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Abstract

The monochromatic tree partition number of an r-edge-colored graph G, de-
noted by tr(G), is the minimum integer k such that whenever the edges of G are
colored with r colors, the vertices of G can be covered by at most k vertex-disjoint
monochromatic trees. In general, to determine this number is very difficult. For 2-
edge-colored complete multipartite graph, Kaneko, Kano, and Suzuki gave the exact
value of t2(K(n1, n2, · · · , nk)). In this paper, we prove that if n ≥ 3, and K(n, n)
is 3-edge-colored such that every vertex has color degree 3, then t3(K(n, n)) = 3.

Keywords: monochromatic tree, tree partition number, complete bipartite graph,
3-edge-colored, color degree

1 Introduction

The monochromatic tree partition number, or simply tree partition number of an r-
edge-colored graph G, denoted by tr(G), which was introduced by Erdős, Gyárfás and
Pyber [1], is the minimum integer k such that whenever the edges of G are colored with
r colors, the vertices of G can be covered by at most k vertex-disjoint monochromatic
trees. Erdős, Gyárfás and Pyber [1] conjectured that the tree partition number of an
r-edge-colored complete graph is r− 1. Moreover, they proved that the conjecture is true
for r = 3. For the case r = 2, it is equivalent to the fact that for any graph G, either G
or its complement is connected, an old remark of Erdős and Rado.
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For infinite complete graph, Hajnal [2] proved that the tree partition number for an
r-edge-colored infinite complete graph is at most r. For finite complete graph, Haxell and
Kohayakawa [3] proved that any r-edge-colored complete graph Kn contains at most r
monochromatic trees, all of different colors, whose vertex sets partition the vertex set of
Kn, provided n ≥ 3r4r!(1 − 1/r)3(1−r) log r. In general, to determine the exact value of
tr(G) is very difficult.

In this paper we consider the tree partition number of complete bipartite graphs.
Notice that isolated vertices are also considered as monochromatic trees. For any m ≥
n ≥ 1, let K(A, B) = K(m, n) denote the complete bipartite graph with partite sets A
and B, where |A| = m, |B| = n. Haxell and Kohayakawa [3] proved that the tree partition
number for an r-edge-colored complete bipartite graph K(n, n) is at most 2r, provided
n is sufficiently large. For 2-edge-colored complete multipartite graph K(n1, n2, · · · , nk),
Kaneko, Kano, and Suzuki [5] proved the following result: Let n1, n2, · · ·nk (k ≥ 2) be
integers such that 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk, and let n = n1 + n2 + · · ·+ nk−1 and m = nk.
Then t2(K(n1, n2, · · · , nk)) = bm−2

2n c + 2. In particular, t2(K(m, n)) = bm−2
2n c + 2, where

1 ≤ n ≤ m. Later in [4], Jin et al gave a polynomial-time algorithm to partition a 2-edge-
colored complete multipartite graph into monochromatic trees. For a general survey on
monochromatic subgraph partitions, we refer the reader to [6].

In the present paper, we show that if n ≥ 3 and K(n, n) is 3-edge-colored such that
every vertex has color degree 3, then t3(K(n, n)) = 3, where the color degree of a vertex
v is the number of colors of edges incident with v.

2 Preliminaries

In this section, we will give some notations and results on 2-edge-colored complete
bipartite graphs. Although the result on the partition number for 2-edge-colored complete
bipartite graphs was obtained by Kaneko, Kano and Suzuki in [5], and a polynomial-time
algorithm to get an optimal partition was obtained by Jin et al in [4], in the following we
will distinguish several cases, and for each of which we will give the exact monochromatic
trees to partition the vertex set of a 2-edge-colored complete bipartite graph. This gives
not only the partition number for each case, but more importantly, the clear structural
description for the partition, which will plays a key role for obtaining an optimal partition
in the 3-edge-colored case.

We first introduce two types of graphs. Let G = K(A, B) be a 2-edge-colored complete
bipartite graph, and all the edges are colored with blue or green. If the partite sets A
and B have partitions A = A1 ∪ A2 and B = B1 ∪ B2 with Ai 6= ∅ and Bi 6= ∅ such that
K(A1, B1) and K(A2, B2) are complete bipartite graphs colored with blue, K(A1, B2)
and K(A2, B1) are complete bipartite graphs colored with green, then we call K(A, B) an
M -type graph. An S-type graph is the graph satisfying blue(G) 6= ∅ and green(G) 6= ∅,
where blue(G) = {u| all the edges incident with u are blue }, green(G) = {u| all the edges
incident with u are green }. Clearly, both blue(G) and green(G) must be contained in a
same partite set A or B of G. If G = K(A, B) is an S-type graph or an M -type graph,
then we simply denote it by G ∈ S or G ∈ M.
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Assume that G = K(A, B) is an S-type graph. If blue(G) ∪ green(G) ⊆ A, then we
denote Ab = {u ∈ A| all the edges incident with u are blue}, Ag = {u ∈ A| all the edges
incident with u are green}, and A2 = A − Ab ∪ Ag = {u ∈ A| the color degree of u is 2}.
Hence K(Ab∪A2, B) and K(Ag∪A2, B) have a blue and green spanning tree, respectively.
If blue(G) ∪ green(G) ⊆ B, then Bb, Bg and B2 defined analogously and have a similar
property.

Lemma 1 The 2-edge-colored complete bipartite graph K(m, n) has a monochromatic
spanning tree if and only if K(m, n) /∈ S and K(m, n) /∈ M.

Proof. The necessity is obviously. Now we prove the sufficiency.
Assume that K(m, n) = K(A, B) has a vertex x such that all the edges incident with

x have the same color. By symmetry, we may assume that the color is blue and x ∈ A.
Since K(m, n) /∈ S, for every vertex u of A, there exists a blue edge incident with u.
Hence K(m, n) has a blue spanning tree.

We may assume therefore that for any vertex x of K(m, n), at least one blue edge and
one green edge are incident with it. Let H be a subgraph of K(m, n) induced by the green
edges of K(m, n), and so H is a spanning subgraph. If H is connected, then H contains a
green spanning tree of K(m, n), and the lemma follows. Thus, we may assume that H is
not connected. Suppose S is a connected component of H, and S ∩A = A1, S ∩B = B1.
Since S is not a spanning subgraph of K(m, n), it follows that A1 6= A and B1 6= B.
Then K(A1, B − B1) and K(A − A1, B1) are both blue complete bipartite graphs. Since
K(m, n) /∈ M, we have that at least one of K(A1, B1) and K(A−A1, B−B1) is not green
bipartite graph, and so K(A1, B1) and K(A − A1, B − B1) have blue edges. Therefore,
K(m, n) has a blue spanning tree. 2

Lemma 1 implies that if the 2-edge-colored complete bipartite graph K(m, n) does not
have a monochromatic spanning tree, then K(m, n) ∈ S or K(m, n) ∈ M.

Lemma 2 Let K(A, B) be a 2-edge-colored complete bipartite graph. If K(A, B) ∈ M,
then the vertices of K(A, B) can be covered by two vertex-disjoint monochromatic trees
with the same color.

Proof. Since K(A, B) ∈ M, we have partitions A = A1 ∪A2 and B = B1 ∪B2 such that
K(A1, B1) and K(A2, B2) are blue complete bipartite graphs, K(A1, B2) and K(A2, B1)
are green complete bipartite graphs. That is, the vertices of K(A, B) can be covered by
two vertex-disjoint blue trees or two green trees. 2

Assume that G = K(A, B) is an S-type graph and blue(G) ∪ green(G) ⊆ A. If
A = Ab ∪ A2 ∪ Ag and B satisfies |B| = 1, |Ab| ≥ 2, and |Ag| ≥ 2, then K(A, B) is
call an S∗

1 -type graph. If blue(G) ∪ green(G) ⊆ B, then an S∗
1 -type K(A, B) is defined

analogously. Notice that if K(A, B) is call an S∗
1 -type graph with |B| = 1, then A2 = ∅.

Let K(A, B) be an S-type graph, and blue(G) ∪ green(G) ⊆ A. Then for partition
B = Bi ∪ Bi, we define

b(Bi) = {x ∈ A2| K(x, Bi) is a blue star, and K(x, Bi) is a green star},
b(Bi) = {x ∈ A2| K(x, Bi) is a green star, and K(x, Bi) is a blue star}.
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If for every partition B = Bi ∪ Bi, it follows that b(Bi) 6= ∅, b(Bi) 6= ∅, |Ab| ≥ 2,
|Ag| ≥ 2, and |B| ≥ 2, then we call K(A, B) an S

′

1-type graph. If blue(G)∪green(G) ⊆ B,
then b(Ai), b(Ai), and S

′

1-type graph K(A, B) defined analogously.
In the following, the S∗

1 -type graphs and the S
′

1-type graphs are denoted by S1-type
graph. The S-type graphs other than the S1-type graphs are denoted by S2-type graph.

blue edge
green edgePSfrag replacements

Ab
b(u1)

b({u2, u3})

b(u2)

b({u1, u3})

b(u3)

b({u1, u2})

Ag

u1 u2 u3

Figure 1: S1-type graphs.

Let K(A, B) ∈ S, blue(G) ∪ green(G) ⊆ A, and denote A = Ab ∪ A2 ∪ Ag. If
K(A, B) ∈ S∗

1 , then A2 = ∅, and |A| ≥ 4 = 2|B| + 2. If K(A, B) ∈ S
′

1, then A2 =
∪B=Bi∪Bi

[b(Bi) ∪ b(Bi)], here the union is over all nonempty partitions of B, and for any

i, b(Bi) 6= ∅ and b(Bi) 6= ∅. Hence, |A2| ≥ 2|B| − 2, and so |A| ≥ 2|B| + 2. Thus, if
K(A, B) ∈ S1, then either |A| ≥ 2|B| + 2 or |B| ≥ 2|A| + 2 holds. If K(A, B) ∈ S2,
and blue(G) ∪ green(G) ⊆ A, then either min{|Ab|, |Ag|} = 1, or there exists a partition
B = Bi ∪ Bi such that b(Bi) = ∅ or b(Bi) = ∅.

Lemma 3 Let K(A, B) be a 2-edge-colored complete bipartite graph. If K(A, B) ∈ S2,
then the vertices of K(A, B) can be covered by either an isolated vertex and a monochro-
matic tree or two vertex-disjoint monochromatic trees with different colors. Furthermore,
except the case min{|blue(G)|, |green(G)|} = 1, the vertices of K(A, B) always can be
covered by two vertex-disjoint monochromatic trees colored with different colors.

Proof. Without loss of generality, suppose blue(G) ∪ green(G) ⊆ A, and denote A =
Ab ∪ A2 ∪ Ag.
Case 1. min{|Ab|, |Ag|} = 1.
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Since K(A, B) ∈ S, K(Ab∪A2, B) and K(Ag∪A2, B) have a monochromatic spanning
tree, respectively. Then the vertices of K(A, B) can be covered by an isolated vertex and
a monochromatic tree.
Case 2. There exists a partition B = Bi ∪ Bi such that b(Bi) = ∅ or b(Bi) = ∅.

Without loss of generality, suppose b(Bi) = ∅. Let A21 = {x ∈ A2| K(x, Bi) have at
least one blue edge}, and A22 = A2 −A21. Since b(Bi) = ∅, every vertex of A22 has green
edges to Bi. Then K(Ab ∪ A21, Bi) has a blue spanning tree, and K(Ag ∪ A22, Bi) has a
green spanning tree. Thus, the vertices of K(A, B) can be partitioned by a blue tree and
a green tree. 2

Lemma 4 Let K(A, B) be a 2-edge-colored complete bipartite graph. Then K(A, B) ∈ S1

if and only if K(A, B) cannot be covered by two vertex-disjoint monochromatic trees.

Proof. We first consider the necessity. Without loss of generality, suppose blue(G) ∪
green(G) ⊆ A, and denote A = Ab ∪ A2 ∪ Ag. If K(A, B) ∈ S∗

1 , then A2 = ∅, |B| = 1,
and so the vertices of K(A, B) can be covered by at least min{|Ab| + 1, |Ag| + 1} ≥ 3
vertex-disjoint monochromatic trees. For the case K(A, B) ∈ S

′

1, if all the vertices of
B are in one monochromatic tree, then the vertices of K(A, B) can be covered by at
least min{|Ab| + 1, |Ag| + 1} ≥ 3 vertex-disjoint monochromatic trees. If all the vertices
of B are in two monochromatic trees, since for any partition B = B = Bi ∪ Bi, we
have b(Bi) 6= ∅ and b(Bi) 6= ∅. So, the vertices of K(A, B) can be covered by at least
mini{minB=Bi∪Bi

{|b(Bi)|, |b(Bi)|} + 2} ≥ 3 vertex-disjoint monochromatic trees. If all
the vertices of B are in at least three monochromatic trees, then the vertices of K(A, B)
can be covered by at least three vertex-disjoint monochromatic trees. In all cases, the
vertices of K(A, B) can be covered by at least three vertex-disjoint monochromatic trees.

Now, we prove the sufficiency. If K(A, B) /∈ S1, then by the above lemmas, the
vertices of K(A, B) can be covered by at most two vertex-disjoint monochromatic trees,
a contradiction. 2

From the above four lemmas, we have

Corollary 5 If K(A, B) is a 2-edge-colored complete bipartite graph, then it has one of
the following four structures:

(1) K(A, B) has a monochromatic spanning tree.
(2) K(A, B) ∈ M.
(3) K(A, B) ∈ S2.
(4) K(A, B) ∈ S1.

If K(A, B) satisfies (2) or (3) of Corollary 5, then by Lemmas 2 and 3, the vertices of
K(A, B) can be covered by at most two vertex-disjoint monochromatic trees. If K(A, B)
satisfies (4) of Corollary 5, then from the proof of Lemma 4, the vertices of K(A, B)
can be covered by min{|Ab|+ 1, |Ag|+ 1, mini|b(Bi)|+ 2, mini|b(Bi)|+ 2} vertex-disjoint
monochromatic trees. Notice that min{|Ab|+1, |Ag|+1, mini|b(Bi)|+2, mini|b(Bi)|+2} ≤
bm−2

2n c + 2, and the equality holds for some graphs. So, the vertices of K(A, B) can be
covered by at most bm−2

2n c+2 vertex-disjoint monochromatic trees, and there exists an edge
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coloring such that the vertices of K(A, B) are covered by exactly bm−2
2n c+2 vertex-disjoint

monochromatic trees. Thus, t2(K(m, n)) = bm−2
2n c + 2.

Let K(A, B) be a 3-edge-colored complete bipartite graph, all the edges of K(A, B)
are red, blue or green. Given a monochromatic tree partition of K(A, B), the following
cases can be distinguished:
Case A: A does not contain isolated vertices, and all the vertices of A are in blue trees
and green trees.
Case B: A does not contain isolated vertices, and there exist some vertices of A that are
in a red tree.
Case C: A contains some isolated vertices, and all the other vertices of A are in blue
trees and green trees.
Case D: A contains some isolated vertices, and there exist some vertices of A that are in
a red tree.

Lemma 6 Let K(A, B) be a 3-edge-colored complete bipartite graph. If |A| ≤ |B|, then
there exists a monochromatic tree partition belonging to Case A or Case B. If |A| > |B|,
then there exists a monochromatic tree partition belonging to Case A, Case B or Case C.

Proof. Let MTP be an extremal monochromatic tree partition of K(A, B) satisfying the
following three conditions:

(c1) the number of vertices of A that are contained in blue trees and green trees is
maximum;

(c2) subject to (c1), the number of vertices of B that are contained in blue trees and
green trees is minimum;

(c3) subject to (c1) and (c2), the number of monochromatic trees is minimum.
In the following, we will prove that the MTP is a required monochromatic tree partition

of this lemma.
We use Abg to denote the vertices of A that are contained in blue trees and green trees

in the MTP, and denote A0 = A −Abg. Bbg and B0 are defined similarly. If A0 = ∅, then
the MTP belongs to Case A. In the following we consider the case A0 6= ∅. Since the
MTP satisfies (c2), it follows that |Abg| ≥ |Bbg|. If |A| ≤ |B| and A0 6= ∅, then B0 6= ∅.
But for |A| > |B|, both of B0 = ∅ and B0 6= ∅ may occur. If B0 6= ∅, then all the edges
of K(A0, B0) are red, otherwise contradicts to (c1). Thus, the MTP belongs to Case B.
If B0 = ∅, then the MTP belongs to Case C. Thus, the lemma holds. 2

3 Main result

Theorem 7 If n ≥ 3, and K(n, n) is 3-edge-colored such that every vertex has color
degree 3, then t3(k(n, n)) = 3.

Proof. Assume that all the edges of K(n, n)(= K(A, B)) are blue, green, or red. The ver-
tices of the graph in Figure 2 are covered by at least three vertex-disjoint monochromatic
trees. Then, t3(k(n, n)) ≥ 3.
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blue edge
green edge

red edge

Figure 2. Graph satisfying that the vertices can be partitioned into at least 3 monochromatic trees.

In the following, we prove t3(k(n, n)) ≤ 3. Suppose R is the monochromatic connected
component of K(A, B) with the maximum number of vertices, without loss of generality,
suppose R is red. Denote R = R1 ∪ R2, R1 = R ∩ A, and R2 = R ∩ B.

If R1 = A, since the color degree of every vertex is 3, we have R2 = B, then K(A, B)
has a red spanning tree.

We may assume therefore that R1 6= A and R2 6= B. Denote C = A − R1 and
D = B − R2. Clearly, all the edges of K(R1, D) and K(R2, C) are blue or green.

If the vertices of K(C, D) can be covered by at most two vertex-disjoint monochro-
matic trees, then the vertices of K(A, B) can be covered by at most three vertex-disjoint
monochromatic trees. Thus, in the following, we assume that the vertices of K(C, D) can
be covered by at least three vertex-disjoint monochromatic trees.

Claim 1. Every vertex in K(C, D) has at least one red edge incident with it, and there
are at least one green edge and one blue edge in K(C, D).

Proof. Since every vertex has color degree 3, and K(R1, D) and K(R2, C) are 2-edge-
colored graphs colored with blue and green, it is obvious that every vertex in K(C, D) has
at least one red edge incident with it. Since the vertices of K(C, D) can be covered by at
least three vertex-disjoint monochromatic trees, the edges of K(C, D) must be colored by
at least two colors. Without loss of generality, we assume K(C, D) does not have green
edges, that is, K(C, D) is a 2-edge-colored graph colored with blue and red. By Lemma
4 we have K(C, D) ∈ S1. Then, K(C, D) has a vertex such that all the edges incident
with it are blue, which contradicts the fact that every vertex in K(C, D) has at least one
red edge incident with it. Thus, K(C, D) has green edges. 2

Claim 2. |C| ≥ 3 and |D| ≥ 3.

Proof. Suppose |C| ≤ 2. By Claim 1 every vertex in K(C, D) has at least one red
edge incident with it, then the vertices of K(C, D) can be covered by two vertex-disjoint
red stars or a red spanning tree, which contradicts the assumption that the vertices of
K(C, D) can be covered by at least three vertex-disjoint monochromatic trees. 2

Since K(R1, D) and K(R2, C) are 2-edge-colored graphs colored with blue and green,
by Corollary 5 we consider the following eight cases:

Case 1. Both K(R1, D) and K(R2, C) have monochromatic spanning trees.
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Case 2. One of K(R1, D) and K(R2, C) has a monochromatic tree, the other is an
M -type graph or an S2-type graph.
Case 3. One of K(R1, D) and K(R2, C) has a monochromatic tree, the other is an
S1-type graph.
Case 4. K(R1, D) ∈ M and K(R2, C) ∈ M.
Case 5. One of K(R1, D) and K(R2, C) is an M -type graph, the other is an S-type
graph.
Case 6. K(R1, D) ∈ S2 and K(R2, C) ∈ S2.
Case 7. K(R1, D) ∈ S1 and K(R2, C) ∈ S1.
Case 8. One of K(R1, D) and K(R2, C) is an S1-type graph, the other is an S2-type
graph.

In the following, we prove that for every above case, the vertices of K(A, B) can be
covered by at most three vertex-disjoint monochromatic trees.

Clearly, in Case 1 the vertices of K(A, B) can be covered by at most two vertex-disjoint
monochromatic trees. In Case 2, the vertices of K(A, B) can be covered by at most three
vertex-disjoint monochromatic trees.

For Case 3, without loss of generality, suppose K(R1, D) has a green spanning tree,
and K(R2, C) ∈ S1. Since K(R2, C) ∈ S1, we have |C| ≥ 2|R2| + 2 or |R2| ≥ 2|C| + 2.
Since R is the maximum monochromatic component, and K(R1, D) has a green spanning
tree, we have |D| ≤ |R2|. If |C| ≥ 2|R2| + 2 > 2|R2|, then |C| > 2|R2| = |R2| + |R2| ≥
|R2| + |D|, contradicting to |R1| + |C| = |R2| + |D| = n. If |R2| ≥ 2|C| + 2, that is
blue(K(R2, C)) ∪ green(K(R2, C)) ⊆ R2, then denote R2b = {u ∈ R2| all the edges
incident with u are blue in K(R2, C)}, R2g = {u ∈ R2| all the edges incident with u are
green in K(R2, C)}, and R22 = R2 − R2b ∪ R2g = {u ∈ R2| the color degree of u is 2 in
K(R2, C)}. Since every vertex has color degree 3, in K(R1, R2b), every vertex in R2b has
at least one green edge incident with it, and so K(R1, R2b ∪D) has a green spanning tree.
Obviously, K(C, R22 ∪ R2g) has a green spanning tree. Moreover, by Claim 1, K(C, D)
has at least one green edge. Hence, K(A, B) has a green spanning tree, which contradicts
our assumption that R is the maximum monochromatic component. Thus, this case does
not occur. 2

For Case 4, we have K(R1, D) ∈ M and K(R2, C) ∈ M. By Lemma 2 the vertices of
K(R1, D) and K(R2, C) can be covered by two vertex-disjoint green trees, respectively.
By Claim 1 K(C, D) has at least one green edge. Thus, the vertices of K(A, B) can be
covered by at most three vertex-disjoint green trees. 2

For Case 5, without loss of generality, suppose K(R1, D) ∈ M, K(R2, C) ∈ S. Since
K(R2, C) ∈ S, we can denote R2 = R2b ∪ R22 ∪ R2g or C = Cb ∪ C2 ∪ Cg. If R2 =
R2b ∪ R22 ∪ R2g, then K(C, R22 ∪ R2g) has a green spanning tree. Since every vertex has
color degree 3, in K(R1, R2b) every vertex in R2b is incident with at least one green edge.
By Lemma 2 the vertices of K(R1, D) can be covered by two vertex-disjoint green trees.
Then, the vertices of K(R1, R2b ∪D) can be covered by at most two vertex-disjoint green
trees. Moreover, K(C, D) has at least one green edge. Thus, the vertices of K(A, B) can
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be covered by at most two vertex-disjoint green trees. If C = Cb ∪ C2 ∪ Cg, by a similar
argument, the vertices of K(R1 ∪ Cb, D) can be covered by at most two vertex-disjoint
green trees, and K(C2 ∪Cg, R2) has a green spanning tree. Thus, the vertices of K(A, B)
can be covered by at most three vertex-disjoint green trees. 2

For Case 6, we have K(R1, D) ∈ S2 and K(R2, C) ∈ S2. Since K(R1, D) ∈ S2, we can
denote R1 = R1b∪R12∪R1g or D = Db∪D2∪Dg. Similarly, we have R2 = R2b∪R22∪R2g

or C = Cb ∪ C2 ∪ Cg.

Subcase 6.1. R1 = R1b ∪ R12 ∪ R1g and C = Cb ∪ C2 ∪ Cg.

Since every vertex has color degree 3, in K(R1b, R2) every vertex in R1b has at least
one green edge incident with it. In K(Cb, D) every vertex in Cb has at least one green
edge incident with it. Then K(R1b ∪C2 ∪Cg, R2) and K(R12 ∪R1g ∪Cb, D) have a green
spanning tree, respectively. Thus, the vertices of K(A, B) can be covered by at most two
vertex-disjoint green trees.

Subcase 6.2. R2 = R2b ∪ R22 ∪ R2g and D = Db ∪ D2 ∪ Dg.

The proof is similar to that of Subcase 6.1.

Subcase 6.3. R1 = R1b ∪ R12 ∪ R1g and R2 = R2b ∪ R22 ∪ R2g.

Since K(R1, D) ∈ S2 and K(R2, C) ∈ S2, we can give the following partition of
R1, C, R2 and D, respectively: R1 = Rb

1 ∪ Rg
1, C = Cb ∪ Cg, R2 = Rb

2 ∪ Rg
2, and

D = Db ∪ Dg such that K(Rb
1, D

b) has a blue spanning tree, K(Rg
1, D

g) has a green
spanning tree, K(Cb, Rb

2) has a blue spanning tree, and K(Cg, Rg
2) has a green spanning

tree. Obviously, R1b ⊆ Rb
1, R2b ⊆ Rb

2, R1g ⊆ Rg
1 and R2g ⊆ Rg

2. If K(R1b, R2b) has at least
one blue edge, then K(Rb

1, R
b
2) has at least one blue edge. Thus, the vertices of K(A, B)

can be covered by at most one blue tree and two green trees. We may assume therefore
that all the edges of K(R1b, R2b) are red or green. Since K(C, D) has at least one green
edge, K(A−R1b, B−R2b) has a green spanning tree. If the vertices of K(R1b, R2b) can be
covered by at most two vertex-disjoint monochromatic trees, then the vertices of K(A, B)
can be covered by at most three vertex-disjoint monochromatic trees. So, we assume that
the vertices of K(R1b, R2b) can be covered by at least three vertex-disjoint monochromatic
trees. By Lemma 4 we have K(R1b, R2b) ∈ S1. Without loss of generality, we assume that
Rr

1b is the set with maximum number of vertices such that K(Rr
1b, R2b) is a red complete

bipartite graph. Then K(R1b − Rr
1b, R2b) has a green spanning tree. Since every vertex

has color degree 3, in K(Rr
1b, R22 ∪ R2g) every vertex in Rr

1b has at least one green edge
incident with it, and so K(Rr

1b ∪R12 ∪R1g ∪C, R22 ∪R2g ∪D) has a green spanning tree.
Thus, the vertices of K(A, B) can be covered by two vertex-disjoint green trees.

Subcase 6.4. C = Cb ∪ C2 ∪ Cg and D = Db ∪ D2 ∪ Dg.

By the same arguments as in Case 6.3, we have partitions C = C b ∪ Cg and D =
Db ∪ Dg. Clearly, Cb ⊆ Cb, Cg ⊆ Cg, Db ⊆ Db and Dg ⊆ Dg. If K(Cb, Db) has at least
one blue edge, or K(Cg, Dg) has at least one green edge, then the vertices of K(A, B)
can be covered by at most three vertex-disjoint monochromatic trees. So, we assume that
K(Cb, Db) does not have blue edges, and K(Cg, Dg) does not have green edges. Then we
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have the following three subcases.

Subcase 6.4.1. K(Cb, Db) or K(Cg, Dg) has a monochromatic spanning tree.

Since each of K(C2 ∪ Cg, R2), K(D2 ∪ Dg, R1), K(Cb ∪ C2, R2) and K(Db ∪ D2, R1)
has a monochromatic spanning tree, the vertices of K(A, B) can be covered by at most
three vertex-disjoint monochromatic trees.

Subcase 6.4.2. K(Cb, Db) ∈ S or K(Cg, Dg) ∈ S.

By a similar proof to the later part of Case 6.3, we can obtain that the vertices of
K(A, B) can be covered by at most three vertex-disjoint monochromatic trees.

Subcase 6.4.3. K(Cb, Db) ∈ M and K(Cg, Dg) ∈ M, see Figure 3.

blue edge
green edge

red edge

Figure 3: The graph of Subcase 6.4.3.

PSfrag replacements

R1

R2

Cb
C2

Cg

Db
D2 Dg

Cb1 Cb2 Cg1 Cg2

Db1 Db2 Dg1 Dg2

If all the edges of K(Cb, Dg) are red, then K(Cb1 ∪ Cg, Dg) has a red spanning tree.
Since K(Cb2∪C2, R2) and K(R1, Db∪D2) have blue spanning trees, the vertices of K(A, B)
can be covered by three vertex-disjoint monochromatic trees. Thus, we may assume that
K(Cb, Dg) has at least one green edge or at least one blue edge. Without loss of generality,
assume K(Cb, Dg1) has at least one blue edge. Then K(Cb∪C2∪Cg1, R2∪Dg1), K(Cg2, Dg2)
and K(R1, Db∪D2) has blue spanning trees. Thus, the vertices of K(A, B) can be covered
by three vertex-disjoint blue trees. 2

For Case 7, we have K(R1, D) ∈ S1 and K(R2, C) ∈ S1. Since K(R1, D) ∈ S1, we can
denote R1 = R1b∪R12∪R1g or D = Db∪D2∪Dg. Similarly, we have R2 = R2b∪R22∪R2g

or C = Cb ∪ C2 ∪ Cg.

Subcase 7.1. R1 = R1b ∪ R12 ∪ R1g and C = Cb ∪ C2 ∪ Cg.

Since K(R1, D) ∈ S1 and K(R2, C) ∈ S1, we have |R1| ≥ 2|D| + 2 > 2|D| and
|C| ≥ 2|R2| + 2 > 2|R2|, and so |R1| + |C| > 2|R2| + 2|D|, contradicting to |R1| + |C| =
|R2| + |D| = n. Thus, this case does not occur.

Subcase 7.2. R2 = R2b ∪ R22 ∪ R2g and D = Db ∪ D2 ∪ Dg.

The proof is similarly as Subcase 7.1.
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Subcase 7.3. C = Cb ∪ C2 ∪ Cg and D = Db ∪ D2 ∪ Dg.

Clearly, K(Cb ∪C2, R2) and K(C2 ∪Cg, R2) have monochromatic spanning trees, and

R is the maximum monochromatic tree, then we have |R1| ≥
|C|
2

. Similarly, |R2| ≥
|D|
2

.

Moreover, by K(R1, D) ∈ S1, we have |D| ≥ 2|R1|+2 > 2|R1|. So, |R2| ≥
|D|
2

> |R1| ≥
|C|
2

,
that is, |R2| + |D| > |R1| + |C|, a contradiction. Thus, this case does not occur.

Subcase 7.4. R1 = R1b ∪ R12 ∪ R1g and R2 = R2b ∪ R22 ∪ R2g.

We define R
(2)
1b = {u ∈ R1b| K(A, B) contains a green uv-path for some v ∈ R1 − R1b

or v ∈ R2 − R2b}, R
(1)
1b = R1b − R

(2)
1b ; R

(2)
1g = {u ∈ R1g| K(A, B) contains a blue uv-path

for some v ∈ R1 − R1g or v ∈ R2 − R2g}, R
(1)
1g = R1g − R

(2)
1g ; R

(1)
2b , R

(2)
2b , R

(1)
2g and R

(2)
2g are

defined similarly.
Clearly, K(R

(1)
1b , R2 − R

(1)
2b ) and K(R

(1)
2b , R1 − R

(1)
1b ) do not have green edges, K(R

(1)
1g ,

R2 − R
(1)
2g ) and K(R

(1)
2g , R1 − R

(1)
1g ) do not have blue edges. By Claim 1, K(C, D) has at

least one blue edge and one green edge, then K(A−R
(1)
1b , B −R

(1)
2b ) has a green spanning

tree, K(A − R
(1)
1g , B − R

(1)
2g ) has a blue spanning tree. If the vertices of K(R

(1)
1b , R

(1)
2b ) or

K(R
(1)
1g , R

(1)
2g ) can be covered by at most two vertex-disjoint monochromatic trees, then

the vertices of K(A, B) can be covered by at most three vertex-disjoint monochromatic

trees. In the following, we consider the case that the vertices of both K(R
(1)
1b , R

(1)
2b ) and

K(R
(1)
1g , R

(1)
2g ) can be covered by at least three vertex-disjoint monochromatic trees. We

first give several remarks.

Remark 1. K(R
(1)
1b , R

(1)
2g ) and K(R

(1)
1g , R

(1)
2b ) are red complete bipartite graphs.

Since every vertex has color degree 3, we have

Remark 2. Every vertex in K(R
(1)
1b , R

(1)
2b ) has at least one green edge incident with it,

and every vertex in K(R
(1)
1g , R

(1)
2g ) has at least one blue edge incident with it.

Since R is the maximum monochromatic component, we have

Remark 3. |R
(1)
1b | + |R

(1)
2b | ≥ |C| + |D| and |R

(1)
1g | + |R

(1)
2g | ≥ |C| + |D|.

Remark 4. ∀ i = 1, 2, j = b, g, |R
(1)
ij | ≥ 3.

Proof. Without loss of generality, suppose |R
(1)
1b | ≤ 2. If R

(1)
1b = ∅, since every vertex

has color degree 3, and K(R
(1)
2b , A) has only blue edges and red edges, we have R

(1)
2b = ∅,

which contradicts to the assumption that the vertices of K(R
(1)
1b , R

(1)
2b ) can be covered by

at least three vertex-disjoint monochromatic trees. If 1 ≤ |R
(1)
1b | ≤ 2, then the vertices of

K(R
(1)
1b , R

(1)
2b ) can be covered by one green star or at most two vertex-disjoint green trees,

a contradiction. 2

Remark 5. K(R
(1)
1b , R

(1)
2b ) has at least one red edge and one blue edge, K(R

(1)
1g , R

(1)
2g ) has

at least one red edge and one green edge.

Proof. If K(R
(1)
1b , R

(1)
2b ) does not have red edges, by Remark 2, K(R

(1)
1b , R

(1)
2b ) does not have

any vertex such that all the edges incident with it are blue, and so either K(R
(1)
1b , R

(1)
2b ) has
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a monochromatic tree, or K(R
(1)
1b , R

(1)
2b ) ∈ M, which contradicts to the assumption that

the vertices of K(R
(1)
1b , R

(1)
2b ) can be covered by at least three vertex-disjoint monochromatic

trees. For other cases, we can prove them similarly. 2

Remark 6. In K(R
(1)
1b , R

(1)
2b ), every blue edge has at least one red edge and one blue edge

independent of it, every red edge has at least one red edge and one blue edge independent
of it. K(R

(1)
1g , R

(1)
2g ) have a similar property.

Proof. Let e = uv be a blue edge of K(R
(1)
1b , R

(1)
2b ). If K(R

(1)
1b , R

(1)
2b ) does not have red edges

independent of e, then K(R
(1)
1b − u, R

(1)
2b − v) is a 2-edge-colored complete bipartite graph

colored with blue and green. If K(R
(1)
1b − u, R

(1)
2b − v) has a monochromatic spanning

tree, then the vertices of K(R
(1)
1b , R

(1)
2b ) can be covered by at most two vertex-disjoint

monochromatic trees, a contradiction. If K(R
(1)
1b − u, R

(1)
2b − v) ∈ M, then the vertices of

K(R
(1)
1b −u, R

(1)
2b −v) can be covered by two vertex-disjoint green trees. Since K(R

(1)
1b −u, v)

and K(R
(1)
2b − v, u) both have green edges, the vertices of K(R

(1)
1b , R

(1)
2b ) can be covered

by at most two vertex-disjoint green trees, a contradiction. If K(R
(1)
1b − u, R

(1)
2b − v) ∈ S,

noticing that K(R
(1)
1b − u, v) and K(R

(1)
2b − v, u) have green edges, then the vertices of

K(R
(1)
1b , R

(1)
2b ) can be covered by a green tree and a green star, a contradiction. Thus,

K(R
(1)
1b , R

(1)
2b ) has red edges independent of e. The others can be proved similarly. 2

Since |C| ≥ 3 and |D| ≥ 3, we have K(R1, D) ∈ S
′

1 and K(R2, C) ∈ S
′

1. Then
R12 = ∪D=Di∪Di

[b(Di) ∪ b(Di)] and R22 = ∪C=Ci∪Ci
[b(Ci) ∪ b(Ci)], here the union is over

all nonempty partitions of D and C, respectively. For any nonempty partitions of C and
D: C = Ci1∪Ci2, D = Di1∪Di2, if |b(Ci1)| ≥ |b(Ci2)|, then we denote Ci1 = Ci, Ci2 = Ci;
if |b(Di1)| ≥ |b(Di2)|, then we denote Di1 = Di, Di2 = Di. So, in the following, if we write
C = Ci ∪ Ci, D = Di ∪ Di, then |b(Ci)| ≥ |b(Ci)| and |b(Di)| ≥ |b(Di)|.

Subcase 7.4.1. There exist partitions C = Ck ∪ Ck and D = Dk ∪ Dk such that
|b(Ck)| ≥ |b(Dk)| and |b(Dk)| ≥ |b(Ck)|.

In this case, b(Ck) and b(Dk) correspond to the partite set A in Lemma 6. Then by
Lemma 6, K(b(Dk), b(Ck)) and K(b(Ck), b(Dk)) have tree partitions satisfying Case A or
Case B.

Subcase 7.4.1.1. Both K(b(Dk), b(Ck)) and K(b(Ck), b(Dk)) have tree partitions satis-
fying Case A.

By Remark 5, K(R
(1)
1b , R

(1)
2b ) has at least one blue edge, K(R

(1)
1g , R

(1)
2g ) has at least one

green edge. Then, K(R1b∪Ck, R2b∪Dk) has a blue spanning tree, and K(R1g∪Ck, R2g∪Dk)
has a green spanning tree. By the definition of b(Dk) and b(Ck), the vertices in b(Dk) and
b(Ck) can be connected into the blue tree of K(R1b ∪Ck, R2b ∪Dk), and they also can be
connected into the green tree of K(R1g ∪ Ck, R2g ∪ Dk). Thus, the vertices of b(Ck) and
b(Dk) can be connected into either the blue tree of K(R1b ∪ Ck, R2b ∪ Dk) or the green
tree of K(R1g ∪ Ck, R2g ∪ Dk) by the vertices in b(Dk) and b(Ck). Moreover, the vertices
of R12 − b(Dk)− b(Dk) have either blue edges to Dk, or green edges to Dk, the vertices of
R22 − b(Ck)− b(Ck) have either blue edges to Ck, or green edges to Ck. Thus, the vertices
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of K(A, B) can be covered by a blue tree and a green tree.

Subcase 7.4.1.2. One of K(b(Dk), b(Ck)) and K(b(Ck), b(Dk)) has a tree partition sat-
isfying Case A, the other has a tree partition satisfying Case B.

By a similar argument to that of Subcase 7.4.1.1, the vertices of K(A, B) can be
covered by a blue tree, a green tree and a red tree.

Subcase 7.4.1.3. Both K(b(Dk), b(Ck)) and K(b(Ck), b(Dk)) have tree partitions satis-
fying Case B.

In b(Ck), if the vertices in the red tree satisfy that each of them has blue edges
connecting to R1b, or green edges connecting to R1g, then all the vertices in b(Ck) can
be connected into the blue tree of K(R1b ∪ Ck, R2b ∪ Dk) or the green tree of K(R1g ∪
Ck, R2g ∪Dk) by the vertices in b(Dk), R1b and R1g. Thus, the vertices of K(A, B) can be
covered by a blue tree, a green tree and at most one red tree. For b(Dk), we have a similar
property. We may assume therefore that there exist vertices x ∈ b(Ck) and y ∈ b(Dk) such
that x and y are the vertices in the red trees, and K(x, R1b ∪R1g), K(y, R2b∪R2g) are red

stars. By Remark 5, we can suppose that uv is a red edge in K(R
(1)
1b , R

(1)
2b ), then the red

edges ux, vy and uv can connect the two red trees of K(b(Dk), b(Ck)) and K(b(Ck), b(Dk))

into one red tree. By Remark 6, K(R
(1)
1b − u, R

(1)
2b − v) has at least one blue edge. So,

K((R1b − u) ∪ Ck, (R2b − v) ∪ Dk) still has a blue spanning tree. Thus, the vertices of
K(A, B) can be covered by a blue tree, a green tree and a red tree.

Subcase 7.4.2. For any partitions C = Ci ∪ Ci and D = Dj ∪ Dj, either |b(Ci)| ≥
|b(Ci)| > |b(Dj)| ≥ |b(Dj)|, or |b(Dj)| ≥ |b(Dj)| > |b(Ci)| ≥ |b(Ci)|.

Without loss of generality, suppose C = Ck ∪ Ck, D = Dk ∪ Dk such that |b(Dk)| ≥
|b(Dk)| > |b(Ck)| ≥ |b(Ck)|. Define Xb(Ck) = {x ∈ R22| xu is a blue edge for some u ∈ Ck,
xv is a green edge for some v ∈ Ck}, Xb(Ck) = {x ∈ R22| xu is a green edge for some
u ∈ Ck, xv is a blue edge for some v ∈ Ck}.

Clearly, b(Ck) ⊆ Xb(Ck), b(Ck) ⊆ Xb(Ck) and Xb(Ck) ∪ Xb(Ck) = R22. Then at least
one of |Xb(Ck)| ≥

1
2
|R22| and |Xb(Ck)| ≥

1
2
|R22| holds.

Subcase 7.4.2.1. |Xb(Ck)| ≥
1
2
|R22|.

In Subcase 7.4.1, we mainly use the property of b(Ck) that every vertex in b(Ck)
has blue edges to Ck and has green edges to Ck. Xb(Ck) also has the property. So,
we consider K(b(Dk), b(Ck)) and K(b(Dk), Xb(Ck)) by the same argument as in Sub-
case 7.4.1. If |Xb(Ck)| ≥ |b(Dk)|, then the vertices of K(A, B) can be covered by three
vertex-disjoint monochromatic trees just as Subcase 7.4.1. Hence, we consider the case
|Xb(Ck)| < |b(Dk)|. In this case, b(Ck) and b(Dk) correspond to the partite set A in
Lemma 6. Then by Lemma 6, K(b(Dk), b(Ck)) has a tree partition satisfying Case A or
Case B, and K(b(Dk), Xb(Ck)) has a tree partition satisfying Case A, Case B or Case
C. If K(b(Dk), Xb(Ck)) has a tree partition satisfying Case A or Case B, then the proof
is similar to that of Subcase 7.4.1. If K(b(Dk), Xb(Ck)) always has a tree partition sat-
isfying Case C, then denote the set of isolated vertices in Case C as I(Dk). We choose
a tree partition of K(b(Dk), Xb(Ck)) such that I(Dk) is as small as possible. Clearly,
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|b(Dk) − I(Dk)| ≥ |Xb(Ck)|. If every vertex in I(Dk) has blue edges to R2b or has green
edges to R2g, then similar to Subcase 7.4.1, the vertices of K(A, B) can be covered by at
most three vertex-disjoint monochromatic trees.

In the following, we assume that I(Dk) has at least one vertex such that all the edges
incident with it in K(I(Dk), R2b ∪ R2g) are red. Without loss of generality, suppose

|R
(1)
2b | ≥ |R

(1)
2g |, then we consider K(I(Dk), R

(1)
2b ). Clearly, all the edges of K(I(Dk), R

(1)
2b )

are blue or red.

Claim 3. If |I(Dk)| ≤ |R
(1)
2b |, then the vertices of K(A, B) can be covered by at most

three vertex-disjoint monochromatic trees.

Proof. In K(I(Dk), R
(1)
2b ), since |I(Dk)| ≤ |R

(1)
2b |, it is easy to see that we have the

fact that some vertices in I(Dk) are in blue trees and the others are in a red star. If
K(b(Dk), b(Ck)) has a tree partition satisfying Case A, or Case B such that in b(Ck)
all the vertices of the red tree have green edges to R1g or blue edges to R1b, then the
vertices of K(A, B) can be covered by a blue tree, a green tree and a red star. Otherwise,
K(b(Dk), b(Ck)) always has a tree partition satisfying Case B, and in b(Ck) there exists
at least one vertex of the red tree such that all the edges incident with it in K(b(Ck), R1g)

are red. Then, similar to Subcase 7.4.1.3, we can find a red edge uv in K(R
(1)
1g , R

(1)
2b ), and

it can connect these two red trees into one red tree, since K(R
(1)
1g , R

(1)
2b ) is a red complete

bipartite graph. Thus, the vertices of K(A, B) can be covered by a blue tree, a green tree
and a red tree. 2

If |I(Dk)| > |R
(1)
2b |, then |b(Dk)| ≥ |b(Dk)| ≥ |I(Dk)| + |Xb(Ck)| > |R

(1)
2b | +

1
2
|R22|, and

so |b(Dk)| + |b(Dk)| > |R
(1)
2b | + |R

(1)
2g | + |R22|. Thus, in Subcase 7.4.2.1, except |b(Dk)| +

|b(Dk)| > |R
(1)
2b | + |R

(1)
2g | + |R22|, the vertices of K(A, B) can be covered by at most three

vertex-disjoint monochromatic trees.

Subcase 7.4.2.2. |Xb(Ck)| ≥
1
2
|R22|.

In this case, we consider K(b(Dk), b(Ck)) and K(b(Dk), Xb(Ck)). Since K(R
(1)
1b , R

(1)
2b )

has at least one blue edge, K(R
(1)
1g , R

(1)
2g ) has at least one green edge. We know that

K(R1b ∪ Ck, R2b ∪ Dk) has a blue spanning tree, and K(R1g ∪ Ck, R2g ∪ Dk) has a green
spanning tree. We hope that the vertices of b(Dk) and b(Ck) can be connected to the blue
tree of K(R1b ∪ Ck, R2b ∪ Dk) and the green tree of K(R1g ∪ Ck, R2g ∪ Dk), or they can
constitute a red tree. In this case, b(Ck) and b(Dk) correspond to the partite set A in
Lemma 6. Similar to Subcase 7.4.2.1, we can get the fact that except |b(Dk)|+ |b(Dk)| >

|R
(1)
2b | + |R

(1)
2g | + |R22|, the vertices of K(A, B) can be covered by at most three vertex-

disjoint monochromatic trees.
By Subcase 7.4.2.1 and Subcase 7.4.2.2, we have that for partitions C = Ck ∪ Ck and

D = Dk ∪ Dk such that |b(Dk)| ≥ |b(Dk)| > |b(Ck)| ≥ |b(Ck)|, except |b(Dk)| + |b(Dk)| >

|R
(1)
2b |+|R

(1)
2g |+|R22|, the vertices of K(A, B) can be covered by at most three vertex-disjoint

monochromatic trees. If there exists a partition D = Dl∪Dl such that |b(Ck)| ≥ |b(Ck)| >
|b(Dl)| ≥ |b(Dl)|, then by a similar argument to the above, we can obtain that except

|b(Ck)|+ |b(Ck)| > |R
(1)
1b |+ |R

(1)
1g |+ |R12|, the vertices of K(A, B) can be covered by at most
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three vertex-disjoint monochromatic trees. But |b(Ck)| + |b(Ck)| > |R
(1)
1b | + |R

(1)
1g | + |R12|

contradicts to |b(Ck)| + |b(Ck)| < |b(Dk)| + |b(Dk)| < |R12|. Thus, in the following we
consider the case that for any partition D = Di ∪ Di, we always have |b(Di)| ≥ |b(Di)| >

|b(Ck)| ≥ |b(Ck)|, and |b(Di)| + |b(Di)| > |R
(1)
2b | + |R

(1)
2g | + |R22|, otherwise, the vertices

of K(A, B) can be covered by at most three vertex-disjoint monochromatic trees. Since
|D| ≥ 3, we have |R12| =

∑
D=Di∪Di

|b(Di) ∪ b(Di)| =
∑

D=Di∪Di
[|b(Di)| + |b(Di)|]

> 2(|R
(1)
2b | + |R

(1)
2g | + |R22|) + |b(Dk)| + |b(Dk)|.

By Remark 3, |R
(1)
1b | + |R

(1)
2b | ≥ |C| + |D|, that is, |R

(1)
1b | − |D| ≥ |C| − |R

(1)
2b |.

|R2|+ |D| = |R1|+ |C| > |C|+ |R1b|+ |R1g|+2(|R
(1)
2b |+ |R

(1)
2g |+ |R22|)+ |b(Dk)|+ |b(Dk)|.

|R
(2)
2b | + |R

(2)
2g | > −|D| − |R22| − |R

(1)
2b | − |R

(1)
2g | + |C| + |R1b| + |R1g|

+2(|R
(1)
2b | + |R

(1)
2g | + |R22|) + |b(Dk)| + |b(Dk)|

≥ 2|C| − 2|R
(1)
2b | − |R22| − |R

(1)
2g | + |R

(2)
1b | + |R1g|

+2(|R
(1)
2b | + |R

(1)
2g | + |R22|) + |b(Dk)| + |b(Dk)|

> |b(Dk)| + |b(Dk)|.

Since |b(Dk)| ≥ |b(Dk)|, at least one of |R
(2)
2b | > |b(Dk)| and |R

(2)
2g | > |b(Dk)| holds.

Without loss of generality, we assume |R
(2)
2b | > |b(Dk)|.

In the following, we consider K(b(Dk), R
(2)
2b ) and K(b(Dk), b(Ck)). b(Ck) and b(Dk)

correspond to the partite set A in Lemma 6. Clearly, K(b(Dk), b(Ck)) has a tree partition

satisfying Case A or Case B. Let X = { v ∈ b(Dk)| K(v, R
(2)
2b ) has blue edge }, and Y be

the minimum subset of R
(2)
2b satisfying that for any v ∈ X, there exists a vertex u ∈ Y

such that uv is a blue edge. Clearly, |Y | ≤ |X|. Denote P = b(Dk)−X and Q = R
(2)
2b −Y .

Then all the edges of K(P, Q) are red or green, and |P | < |Q|. We consider the following
five small cases.

(1) K(P, Q) has a green spanning tree.

If K(P, R
(1)
2g ) has at least one green edge, then all the vertices in P and Q can be

connected to the green tree of K(R1g ∪Ck, R2g ∪Dk). So, the vertices of K(A, B) can be
covered by at most three vertex-disjoint monochromatic trees. We may assume therefore
that K(P, R

(1)
2g ) is a red complete bipartite graph. Let uv be a red edge in K(R

(1)
1g , R

(1)
2g ),

then K(P, v) is a red star. Similarly, we can obtain that the vertices of K(A, B) can be
covered by three vertex-disjoint monochromatic trees.

(2) K(P, Q) has a red spanning tree.

If there exists a vertex x ∈ P such that K(x, R
(1)
2g ) is a red star, let uv be a red edge in

K(R
(1)
1g , R

(1)
2g ), then K(P, Q∪v) has a red spanning tree. Similarly, the vertices of K(A, B)

can be covered by three vertex-disjoint monochromatic trees. Otherwise, every vertex in
P has green edge to R

(1)
2g , then it is easy to prove that the vertices of K(A, B) can be

covered by at most three vertex-disjoint monochromatic trees.

(3) K(P, Q) ∈ M.

Since K(P, Q) ∈ M, we can give the partitions P = P1 ∪ P2 and Q = Q1 ∪ Q2 such
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that K(P1, Q1) and K(P2, Q2) are green complete bipartite graphs, and K(P1, Q2) and
K(P2, Q1) are red complete bipartite graphs.

If both K(P1, R
(1)
2g ) and K(P2, R

(1)
2g ) have green edges, then it is easy to prove that the

vertices of K(A, B) can be covered by at most three vertex-disjoint monochromatic trees.

If both K(P1, R
(1)
2g ) and K(P2, R

(1)
2g ) do not have green edges, then K(P1 ∪ P2, R

(1)
2g ) is a

red complete bipartite graph. Similarly, the vertices of K(A, B) can be covered by three
vertex-disjoint monochromatic trees. Without loss of generality, we may assume therefore
that K(P1, R

(1)
2g ) has a green edge, say wu, and K(P2, R

(1)
2g ) is a red complete bipartite

graph, then K(P2, R
(1)
2g − u) is also a red complete bipartite graph. Clearly, the vertices

of K(A, B) can be covered by three vertex-disjoint monochromatic trees.

(4) K(P, Q) ∈ S1.

Since |P | < |Q|, K(P, Q) has a green tree containing all the vertices in P . Then the
proof is similar to the case that K(P, Q) has a green spanning tree.

(5) K(P, Q) ∈ S2.

Since K(P, Q) ∈ S2, we can give partitions P = Pr ∪ Pg and Q = Qr ∪ Qg such that
K(Pr, Qr) has a red spanning tree, K(Pg, Qg) has a green spanning tree. We consider
four small subcases.

• At least one vertex in Pg has green edge to R
(1)
2g , and every vertex in Pr has green

edge to R
(1)
2g .

• At least one vertex in Pg that is incident with a green edge to R
(1)
2g , and at least one

vertex in Pr such that all the edges incident with it are red in K(Pr, R
(1)
2g ).

• K(Pg, R
(1)
2g ) is a red complete bipartite graph, and K(Pr, R

(1)
2g ) has at least one red

edge.
• K(Pg, R

(1)
2g ) is a red complete bipartite graph, and K(Pr, R

(1)
2g ) is a green complete

bipartite graph.

For each of the above small subcases, we can easily obtain that the vertices of K(A, B)
can be covered by two or three vertex-disjoint monochromatic trees. 2

For Case 8, without loss of generality, suppose K(R1, D) ∈ S1, K(R2, C) ∈ S2. Since
K(R1, D) ∈ S1, we can denote R1 = R1b ∪ R12 ∪ R1g or D = Db ∪ D2 ∪ Dg. Similarly, we
can denote R2 = R2b ∪ R22 ∪ R2g or C = Cb ∪ C2 ∪ Cg. The case R1 = R1b ∪ R12 ∪ R1g

and C = Cb ∪ C2 ∪ Cg, and the case R2 = R2b ∪ R22 ∪ R2g and D = Db ∪ D2 ∪ Dg

are similar to Subcase 6.1 and Subcase 6.2, respectively. The case C = Cb ∪ C2 ∪ Cg

and D = Db ∪ D2 ∪ Dg is similar to Subcase 7.3. In the following, we consider the case
R1 = R1b ∪ R12 ∪ R1g and R2 = R2b ∪ R22 ∪ R2g. The proof is similar to that of Subcase
7.4, by considering two subcases:

Subcase 8.1. There exist partitions C = Ck ∪ Ck and D = Dk ∪ Dk such that |b(Ck)| ≥
|b(Dk)| and |b(Dk)| ≥ |b(Ck)|.

This case can be proved similarly to Subcase 7.4.1.
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Subcase 8.2. For any partitions C = Ci∪Ci and D = Dj ∪Dj, either |b(Ci)| ≥ |b(Ci)| >
|b(Dj)| ≥ |b(Dj)|, or |b(Dj)| ≥ |b(Dj)| > |b(Ci)| ≥ |b(Ci)|.

Since K(R2, C) ∈ S2, either min{|R2b|, |R2g|} = 1, or there exists a partition C =
Ci ∪Ci such that b(Ci) = ∅. If min{|R2b|, |R2g|} = 1, then the result is obvious. We may
assume therefore that R22 = ∪C=Ci∪Ci

[b(Ci) ∪ b(Ci)] such that for some Ci, b(Ci) = ∅.

Without loss of generality, suppose b(Cl) = ∅, then we consider partitions C = Cl ∪ Cl

and D = Dj ∪ Dj for some j, hence |b(Dj)| ≥ |b(Dj)| > |b(Cl)| ≥ |b(Cl)|. Thus, we can
prove it similarly to Subcase 7.4.2.

Up to now, we have exhausted all cases, and proved that for any 3-edge-colored com-
plete bipartite graph K(n, n) satisfying the condition of Theorem 7, the vertices of it can
be covered by at most three vertex-disjoint monochromatic trees. Thus t3(k(n, n)) ≤ 3.2

4 Conclusion

As one can see, we only considered 3-edge-colored complete bipartite graphs with
“equal bipartition”, and the “color degree” of every vertex is 3. These restrictions are
really very helpful to concluding our proofs. Even though, the proof looks very long and
complicated. More general questions are: can we drop the equal bipartition restriction to
get the partition number? can we drop the color degree restriction to get the partition
number? or can we drop both restrictions to get the partition number? We tried for a year
but failed to complete it. Things become out of control without any of the restrictions.
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