core ν with respect to the statistic

of the size of the partition is
∑

λ∈L` with core ν

x|λ| = x|ν|

r+1∏

i=1

1

1 − x`i
.

Example 3.4.2. Let ` = 3 and let ν = (6, 4, 2, 1, 1) ≈ ((2, 1, 1), 2, ∅) be a 3-core. Then
the number of 3-partitions of weight 5 with core ν is exactly the number of partitions
of 5 into at most 3 parts. There are 5 such partitions ((5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1)).
Therefore, there are 5 such `-partitions. They are:

(21, 4, 2, 1, 1), (18, 7, 2, 1, 1), (15, 10, 2, 1, 1), (15, 7, 5, 1, 1), (12, 10, 5, 1, 1).

ν =

For ν above, r = 2, so horizontal 3-rim hooks can be added to the first three rows.

4 The crystal of the basic representation of ŝl`

There is a crystal graph structure on the set of all `-regular partitions. The crystal can be
viewed as a Z/`Z-colored directed graph whose nodes are the `-regular partitions and
whose outwardly oriented i-edges indicate the addition of a particular box of residue
i. Representation-theoretically the nodes stand for irreducible representations and the
edges indicate a partial branching rule (the simple quotients of induction).

Irreducible Hn(q)-modules with interesting representation-theoretic behavior often
have nice combinatorial characterizations in this crystal. An example is given by the
irreducibles that are projective Hn(q)-modules. These are precisely parameterized by
the `-cores. They can be characterized crystal-theoretically as the nodes unique with
their given weight (part of the data that goes into the definition of crystal, which is in
this context the multiset of residues of a partition) or as the extremal nodes as follows.
Ŝ` acts on the nodes of the crystal (indeed on all partitions) by “reflecting i-strings”
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where an i-string is a maximal connected component of the subgraph consisting of just
i-colored arrows. The `-cores are the nodes in the Ŝ`-orbit of the highest weight node
(which is the unique node with no in-arrows), in this setting, the empty partition.

As we have seen in the previous sections, in some ways `-partitions generalize `-
cores. It is then natural to expect that the combinatorial characterization of `-partitions
in the crystal is similar to that of `-cores. And it is, but with a few crucial differences.
The `-partitions do not form an Ŝ`-orbit, nor even a union of Ŝ`-orbits. It is still true
that if a node is an `-partition then the extreme nodes in its i-string (for any i ∈ Z/`Z)
are also `-partitions. However, the `-partitions do not have to live just at the extremes.
The condition can be relaxed, in some cases, to be “second from the bottom” of an
i-string, but nowhere else along the i-string, save the extreme ends. In particular the
node second from the top of an i-string never corresponds to an `-partition except
in the trivial cases that that node is coincidentally second from the bottom or at an
extreme end. This section gives a combinatorial proof of this fact, and Theorem 4.3.4
below characterizes when `-partitions are sub-extremal on an i-string. At the moment
we only have a partial representation-theoretic explanation for the pattern.

4.1 Description of crystal
We will assume some familiarity with the theory of crystals (see [8]), and their rela-
tionship to the representation theory of the finite Hecke algebra (see [5] or [9]). We will
look at the crystal B(Λ0) of the irreducible highest weight module V (Λ0) of the affine
Lie algebra ŝl` (also called the basic representation of ŝl`). The set of nodes of B(Λ0) is
denoted B := {λ ∈ P : λ is `-regular}. We will describe the arrows of B(Λ0) below.
This description is originally due to Misra and Miwa (see [13]).

We say the box (a, b) of a partition has residue b − a mod `. A box x in λ is said
to be a removable i-box if it has residue i and after removing x from λ the remaining
diagram is still a partition. A space y not in λ is an addable i-box if it has residue i and
adding y to λ yields a partition.

Example 4.1.1. Let λ = (8, 5, 4, 1) and ` = 3. Then the residues are filled into the boxes
of the corresponding Young diagram as follows:

λ = 0 1 2 0 1 2 0 1

2 0 1 2 0

1 2 0 1

0

λ has two removable 0-boxes (the boxes (2,5) and (4,1)), two removable 1-boxes (the
boxes (1,8) and (3,4)), no removable 2-boxes, no addable 0-boxes, two addable 1-boxes
(at (2,6) and (4,2)), and three addable 2-boxes (at (1,9), (3,5) and (5,1)).

For a fixed i, (0 ≤ i < `), we place − in each removable i-box and + in each addable
i-box. The i-signature of λ is the word of + and −’s in the diagram for λ, read from
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bottom left to top right. The reduced i-signature is the word obtained after repeatedly
removing from the i-signature all pairs −+. The reduced i-signature is of the form
+ · · ·+ + +−−− · · ·−. The boxes corresponding to −’s in the reduced i-signature are
called normal i-boxes, and the positions corresponding to +’s are called conormal i-boxes.
εi(λ) is defined to be the number of normal i-boxes of λ, and ϕi(λ) is defined to be the
number of conormal i-boxes. If there is at least one − in the reduced i-signature, the
box corresponding to the leftmost − is called the good i-box of λ. If there is at least one
+ in the reduced i-signature, the position corresponding to the rightmost + is called
the cogood i-box. All of these definitions can be found in Kleshchev’s book [9].

Example 4.1.2. Let λ = (8, 5, 4, 1) and ` = 3 be as above. Fix i = 1. The diagram for λ
with removable and addable 1-boxes marked looks like:

−

+

−

+

The 1-signature of λ is + − +−, so the reduced 1-signature is + − and the
diagram has a good 1-box in the first row, and a cogood 1-box in the fourth row. Here
ε1(λ) = 1 and ϕ1(λ) = 1.

We recall the action of the crystal operators on B. The crystal operator ẽi : B
i
−→

B ∪ {0} assigns to a partition λ the partition ẽi(λ) = λ \ x, where x is the good i-box of
λ. If no such box exists, then ẽi(λ) = 0. We remark that εi(λ) = max{k : ẽk

i λ 6= 0}.
Similarly, f̃i : B

i
−→ B∪{0} is the operator which assigns to a partition λ the partition

f̃i(λ) = λ∪x, where x is the cogood i-box of λ. If no such box exists, then f̃i(λ) = 0. We
remark that ϕi(λ) = max{k : f̃k

i λ 6= 0}.
For i in Z/`Z, we write λ

i
−→ µ to stand for f̃iλ = µ. We say that there is an i-arrow

from λ to µ. Note that λ
i
−→ µ if and only if ẽiµ = λ. A maximal chain of consecutive

i-arrows is called an i-string. We note that the empty partition ∅ is the unique highest
weight node of the crystal. For a picture of the first few levels of this crystal graph, see
[10] for the cases ` = 2 and 3.

Example 4.1.3. Continuing with the above example, ẽ1(8, 5, 4, 1) = (7, 5, 4, 1) and
f̃1(8, 5, 4, 1) = (8, 5, 4, 2). Also, ẽ2

1(8, 5, 4, 1) = 0 and f̃ 2
1 (8, 5, 4, 1) = 0. The sequence

(7, 5, 4, 1)
1
−→ (8, 5, 4, 1)

1
−→ (8, 5, 4, 2) is a 1-string of length 3.

4.2 Crystal operators and `-partitions
We first recall some well-known facts about the behavior of `-cores in this crystal graph
B(Λ0). There is an action of the affine Weyl group S̃` on the crystal such that the simple
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reflection si reflects each i-string. In other words, si sends a node λ to




f̃
ϕi(λ)−εi(λ)
i λ ϕi(λ) − εi(λ) > 0

ẽ
εi(λ)−ϕi(λ)
i λ ϕi(λ) − εi(λ) < 0

λ ϕi(λ) − εi(λ) = 0.

The set of `-cores is exactly the S̃`-orbit of ∅, the highest weight node. This implies
the following Proposition.

Proposition 4.2.1. If µ is an `-core and εi(µ) 6= 0 then ϕi(µ) = 0 and ẽ
εi(µ)
i µ is again an

`-core. Furthermore, ẽk
i µ is not an `-core for any 0 < k < εi(µ). Similarly, if ϕi(µ) 6= 0 then

εi(µ) = 0 and f̃
ϕi(µ)
i µ is an `-core but f̃k

i µ is not for 0 < k < ϕi(µ).

In this paper, given an `-partition λ, we will determine when f̃k
i λ and ẽk

i λ are also
`-partitions.

The following remarks will help us in the proofs of the upcoming Theorems 4.3.1,
4.3.3 and 4.3.4.
Remark 4.2.2. Suppose λ is a partition. Consider its Young diagram. If any `-rim hook
has an upper rightmost box of residue i, then the lower leftmost box has residue i + 1
mod `. Conversely, a hook length hλ

(a,b) is divisible by ` if and only if there is an i so that
the rightmost box of row a has residue i, and the lowest box of column b has residue
i + 1 mod `.

In Lemma 4.2.4 we will generalize Proposition 4.2.1 to `-partitions.

Proposition 4.2.3. Let λ be an `-core, and suppose 0 ≤ i < `. Then the i-signature for λ is
the same as the reduced i-signature.

Proof. This follows from Remark 4.2.2 above.

In particular, an `-core cannot have both a removable and an addable i-box.

Lemma 4.2.4. Let λ be an `-partition, and suppose 0 ≤ i < `. Then the i-signature for λ is
the same as the reduced i-signature.

Proof. We need to show that there does not exist positions (a, b) and (c, d) such that
(a, b) is an addable i-box, (c, d) is a removable i-box, and c > a. But if this were the
case, then the hook length hλ

(a,d) would be divisible by ` (by Remark 4.2.2), but ` does
not divide hλ

(c,d) = 1. Then λ would violate (?), so it would not be an `-partition.

Remark 4.2.5. As a consequence of Lemma 4.2.4, the action of the operators ẽi and
f̃i is simplified in the case of `-partitions. For fixed i, applying successive f̃i’s to λ
corresponds to adding all addable boxes of residue i from right to left (i.e. all addable
i-boxes are conormal). Similarly, applying successive ẽi’s to λ corresponds to removing
all removable boxes of residue i from left to right (i.e. all removable i-boxes are
normal).
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In the following Theorems 4.3.1, 4.3.3 and 4.3.4, we implicitly use Remark 4.2.2 to
determine when a hook length is divisible by `, and Remark 4.2.5 when applying ẽi

and f̃i to λ. Unless it is unclear from the context, for the rest of the paper ϕ = ϕi(λ) and
ε = εi(λ).
Remark 4.2.6. Suppose λ ≈ (µ, r, κ). When viewing µ embedded in λ, we note that if a
box (a, b) ∈ µ ⊂ λ has residue i mod ` in λ, then it has residue i − r mod ` in µ.

Let λ = (λ1, λ2, . . . ) be a partition, and r be any integer. We define λ = (λ2, λ3, . . . ),
λ̂ = (λ1, λ1, λ2, λ3, . . . ) and λ + 1r = (λ1 + 1, λ2 + 1, . . . , λr + 1, λr+1, . . . ), extending λ by
r − len(λ) parts of size 0 if r > len(λ). We note that Lemma 3.2.1 implies that λ is an
`-core.

4.3 `-partitions in the crystal B(Λ0)

Theorem 4.3.1. Suppose that λ is an `-partition and 0 ≤ i < `. Then

1. f̃ϕ
i λ is an `-partition,

2. ẽε
iλ is an `-partition.

Proof. We will prove only (1), as (2) is similar. Recall all addable i-boxes of λ are
conormal by Lemma 4.2.4. The proof of (1) relies on the decomposition of the `-
partition as in Section 3.2. Let λ ≈ (µ, r, κ). We break the proof of (1) into three cases:

(a) If the first row of µ embedded in λ does not have an addable i-box then we cannot
add an i-box to the first r + 1 rows of λ. Hence ϕ = ϕi−r(µ). f̃ϕ

i−rµ, is still a core
by Proposition 4.2.1. Hence we can exhibit the decomposition f̃ϕ

i λ ≈ (f̃ϕ
i−rµ, r, κ).

(b) If the first row of µ embedded in λ does have an addable i-box and µ1−µ2 < `−2,
then the first r +1 rows of λ have addable i-boxes. Also some rows of µ will have
addable i-boxes. f̃ϕ

i adds an i-box to the first r rows of λ, plus adds any addable
i-boxes to the core µ. Note that ϕi−r(µ) = ϕ − r. Since µ1 − µ2 < ` − 2, the first
and second rows of f̃ϕ−r

i−r µ differ by at most ` − 2. Therefore f̃ϕ
i λ ≈ (f̃ϕ−r

i−r µ, r, κ).

(c) If the first row of µ embedded in λ does have an addable i-box and µ1−µ2 = `−2,
then f̃ϕ

i will add the addable i-box in the r + 1st row (i.e. the first row of µ). Since
the (r + 2)nd row does not have an addable i-box, we know that the (r + 1)st and
(r + 2)nd rows of f̃ϕ

i (λ) differ by ` − 1. Therefore f̃ϕ
i λ ≈ (f̃ϕ−r

i−r µ, r + 1, κ) is an
`-partition.

Lemma 4.3.2. Let λ be an `-partition. Then λ cannot have one normal box and two conormal
boxes of the same residue.
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Proof. Label any two of the conormal boxes n1 and n2, with n1 to the left of n2. Pick
any normal box and label it n3. By Lemma 4.2.3, n3 must lie to the right of n1. Then the
hook length in the column of n1 and row of n3 is a multiple of `, but the hook length in
the column of n1 and row of n2 is not a multiple of ` by Remark 4.2.2.

Theorem 4.3.3. Suppose that λ is an `-partition. Then

1. f̃k
i λ is not an `-partition for 0 < k < ϕ − 1,

2. ẽk
i λ is not an `-partition for 1 < k < ε.

Proof. If 0 < k < ϕ − 1 then there are at least two conormal i-boxes in f̃k
i λ and at least

one normal i-box. By Lemma 4.3, f̃k
i λ is not an `-partition. The proof of (2) is similar to

that of (1).

The above theorems told us the position of an `-partition relative to the i-string
which it sits on in the crystal B(Λ0). If an `-partition occurs on an i-string, then both
ends of the i-string are also `-partitions. Furthermore, the only places `-partitions can
occur are at the ends of i-strings or possibly one position before the final node. The
next theorem describes when this latter case occurs.

Theorem 4.3.4. Suppose that λ ≈ (µ, r, κ) is an `-partition. Then

1. If ϕ > 1 then f̃ϕ−1
i λ is an `-partition if and only if

(†) κr+1 = 0, the first row of λ has a conormal i-box, and ϕ = r + 1.

2. If ε > 1 then ẽiλ is an `-partition if and only if

(‡) the first row of λ has a conormal (i + 1)-box and either

ε = r and κr = 0, or ε = r + 1 and κr+1 = 0.

Proof. We first prove (1) and then derive (2) from (1).
If λ satisfies condition (†) then λ differs from f̃ϕ−1

i λ by one box in each of the first r

rows. Hence (f̃ϕ−1
i λ)r − (f̃ϕ−1

i λ)r+1 is a multiple of `, so that the first r rows each have
one more horizontal `-rim hook than they had in λ. After removing these horizontal
`-rim hooks, we get the partition (µ̂, r − 1, ∅). This decomposition is valid, as we will
now show µ̂ is an `-core. Since ϕi(µ) = 1, f̃iµ is also an `-core and so in particular
` - h

efiµ

(1,b) for 1 ≤ b ≤ µ1 + 1. Note that hbµ

(1,b) = h
efiµ

(1,b) = hµ

(1,b) + 1 for 1 ≤ b ≤ µ1, and
for a > 1, hbµ

(a,b) = hµ

(a,b), yielding ` - hbµ

(a,b) for all boxes (a, b) ∈ µ̂. By Remark 1.1.1, µ̂ is
an `-core. It is then easy to see that f̃ϕ−1

i λ ≈ (µ̂, r − 1, κ + 1r), so therefore f̃ϕ−1
i λ is an

`-partition.
Conversely:

the electronic journal of combinatorics 15 (2008), #R130 18



(a) If the first part of λ has a conormal j-box, with j 6= i, call this box n1. If j = i + 1
then the box (r + 1, λr+1) has residue i. If an addable i-box exists, say at (a, b), it
must be below the first r + 1 rows. But then the hook length hµ

(r+1,b) is divisible
by `. This implies that µ is not a core. So we assume j 6= i + 1. Then f̃ϕ−1

i λ has
at least one normal i-box n2 and exactly one conormal i-box n3 with n3 left of n2

left of n1. The hook length of the box in the column of n3 and the row of n2 is
divisible by `, but the hook length of the box in the column of n3 and the row of
n1 is not (by Remark 4.2.2). By Theorem 2.1.6, f̃ϕ−1

i λ is not an `-partition.

(b) By (a), we can assume that the first row has a conormal i-box. If ϕ 6= r + 1 then
row r + 2 of f̃ϕ−1

i λ will end in a j-box, for some j 6= i. Call this box n1. Also let
n2 be any normal i-box in f̃ϕ−1

i λ and n3 be the unique conormal i-box. Then the
box in the row of n1 and column of n3 has a hook length which is not divisible by
`, but the box in the row of n2 and column of n3 has a hook length which is (by
Remark 4.2.2). By Theorem 2.1.6, f̃ϕ−1

i λ is not an `-partition.

(c) Suppose κr+1 6= 0. By (a) and (b), we can assume that ϕ = r + 1 and that the first
row of λ has a conormal i-box. Then the difference between λ and f̃ϕ−1

i λ = f̃ r
i λ

is an added box in each of the first r rows. Remove κr − κr+1 + 1 horizontal `-rim
hooks from row r of f̃ϕ−1

i λ. Call the remaining partition ν. Then νr = νr+1 =
µ1 + `κr+1. Hence a removable non-horizontal `-rim hook exists in ν taking the
rightmost box from row r with the rightmost ` − 1 boxes from row r + 1. Thus
f̃ϕ−1

i (λ) is not an `-partition.

To prove (2), we note that by Theorem (4.3.3) that if ϕ 6= 0 and ε > 1 then ẽiλ =

ẽ2
i f̃iλ cannot be an `-partition. Hence we only consider λ so that ϕi(λ) = 0. But then

f̃
ϕi(eeε

i (λ))−1
i ẽε

iλ = f̃ ε−1
i ẽε

iλ = ẽiλ. From this observation, it is enough to show that λ
satisfies (‡) if and only if ẽε

iλ satisfies (†). The proof of this follows a similar line as the
above proofs, so it will be left to the reader.

Example 4.3.5. Fix ` = 3. Let λ = (9, 4, 2, 1, 1) ≈ ((2, 1, 1), 2, (1)).

λ = 0 1 2 0 1 2 0 1 2

2 0 1 2

1 2

0

2

Here ϕ0(λ) = 3. f̃0λ = (10, 4, 2, 1, 1) is not a 3-partition, but f̃ 2
0 λ = (10, 5, 2, 1, 1) ≈

((2, 2, 1, 1), 1, (2, 1)) and f̃ 3
0 λ = (10, 5, 3, 1, 1) ≈ ((1, 1), 3, (1)) are 3-partitions.
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5 A representation-theoretic proof of Theorem 4.3.1
This proof relies heavily on the work of Grojnowski, Kleshchev et al. We recall some
notation from [5] but repeat very few definitions below.

5.1 Definitions and preliminaries
In the category Repn of finite-dimensional representations of the finite Hecke algebra
Hn(q), we define the Grothendieck group K(Repn) to be the group generated by iso-
morphism classes of finite-dimensional representations, with relations [M1] + [M3] =
[M2] if there exists an exact sequence 0 → M1 → M2 → M3 → 0. This is
a finitely generated abelian group with generators corresponding to the irreducible
representations of Hn(q). The equivalence class corresponding to the module M is
denoted [M].

Just as Sn can be viewed as the subgroup of Sn+1 consisting of permutations which
fix n+1, Hn(q) can be viewed as a subalgebra of Hn+1(q) (the generators T1, T2, . . . , Tn−1

generate a subalgebra isomorphic to Hn(q)). Let M be a finite-dimensional represen-
tation of Hn+1(q). Then it makes sense to view M as a representation of Hn(q). This
module is called the restriction of M to Hn(q), and is denoted Res

Hn+1(q)
Hn(q) M. Similarly,

we can define the induced representation of M by Ind
Hn+1(q)
Hn(q) M = Hn+1(q) ⊗Hn(q) M.

Just as Sb ⊂ Sa, we can also consider Hb(q) ⊂ Ha(q) and define corresponding
restriction and induction functors. To shorten notation, Res

Ha(q)
Hb(q)

will be written Resa
b ,

and Ind
Ha(q)
Hb(q)

will be written as Inda
b .

If λ and µ are partitions, it is said that µ covers λ, (written µ � λ) if the Young
diagram of λ is contained in the Young diagram of µ and |µ| = |λ| + 1.

The following proposition is well known and can be found in [12].

Proposition 5.1.1. Let λ be a partition of n and Sλ be the Specht module corresponding to λ.
Then

[Indn+1
n Sλ] =

∑

µ�λ

[Sµ].

We consider functors ẽi : Repn → Repn−1 and f̃i : Repn → Repn+1 which commute
with the crystal action on partitions in the following sense (see [5] for definitions and
details).

Theorem 5.1.2. Let λ be an `-regular partition. Then:

1. ẽiD
λ = Deeiλ;

2. f̃iD
λ = D

efiλ.

We now consider the functors fi : Repn → Repn+1 and ei : Repn → Repn−1 which
refine induction and restriction (for a definition of these functors, especially in the more
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general setting of cyclotomic Hecke algebras, see [5]). For a representation M ∈ Repn

let εi(M) = max{k : ek
i M 6= 0} and ϕi(M) = max{k : f k

i M 6= 0}. Grojnowski
concludes the following theorem.

Theorem 5.1.3. Let M be a finite-dimensional representation of Hn(q). Let ϕ = ϕi(M) and
ε = εi(M).

1. Indn+1
n M =

⊕
i fiM; Resn+1

n M =
⊕

i eiM;

2. [fϕ
i M] = ϕ![f̃ϕ

i M]; [eε
iM] = ε![ẽε

iM].

For a module Dµ the central character χ(Dµ) can be identified with the multiset of
residues of the partition µ. The following theorem allows us to define χ(Sµ) as well.

Theorem 5.1.4. All composition factors of the Specht module Sλ have the same central
character.

Theorem 5.1.5. χ(fi(D
λ)) = χ(Dλ) ∪ {i}; χ(ei(D

λ)) = χ(Dλ) \ {i}.

We are now ready to present a representation-theoretic proof of Theorem 4.3.1,
which states that if λ is an `-partition lying anywhere on an i-string in the crystal B(Λ0),
then the extreme ends of the i-string through λ are also `-partitions.

5.2 A representation-theoretic proof of Theorem 4.3.1
Alternate Proof of Theorem 4.3.1. Suppose λ is an `-partition and |λ| = n. Recall that by
the result of James and Mathas [7] combined with Theorem 2.1.6, Sλ = Dλ if and only
if λ is an `-partition. Let F denote the number of addable i-boxes of λ and let ν denote
the partition corresponding to λ plus all addable i-boxes.

First, we induce Sλ from Hn(q) to Hn+F (q). Applying Proposition 5.1.1 F times
yields

[Indn+F
n Sλ] =

∑

µF �µF−1�···�µ1�λ

[SµF ].

Note [Sν] occurs in this sum with coefficient F ! (add the i-boxes in any order), and
everything else in this sum has different central character than Sν . Hence the direct
summand which has the same central character as Sν (i.e. the central character of λ
with F more i’s) is F ![Sν] in K(Repn+F ).

We next apply (1) from Theorem 5.1.3 F times to obtain

[Indn+F
n Dλ] =

⊕

i1,...,iF

[fi1 . . . fiF Dλ].

The direct summand with central character χ(Sν) is [fF
i Dλ] in K(Repn+F ). Since λ

is an `-partition, Sλ = Dλ, so Indn+F
n Sλ = Indn+f

n Dλ and we have shown that F ![Sν] =
[fF

i Dλ].
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Since Sλ = Dλ and fF
i Dλ 6= 0, we know that F ≤ ϕ. Similarly, since Indn+F+1

n Sλ has
no composition factors with central character χ(Sλ)∪{i, i, . . . , i︸ ︷︷ ︸

F+1

}, we know that F ≥ ϕ.

Hence F = ϕ.
By part 2 of Theorem 5.1.3, [(fi)

ϕDλ] = ϕ![f̃ϕ
i Dλ]. Then by Theorem 5.1.2, [Sν] =

[D
ef
ϕ
i λ].
Since F = ϕ, ν = f̃ϕ

i λ, so in particular ν is `-regular and Sν = Dν . Hence f̃ϕ
i λ = ν is

an `-partition.
The proof that ẽ

εi(λ)
i λ is an `-partition follows similarly, with the roles of induction

and restriction changed in Proposition 5.1.1, and the roles of ei and fi changed in
Theorem 5.1.3.

We do not yet have representation-theoretic proofs of our other Theorems 4.3.3
and 4.3.4. We expect an analogue of Theorem 4.3.3 to be true for the Hecke algebra
over a field of arbitrary characteristic. In Theorem 4.3.4 the conditions (†) and (‡) will
change for different fields, so any representation-theoretic proof of this theorem should
distinguish between these different cases.

6 Related Literature
We will end by mentioning some related work concerning `-partitions. Cossey, Ondrus
and Vinroot (see [2]) have a construction for the case of the symmetric group in
characteristic p which is an analogue of our construction of `-partitions from Section
3.2. Fairly recent results of Fayers ([4]) and Lyle ([11]) give combinatorial conditions
which characterize partitions λ such that the corresponding Specht module Sλ of Hn(q)
is irreducible when q is a primitive `th root of unity, without the condition that λ be `-
regular and allowing the characteristic of the underlying field to be p. Such partitions
are called (`, p)-JM partitions in [4], and can be viewed as `-singular analogues of
(`, 0)-Carter partitions. The PhD thesis of the first author presents results for (`, 0)-JM
partitions which are analogous to the theorems in this paper.
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