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ABSTRACT. — We introduce a hook length expansion technique and
explain how to discover old and new hook length formulas for partitions and
plane trees. The new hook length formulas for trees obtained by our method can
be proved rather easily, whereas those for partitions are much more difficult and
some of them still remain open conjectures. We also develop a Maple package
HookExp for computing the hook length expansion. The paper can be seen as a
collection of hook length formulas for partitons and plane trees. All examples
are illustrated by HookExp and, for many easy cases, expained by well-known
combinatorial arguments.

Summary

§1. Introduction. Selected hook formulas. Conjecture
§2. Classical hook length formulas for partitions.
§3. Hook length expansion algorithm and HookExp.
§4. The exponent principle.
§5. Hook length formulas for partitions.
§6. Hook length formulas for binary trees.
§7. Hook length formulas for complete binary trees.
§8. Hook length formulas for Fibonacci trees.

1. Introduction

The hook lengths for partitions and plane trees play an important role in Enu-
merative Combinatorics. The classical hook length formulas for those two structures
read

fλ =
n!

∏

v∈λ hv
and fT =

n!
∏

v∈T hv
,

where fλ (resp. fT ) is the number of standard Young tableaux of shape λ (resp. of
increasing labeled binary trees of shape T ). See Sections 2 and 6 for notations and
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explanations. From the above formulas we can derive

(1.1)
∑

λ∈P

x|λ|
∏

v∈λ

1

h2
v

= ex

and

(1.2)
∑

T∈B

x|T |
∏

v∈T

1

hv
=

1

1 − x
.

Formulas (1.1) and (1.2) are referred to as the basic hook length formulas, or hook
formulas, for short.

The numerous extensions or generalizations which have been proposed in the
literature led us to believe that a technical tool had to be constructed that would
make it possible to discover new hook length formulas and also obtain the old ones in
a systematic manner. The purpose of this paper is to present such a tool that will be
called hook length expansion technique. In general, the new hook length formulas for
trees produced by that technique can be proved easily, whereas those for partitions are
much more difficult and some of them still remain open conjectures.

We also develop a Maple package HookExp for computing the hook length expansion,
which can be downloaded freely from the author’s web site.(∗) All the examples in the
paper are illustrated by HookExp and, for many easy cases, explained by well-known
combinatorial arguments.

Sections 2-5 are devoted to the hook length formulas for partitions and Sections 6-
8 for plane trees. Basic notions and classical hook length formulas for partitions are
recalled in Section 2. Then, we introduce the hook length expansion algorithm for
partitions. In Section 4 we discuss some techniques for discovering new hook length
formulas, namely the exponent principle. The new hook formulas for partitions λ ∈ P
(resp. for binary trees T ∈ B, for complete binary trees T ∈ C, for Fibonacci trees
T ∈ F) were suggested (but not proved!) by playing with the package HookExp. They
are all collected in Section 5 (resp. Section 6, 7, 8). The formulas we should like to single
out are stated next. See Sections 5-8 for notations, comments and/or proofs.

Theorem 1.1 [=5.5]. Let t be a positive integer and hmult(λ) be the number of boxes
v such that hv(λ) is a multiple of t. Then

∑

λ∈P

x|λ|(−1)hmult(λ) =
∏

k≥1

(1 − x4tk)t(1 − xtk)2t

(1 − x2tk)3t(1 − xk)
.

Theorem 1.2 [=5.9]. We have

∑

λ∈P

x|λ|
∏

v∈λ

(

1 − 2

h2
v

)

=
∏

k≥1

(1 − xk).

(∗) Hook length formula homepage
http://math.u-strasbg.fr/~guoniu/hook
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Theorem 1.3 [=5.8]. We have

∑

λ∈P

x|λ|
∏

v∈λ,hv even

(

1 − 2

h2
v

)

=
∏

k≥1

(1 + xk).

The most general form of the above three theorems is Theorem 5.7. In fact, the
latter theorem unifies several formulas, including the Jacobi triple product identity, the

Macdonald identities for A
(a)
` , the generating functions for partitions (2.5) and for t-cores

(5.4), the Nekrasov-Okounkov identity (5.1), Theorems 5.3-5.6 and Theorems 1.2-1.3.
See [Ha08e] for the proof and applications of Theorem 5.7.

Conjecture 1.4 [=5.2]. We have

∑

λ∈P

x|λ|
∏

v∈λ

ρ(z; hv) = ex+zx2/2,

where the weight function ρ(z; n) is defined by

ρ(z; n) =

bn/2c
∑

k=0

(

n

2k

)

zk

n

b(n−1)/2c
∑

k=0

(

n

2k + 1

)

zk

.

Theorem 1.5 [=6.3]. We have

∑

T∈B

x|T |
∏

v∈T

1

hv2hv−1
= ex.

Theorem 1.6 [=6.6]. We have

∑

T∈B

x|T |
∏

v∈T

6

hv(hv + 2)
=

1

(1 − x)2
.

Theorem 1.7 [=6.7]. We have

∑

T∈B

x|T |
∏

v∈T

hv + 3

2hv
=

(1 −
√

1 − 4x

2x

)2
.

The most general form of Theorem 1.7 is Theorem 6.8. In fact, the latter theorem
unifies a lot of formulas, including the two classical hook formulas (6.4) and (6.5),
Postnikov’s formula (6.7) and the generalization due to Lascoux, Du and Liu, another
generalization of Postnikov’s formula (6.10), Theorems 6.6 and 6.7.
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Theorem 1.8 [=7.2]. We have
∑

T∈C

x|T |
∏

v∈T,hv≥2

1

hv2hv−2
= ex.

Theorem 1.9 [=8.6]. We have

∑

T∈F

x|T |
∏

v∈T,hv≥2

4(2hv − 1)(2hv − 3)

(hv + 1)(5hv − 6)
=

1 −
√

1 − 4x

2x
.

To clarify the nature of the paper we end the introduction by insisting on the
following facts.

1. We introduce the hook length expansion technique by means of an explicit
algorithm (Algorithm 3.1), together with the maple package HookExp.

2. The package HookExp is used to compute the first values of the weight functions,
which, in principle, suggest hook formulas to human mathematicians. The package itself
does not output hook formulas, it does not prove hook formulas either!

3. We list new formulas found by HookEx, but also some known formulas.
4. Most of the hook formulas for partitions are listed without any proofs. Instead,

we give the references containing the proofs, usually difficult and lengthy.
5. Most of the hook formulas for binary trees are listed with proofs, even for well-

known formulas, because most of them are proved in a unified way.
6. Sometimes special cases of a master formula are also given, because they have

simpler forms with fewer parameters and show how the master formula was found by
the author.

2. Classical hook length formulas for partitions

The basic notions needed here can be found in [Ma95, p.1; St99, p.287; La01,
p.1; Kn98, p.59; An76, p.1]. A partition λ is a sequence of positive integers λ =
(λ1, λ2, · · · , λ`) such that λ1 ≥ λ2 ≥ · · · ≥ λ` > 0. The integers (λi)i=1,2,...,` are called
the parts of λ, the number ` of parts being the length of λ denoted by `(λ). The sum
of its parts λ1 + λ2 + · · · + λ` is denoted by |λ|. Let n be an integer. A partition λ is
said to be a partition of n if |λ| = n. We write λ ` n. The set of all partitions of n is
denoted by P(n). The set of all partitions is denoted by P , so that

P =
⋃

n≥0

P(n).

Each partition can be represented by its Ferrers diagram. For example, λ = (6, 3, 3, 2)
is a partition and its Ferrers diagram is reproduced in Fig. 2.1.

Fig. 2.1. Partition Fig. 2.2. Hook length

2 1
4 3 1
5 4 2
9 8 6 3 2 1

Fig. 2.3. Hook lengths

the electronic journal of combinatorics 15 (2008), #R133 4



For each box v in the Ferrers diagram of a partition λ, or for each box v in λ,
for short, define the hook length of v, denoted by hv(λ) or hv, to be the number of
boxes u such that u = v, or u lies in the same column as v and above v, or in the
same row as v and to the right of v (see Fig. 2.2). The hook length multi-set of λ,
denoted by H(λ), is the multi-set of all hook lengths of λ. In Fig. 2.3 the hook lengths
of all boxes for the partition λ = (6, 3, 3, 2) have been written in each box. We have

H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1}. The hook length plays an important role in
Algebraic Combinatorics thanks to the famous hook formula due to Frame, Robinson
and Thrall [FRT54]

(2.1) fλ =
n!

∏

h∈H(λ) h
,

where fλ is the number of standard Young tableaux of shape λ (see [St99, p.376; Kn98,
p.59; GNW79; RW83; Ze84; GV85; NPS97; Kr99]).

Recall that the Robinson-Schensted-Knuth correspondence (see, for example,
[Kn98, p.49-59; St99, p.324]) is a bijection between the set of ordered pairs of stan-
dard Young tableaux of {1, 2, . . . , n} of the same shape and the set of permutations of
order n. It provides a combinatorial proof of the following identity.

(2.2)
∑

λ`n

f2
λ = n!

By using (2.1) identity (2.2) can be written in the following generating function form

(2.3)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h2
= ex.

The Robinson-Schensted-Knuth correspondence also proves the fact that the number of
standard Young tableaux of {1, 2, . . . , n} is equal to the number of involutions of order
n (see [Kn98b, p.47; Sch76]). In the generating function form this means that

(2.4)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1

h
= ex+x2/2.

The following identity is the well-known formula for the generating function for
partitions [An76, p.3].

(2.5)
∑

λ∈P

x|λ|
∏

h∈H(λ)

1 =
∏

k≥1

1

1 − xk
.

In the present paper formulas (2.3), (2.4) and (2.5) are also called hook formulas. We
will find other hook formulas in the next sections.
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3. Hook length expansion algorithm and HookExp

To express our main algorithm in a handy manner it is convenient to introduce the
following definition.

Definition 3.1. Let ρ : N
∗ → K be a map of the set of positive integers to some

field K. Also let f(x) ∈ K[[x]] be a formal power series in x with coefficients in K such
that f(0) = 1. If

(3.1)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(h) = f(x),

the series f(x) is called the generating function for partitions by the weight function ρ.
The left-hand side of (3.1) is called the hook length expansion of f(x). Furthermore,
when both ρ and f(x) have simple (some people say “nice”) forms, equation (3.1) is
called a hook length formula, or hook formula for short.

It is easy to see that the generating function f(x) is uniquely determined by the
weight function ρ. Conversely, the weight function ρ can be uniquely determined by
f(x) in most cases. In the other cases (called singular cases), the weight function ρ does
not exist, or is not unique. We next provide an algorithm for computing ρ when f(x) is
given.

Let PL(n) be the set of partitions λ = (λ1, λ2, . . . , λ`) of n such that `(λ) = 1 or
λ2 = 1. The partitions in PL(n) are usually called hooks. The hook length multi-set H(λ)
of a hook λ of n is simply

(3.2) H(λ) = {1, 2, · · · `(λ) − 1, 1, 2, · · · , n − `(λ), n}.

Let PZ(n) be the set of partitions λ = (λ1, λ2, . . . , λ`) of n such that ` ≥ 2 and λ2 ≥ 2.
It is easy to see that the hook length multi-set of each partition of PZ(n) does not
contain the integer n. Since P(n) = PL(n) ∪ PZ(n) we have

∑

λ`n

∏

h∈H(λ)

ρ(h) =
∑

λ∈PL(n)

∏

h∈H(λ)

ρ(h) +
∑

λ∈PZ(n)

∏

h∈H(λ)

ρ(h)

= ρ(n)
∑

λ∈PL(n)

`(λ)−1
∏

h=1

ρ(h)

n−`(λ)
∏

h=1

ρ(h) +
∑

λ∈PZ(n)

∏

h∈H(λ)

ρ(h).(3.3)

The weight function ρ can be obtained by the following algorithm.

Algorithm 3.1. Let f(x) = 1 + f1x + f2x
2 + f3x

3 + · · · be a power series in x. The
weight function ρ in the hook length expansion of f(x) can be calculated in the following
manner. First, let ρ(1) = f1. Then, let n ≥ 2 and suppose that all values ρ(k) for
1 ≤ k ≤ n − 1 are known and satisfy the following condition

(3.4) D :=
∑

λ∈PL(n)

`(λ)−1
∏

h=1

ρ(h)

n−`(λ)
∏

h=1

ρ(h) 6= 0.
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Then, by iteration, ρ(n) is given by

(3.5) ρ(n) =
fn −

∑

λ∈PZ(n)

∏

h∈H(λ) ρ(h)

D
.

We only consider the power series f(x) for which condition (3.4) holds. This is
true in most cases. If for some reason condition (3.4) fails to be true, we try to find
an extension of f(x) to avoid the singularity. More precisely, we try to find a series
F (x, t) ∈ K[[t]][[x]] such that f(x) = F (x, 0) and condition (3.4) holds for F (x, t) (see
(M.5.3) and (M.5.4) for an example).

The Maple package HookExp is developed for computing the first terms of the
generating function f(x) and the first values ρ(n) in the hook length expansion. The
underlying variable of the series is always x. The input format for f(x) is any valid
expression in Maple and the output format for f(x) is

1 + f1x + f2x
2 + f3x

3 + f4x
4 + · · · + fnxn.

The input and output formats for ρ(n) are the list

[ρ(1), ρ(2), ρ(3), . . . , ρ(n)].

The procedure hookgen(rho) computes the generating function f(x) for the given
weight function ρ, while the procedure hookexp(f, n) computes the weight function
ρ(k) for k = 1, 2, . . . , n. For example, let us verify identity (2.3) by using the HookExp

package.

> read("HookExp.mpl"):

> hooktype:="PA": # working on partitions

> hookexp(exp(x), 8);

[

1,
1

4
,
1

9
,

1

16
,

1

25
,

1

36
,

1

49
,

1

64

]

> hookgen(%);

1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 +

1

720
x6 +

1

5040
x7 +

1

40320
x8

(M.3.1)

Next, verify identities (2.4) and (2.5).
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> hookexp(exp(x+x^2/2), 8);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8

]

> hookgen(%);

1 + x + x2 +
2

3
x3 +

5

12
x4 +

13

60
x5 +

19

180
x6 +

29

630
x7 +

191

10080
x8

> hookexp(product(1/(1-x^k), k=1..9), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + x + 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + 22x8 + 30x9

(M.3.2)

4. The exponent principle

In principle, the HookExp package gives rise to “millions” of hook expansions. But
experience shows that only few of them can be duly named formulas. For example, with
the very simple function 1/(1 − x), we get the following expansion.

> hookexp(1/(1-x), 8);

[

1,
1

2
,
1

2
,

7

12
,
17

25
,
447

592
,
160933

197641
,
105940688107

124616941064

]

(M.4.1)

Apparently, no simple form can be obtained for ρ(n). Next, try to expand the generating
function for the famous Catalan numbers (see, e.g., [St99, p.220]).

> hookexp((1-sqrt(1-4*x))/(2*x), 8);

[

1, 1,
5

3
,
37

16
,
823

289
,
85028

28605
,
1055952653

323028029

]

(M.4.2)

Not lucky again.

Then, consider the generating function f(x) for the given weight function ρ(n) =
1 + 1/n.

the electronic journal of combinatorics 15 (2008), #R133 8



> hookgen([seq(1+1/n, n=1..8)]);

1 + 2x + 6x2 +
40

3
x3 + 31x4 + 62x5 +

647

5
x6 +

3664

15
x7 +

98467

210
x8

(M.4.3)

No evident formula for f(x). Those three examples tell us that it is not easy to discover
hook formulas even with the help of HookExp. In fact, the author derived Algorithm
3.1 a long time ago, but never found any new hook length formula, until he recently
discovered the following exponent principle.

The Exponent Principle. If the power series f(x) has a “nice” hook length expan-
sion, then there is a good chance that f z(x) also has a “nice” hook length expansion.

The exponent principle was first discovered for binary trees. In such a case the
exponent principle can be partially justified (see (6.3)). It is then successfully applied
for finding new hook length formulas for partitions. The exponent principle for partitions
has been verified by experimental observation. However, the author has no mathematical
argument for proving or even partially explaning it.

Let us illustrate the exponent principle with the exponential function (see identity
(2.3)).

> hookexp(exp(z*x), 8);

[

z,
z

4
,
z

9
,

z

16
,

z

25
,

z

36
,

z

49
,

z

64

]

(M.4.4)

It means that the following hook length expansion

(4.1)
∑

λ∈P

x|λ|
∏

h∈H(λ)

z

h2
= ezx

holds, but it is nothing new. We simply recover (2.3). In the next section new hook
length formulas for partitions will be derived.

5. Hook length formulas for partitions

Let us apply the exponent principle to identity (2.5).

> hookexp(product(1/(1-x^k)^z, k=1..7), 7);

[

z,
z + 3

4
,
z + 8

9
,
z + 15

16
,
z + 24

25
,
z + 35

36
,
z + 48

49

]

(M.5.1)

From the above expansion we derive the following hook length formula for the power of
Euler Product.
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Theorem 5.1 [Nekrasov-Okounkov]. For any complex number β we have

(5.1)
∑

λ∈P

∏

h∈H(λ)

(

1 − β

h2

)

x =
∏

k≥1

(1 − xk)β−1.

Theorem 5.1 was discovered by Nekrasov and Okounkov in the study of the Seiberg-
Witten Theory [NO06, arXiv:hep-th/0306238v2, formula (6.12), p.55]. In an unpublished
paper (available on arXiv [Ha08a]) the author re-discovered the Nekrasov-Okounkov
identity (5.1) and gave an elementary proof by using the Macdonald identities [Ma72].
Several applications were also derived, including the marked hook formula.

Now consider identity (2.4). The series

f(x) = ex+x2/2

is the generating function for involutions. By the exponent principle there is a good
chance that

fz(x) = ezx+zx2/2 or f1/z(zx) = ex+zx2/2

has a “nice” hook length expansion.

> hookexp(exp(x+z*x^2/2), 9);

[

1,
1 + z

4
,

3z + 1

9 + 3z
,

z2 + 6z + 1

16 + 16z
,

5z2 + 10z + 1

5z2 + 50z + 25
,

z3 + 15z2 + 15z + 1

120z + 36z2 + 36
,

7z3 + 35z2 + 21z + 1

7z3 + 147z2 + 245z + 49
,

z4 + 28z3 + 70z2 + 28z + 1

448z2 + 64z3 + 448z + 64

]

(M.5.2)

The above values of ρ suggests that the following new hook length formula, seen as an
interpolation between permutations (2.3) and involutions (2.4), should hold.

Conjecture 5.2. We have

(5.2)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) = ex+zx2/2,

where the weight function ρ(z; n) is defined by

(5.3) ρ(z; n) =

bn/2c
∑

k=0

(

n

2k

)

zk

n

b(n−1)/2c
∑

k=0

(

n

2k + 1

)

zk

.
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When z = 1, then ρ(1; n) = 1/n. Identity (5.2) is true thanks to identity (2.4).
When z = 0, then ρ(0; n) = 1/n2. Identity (5.2) is also true, since it becomes identity
(2.3). However, we cannot prove any other special cases of Conjecture 5.2, except the
above two values. For more remarks about Conjecture 5.2, see [Ha08d].

Recall that a partition λ is a t-core if the hook length multi-set of λ does not contain
the integer t. It is known that the hook length multi-set of each t-core does not contain
any multiple of t. The generating function for t-cores is given by the following formula:

(5.4)
∑

λ

x|λ| =
∏

k≥1

(1 − xtk)t

1 − xk
,

where the sum ranges over all t-cores [Kn98. p.69, p.612; St99, p.468; GKS90].

Why do not expand the right-hand side of (5.4) by using HookExp? There is an
interesting history hidden behind formula (5.4). Since t is a positive integer but not a
free parameter, we must choose a numerical value for t. Take t = 3, formula (5.4) says
that ρ must have the following form

(5.5) [1, 1, 0, 1, 1, ∗, 1, 1, ∗, 1, 1, ∗],

where ∗ can be any numerical number.

> product((1-x^(3*k))^3/(1-x^k), k=1..8):

> hookexp(%, 8);

Denominator is zero, no solution for n=8.

[1, 1, 0, 1, 1, r[6], r[7], 0]

(M.5.3)

We cannot obtain (5.5) directly by using HookExp. It is a sigular case. To avoid the
sigularity we replace the 3 in the exponent by a free parameter z (see comments after
Algorithm 3.1). Now hookexp does not report any error message. Finally we replace z
by 3 to recover the ρ shown in (5.5) (see also (M.5.12) for another variation of (M.5.3)).

> product((1-x^(3*k))^z/(1-x^k), k=1..13):

> hookexp(%, 13);

[

1, 1, 1 − z

3
, 1, 1, 1 − z

12
, 1, 1, 1 − z

27
, 1, 1, 1 − z

48
, 1

]

> subs(z=3, %);
[

1, 1, 0, 1, 1,
3

4
, 1, 1,

8

9
, 1, 1,

15

16
, 1

]

(M.5.4)

Moreover, the above expansion suggests the following hook length formula, which may
be seen as an interpolation between identity (5.4) and a specialization of (5.1):

(5.6)
∑

λ

x|λ|
∏

v∈λ

(

1 − t2

h2
v

)

=
∏

k≥1

(1 − xk)t2

1 − xk
.
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Theorem 5.3. We have the following hook length formula

(5.7)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) =
∏

k≥1

(1 − xtk)z

1 − xk

where the weight function ρ(z; n) is defined by

(5.8) ρ(z; n) =

{

1; if n 6≡ 0 mod t.
1 − tz

n2 ; if n ≡ 0 mod t.

When z = t we recover identity (5.4). When t = 1 and z = t2 we recover identity
(5.6). Theorem 5.3 is a special case of Theorem 5.7, which is proved in [Ha08e].

Now let us verify Theorem 5.3 by using hookgen for t = 2 instead of hookexp. In
addition of HookExp, we also use the Maple package qseries developed by Frank Garvan
[Ga01]. Recall that the Dedekind η-function, is defined by η(x) = x1/24

∏

m≥0(1− xm).

> with(qseries);

> r:=n-> if n mod 2=1 then 1 else 1-2*z/n^2 fi:

> [seq(r(i), i=1..10)];

[

1, 1 − z

2
, 1, 1 − z

8
, 1, 1 − z

18
, 1, 1 − z

32
, 1, 1 − z

50
, 1

]

> hookgen(%): etamake(%, x, 10): simplify(%);

x1/24−z/12 η(2τ)z

η(τ)

(M.5.5)

As expected we obtain the right-hand side of (5.7) for t = 2. Next we hope to obtain
new hook formula by modifying slightly the above weight function. Try to change the 1
in odd position by −1.

> r:=n-> if n mod 2=1 then -1 else 1-2*z/n^2 fi:

> [seq(r(i), i=1..10)];

[

−1, 1 − z

2
, −1, 1 − z

8
, −1, 1 − z

18
, −1, 1 − z

32
, −1, 1 − z

50
, −1

]

> hookgen(%): etamake(%, x, 10): simplify(%);

x1/24−z/12 η(8τ)2−z η(4τ)−5+3z η(2τ)1−z η(τ)

(M.5.6)

The above expansion suggests the following hook length formula for partitions.
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Theorem 5.4. We have the following hook length formula

(5.9)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) =
∏

k≥1

(1 − xk)(1 − x4k)3z−5

(1 − x8k)z−2(1 − x2k)z−1
.

where the weight function ρ(z; n) is defined by

(5.10) ρ(z; n) =

{−1; if n 6≡ 0 mod 2.
1 − 2z

n2 ; if n ≡ 0 mod 2.

Inspired by Theorem 5.4, we calculate the generating function for partitions by the
following periodical weight function ρ.

> r:=n-> if n mod 3=0 then -1 else 1 fi:

> [seq(r(i), i=1..17)];

[1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, 1, 1]

> hookgen(%): etamake(%, x, 17): simplify(%);

x1/24η(12τ)3η(3τ)6

η(6τ)9η(τ)

(M.5.7)

The above hook length expansion suggests the following formula.

Theorem 5.5 [=1.1]. Let t be a positive integer and hmult(λ) be the number of
boxes v such that hv(λ) is a multiple of t. Then

(5.11)
∑

λ∈P

x|λ|(−1)hmult(λ) =
∏

k≥1

(1 − x4tk)t(1 − xtk)2t

(1 − x2tk)3t(1 − xk)
.

In fact, Theorem 5.5 can be generalized by replacing −1 by z.

> f := k -> (1-x^(3*k))^3/(1-(z*x^3)^k)^3/(1-x^k):

> hookexp(product(f(k),k=1..15), 15);

[1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z, 1, 1, z]

(M.5.8)

Theorem 5.6. Let t be a positive integer. Then

(5.12)
∑

λ∈P

x|λ|zhmult(λ) =
∏

k≥1

(1 − xtk)t

(1 − (zxt)k)t(1 − xk)
.
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We can unify (M.5.4) and (M.5.8) in the following manner.

> N:=14: t:=3:

> r:=n-> if n mod t=0 then y*(1-t*z/n^2) else 1 fi:

> fk := k-> ((1-x^(t*k))^t)/((1-(y*x^t)^k)^(t-z))/(1-x^k):

> [seq(r(i), i=1..N)];

[

1, 1, y − yz

3
, 1, 1, y − yz

12
, 1, 1, y − yz

27
, 1, 1, y − yz

48
, 1, 1

]

> hookgen(%) - product(fk(k), k=1..N):

> series(%,x,N+1): simplify(%);

O(x15)

(M.5.9)

The above expansion suggests the following hook length formula.

Theorem 5.7. We have

(5.13)
∑

λ∈P

x|λ|
∏

h∈H(λ)

ρ(z; h) =
∏

k≥1

(1 − xtk)t

(1 − (yxt)k)t−z(1 − xk)
,

where the weight function ρ(z; n) is defined by

(5.14) ρ(z; n) =

{

1; if n 6≡ 0 mod t.
y − tyz

n2 ; if n ≡ 0 mod t.

The proof of Theorem 5.7, as well as some applications can be found in [Ha08e].
Let us single out the very simple case when t = 2, y = z = 1.

> hookexp(product(1+x^k, k=1..14),14);

[

1,
1

2
, 1,

7

8
, 1,

17

18
, 1,

31

32
, 1,

49

50
, 1,

71

72
, 1,

97

98

]

(M.5.10)

Theorem 5.8 [=1.3]. We have the following hook length formula

(5.15)
∑

λ∈P

x|λ|
∏

h∈H(λ),h even

(

1 − 2

h2

)

=
∏

k≥1

(1 + xk).

The above theorem is to be compared with the following specialization of Theorem
5.7 when z = 2, y = t = 1.
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Theorem 5.9 [=1.2]. We have the following hook length formula

(5.16)
∑

λ∈P

x|λ|
∏

h∈H(λ)

(

1 − 2

h2

)

=
∏

k≥1

(1 − xk).

There are also other hook formulas that are not specializations of Theorem 5.7.
Consider the weight function ρ that counts the corners (their hook lengths are 1) of
partitions.

> [z,seq(1, i=1..7)];

[z, 1, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + (z)x + (2z)x2 + (2z + z2)x3 + (3z + 2z2)x4 + (2z + 5z2)x5

+ (4z + 6z2 + z3)x6 + (2z + 11z2 + 2z3)x7 + (4z + 13z2 + 5z3)x8

(M.5.11)

The above generating function corresponds to the sequence A116608 in the on-line
Encyclopedia of Integer Sequences [Slo] and is equal to the right-hand side of (5.17)
below.

Theorem 5.10. We have

(5.17)
∑

λ∈P

x|λ|
∏

h∈H(λ),h=1

z =
∏

k≥1

1 + (z − 1)xk

1 − xk
.

On the other hand, take (M.5.3) and change the “−” in the numerator by “+”, we
get

> product((1+x^(3*k))^3/(1-x^k), k=1..8):

> hookexp(%, 8);

[1, 1, 2, 1, 1, 1, 1, 1]

(M.5.12)

The above expansion suggests the following formula.

Theorem 5.11. We have

(5.18)
∑

λ∈P

x|λ|
∏

h∈H(λ),h=t

2 =
∏

k≥1

(1 + xtk)t

1 − xk
.

In [Ha08e] we proved the following unified form of Theorems 5.10 and 5.11 by
using the properties of a classical bijection which maps each partition to its t-core and
t-quotient [Ma95, p.12; St99, p.468; JK81, p.75; GSK90].

Theorem 5.12. For any complex number z we have

(5.19)
∑

λ∈P

x|λ|
∏

h∈H(λ),h=t

z =
∏

k≥1

(1 + (z − 1)xtk)t

1 − xk
.
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6. Hook length formulas for binary trees

The basic notions for binary trees can be found in [St97,p.295; Kn98a, p.308-
313; Vi81]. A binary tree T with n = |T | vertices is defined recursively as follows.
Either T is empty, or else one specially designated vertex v is called the root of T ; the
remaining vertices (excluding the root) are then displayed into an ordered pair (T ′, T ′′)
of binary trees (possibly empty), called subtrees of the root v. The hook length of each
vertex u, denoted by hu(T ) or hu, is the number of descendants of u (including u).
Each vertex is called leaf if its two subtrees are both empty. The hook length multi-set

H(T ) = {hu | u ∈ T} of T is defined to be the multi-set of hook lengths of all vertices u
of T . Finally, let B (resp. B(n)) denote the set of all binary trees (resp. all binary trees
with n vertices), so that

B =
⋃

n≥0

B(n).

For example, there are five binary trees with n = 3 vertices.

�
�

�
�

•
1

•
2

•
3

T1

@
@

�
�

• 1
•

2
•

3

T2

@
@

�
�

•
1

• 2
• 3

T3

@
@

@
@• 1

• 2
• 3

T4

�
�@

@•
1

• 1
•

3

T5

We have H(T1) = H(T2) = H(T3) = H(T4) = {1, 2, 3} and H(T5) = {1, 1, 3}.
As done for the partitions in Definition 3.1 we define the hook length expansion for

binary trees by

(6.1)
∑

T∈B

x|T |
∏

h∈H(T )

ρ(h) = f(x),

where f(x) ∈ K[[x]] is a power series in x with coefficients in K such that f(0) = 1. See
Section 3 for other related definitions and comments about hook length expansion. For
computing the weight function ρ we need find an analogue of Algorithm 3.1 for binary
trees. No surprise, it is much easier to find a formula for computing ρ, since the binary
tree structure is simple, compared with the partition structure.

Let f(x) = 1+f1x+f2x
2 +f3x

3 + · · · be the generating function for binary trees by
the weight function ρ. With each T ∈ B(n) (n ≥ 1) we can associate a triplet (T ′, T ′′, v),
where T ′ ∈ B(k) (0 ≤ k ≤ n − 1), T ′′ ∈ B(n − 1 − k) and the root v of T whose hook
length hv = n. Hence (6.1) is equivalent to

(6.2) ρ(n)
n−1
∑

k=0

fkfn−1−k = fn (n ≥ 1).
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Formula (6.2) can be used to calculate f(x) for a given ρ, or to calculate ρ for a given
f(x). It also has the equivalent form

(6.3) ρ(n) =
[xn]f(x)

[xn−1]f2(x)
,

where [xn]f(x) means the coefficient of xn in the power series f(x). From (6.3) we may
say that finding a hook length formula is equivalent to finding a formal power series f(x)
such that [xn]f(x)/[xn−1]f2(x) has a “nice” form in n.

Next we use the maple package HookExp to find hook formulas for binary trees.
The syntax of the two procedures hookexp and hookgen are the same as for partitions.
The rest of this section contains some sessions, and each session contains three parts:
(i) experiment with HookExp; (ii) hook formula suggested by the experiment; (iii) proof
and/or comments of the hook formula. All proofs of the hook formulas presented in this
section are always based on relation (6.3).

> hooktype:="BT": # working on binary trees

> hookexp(1/(1-x), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

(M.6.1)

Theorem 6.1. We have

(6.4)
∑

T∈B

x|T |
∏

h∈H(T )

1

h
=

1

1 − x
.

Proof. From (6.3)

ρ(n) =
[xn]1/(1 − x)

[xn−1]1/(1 − x)2
= 1/n.

Remark. It is well-known [Kn98b,p.67; St75] that the number of ways to label
the vertices of T with {1, 2, . . . , n}, such that the label of each vertex is less than
that of its descendants (called increasing labeled binary trees, or labeled binary trees for
short), is equal to n! divided by the product of the hv’s (v ∈ T ). On the other hand,
each labeled binary tree with n vertices is in bijection with a permutation of order n
[St97,p.24;FS73;Vi81], so that

∑

T∈B(n)

n!
∏

v∈T

1

hv
= n!

This gives a combinatorial proof of Theorem 6.1.

> hookexp((1-sqrt(1-4*x))/(2*x), 9);

[1, 1, 1, 1, 1, 1, 1, 1]

(M.6.2)
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Theorem 6.2. We have

(6.5)
∑

T∈B

x|T |
∏

h∈H(T )

1 =
1 −

√
1 − 4x

2x
.

Proof. Let f(x) be the right-hand side of (6.5). Then

[xn−1]f2(x) = [xn−1](f(x) − 1)/x = [xn]f(x).

Remark. Formula (6.5) implies that the number of binary trees with n vertices is
equal to the n-th Catalan number (see, e.g., [St99, p.220])

∑

T∈B(n)

1 =
1

n + 1

(

2n

n

)

.

In the following experiments we make use of the maple package Guess, translated
by Béraud and Gauthier [BG04] from the Mathematica package Rate devoloped by
Krattenthaler [Kr01].

> with(GUESS):

> guess:=proc(r) subs({ i[0]=n, i[1]=k, i[2]=m}, Guess(r)):

simplify(%); op(%); end:

> hookexp(exp(x), 9);

[

1,
1

4
,

1

12
,

1

32
,

1

80
,

1

192
,

1

448
,

1

1024
,

1

2304

]

> guess(%);
21−n

n

(M.6.3)

Theorem 6.3. We have

(6.6)
∑

T∈B

x|T |
∏

h∈H(T )

1

h2h−1
= ex.

Proof. By (6.3)

ρ(n) =
[xn]ex

[xn−1]e2x
=

1/n!

2n−1/(n − 1)!
=

1

n2n−1
.

Remark. We do not have any combinatorial proof of Theorem 6.3. See also [Ha08b].
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> [seq(1+1/n, n=1..7)];
[

2,
3

2
,
4

3
,
5

4
,
6

5
,
7

6
,
8

7

]

> f:=hookgen(%);

1 + 2x + 6x2 +
64

3
x3 +

250

3
x4 +

1728

5
x5 +

67228

45
x6 +

2097152

315
x7

(M.6.4)

Theorem 6.4 [Postnikov]. We have

(6.7)
∑

T∈B

x|T |
∏

h∈H(T )

(

1 +
1

h

)

=
∑

n≥0

(n + 1)n−1 (2x)n

n!
.

Proof. Let G(x) be a power series such that

(6.8) G(x) = exp(xG(x)).

By the Lagrange inversion formula G(x)z has the following explicit expansion:

(6.9) G(x)z =
∑

n≥0

z(n + z)n−1 xn

n!
.

The right-hand side of (6.7) is G(2x). By (6.3)

ρ(n) =
[xn]G(2x)

[xn−1]G2(2x)
=

(n + 1)n−12n/n!

2(n + 1)n−22n−1/(n − 1)!
= 1 +

1

n
.

Further combinatorial proofs and extensions have been proposed by several authors
[Po04, CY08, DL08, GS06, MY07, Se08, Ha08c].

> [seq(1+1/n, n=1..9)];

[

2,
3

2
,
4

3
,
5

4
,
6

5
,
7

6
,
8

7
,
9

8
,
10

9

]

> f:=hookgen(%): hookexp(f^z, 7): map(factor, %);

[

2z,
2 + z

2
,
(z + 3)2

6z + 6
,

(z + 4)3

4(2z + 3)2
,

(z + 5)4

40(2 + z)3
,

(z + 6)5

6(2z + 5)4
,

(z + 7)6

224(z + 3)5
]

(M.6.5)
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Theorem 6.5. We have

(6.10)
∑

T∈B

x|T |
∏

v∈T

(z + h)h−1

h(2z + h − 1)h−2
=

∑

n≥0

z(z + n)n−1 (2x)n

n!
.

Proof. From (6.3), (6.8) and (6.9) we have

ρ(n) =
[xn]Gz(2x)

[xn−1]G2z(2x)
=

z(n + z)n−12n/n!

2z(n + 2z − 1)n−22n−1/(n − 1)!

=
(z + n)n−1

n(2z + n − 1)n−2
.

Remark. We do not have any combinatorial proof of Theorem 6.5. See also [Ha08c].

> hookexp(1/(1-x)^2, 9);

[

2,
3

4
,
2

5
,
1

4
,

6

35
,
1

8
,

2

21
,

3

40
,

2

33

]

> guess(%);
6

n(n + 2)

(M.6.6)

Theorem 6.6. We have

(6.11)
∑

T∈B

x|T |
∏

v∈T

6

n(n + 2)
=

1

(1 − x)2
.

More generally,

(6.12)
∑

T∈B

x|T |
∏

h∈H(T )

∏h−1
i=1 (z + i)

2h
∏h−2

i=1 (2z + i)
=

1

(1 − x)z

or
∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (z + i)

2h
∏h−2

i=1 (2z + i)
=

1

n!

n−1
∏

i=0

(z + i).

Proof. By (6.3)

ρ(n) =
[xn]1/(1 − x)z

[xn−1]1/(1 − x)2z
=

(

n+z−1
n

)

(

n+2z−2
n−1

) .

the electronic journal of combinatorics 15 (2008), #R133 20



> hookexp(((1-sqrt(1-4*x))/(2*x))^2, 10);

[

2,
5

4
, 1,

7

8
,
4

5
,
3

4
,
5

7
,
11

16

]

> guess(r);
n + 3

2n

(M.6.7)

Theorem 6.7. We have

(6.13)
∑

T∈B

x|T |
∏

h∈H(T )

h + 3

2h
=

(1 −
√

1 − 4x

2x

)2
.

More generally,

(6.14)
∑

T∈B

x|T |
∏

h∈H(T )

∏h−1
i=1 (z + 2h − i)

2h
∏h−2

i=1 (2z + 2h − 2 − i)
=

(1 −
√

1 − 4x

2x

)z
,

or

(6.15)
∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (z + 2h − i)

2h
∏h−2

i=1 (2z + 2h − 2 − i)
=

z

n!

n−1
∏

i=1

(2n − i + z).

Theorem 6.5, 6.6 and 6.7 can be derived from the next Theorem by taking a = 1,
a = 0 and a → ∞, respectively.

> [seq(a+1/n, n=1..7)];

[

a + 1, a +
1

2
, a +

1

3
, a +

1

4
, a +

1

5
, a +

1

6
, a +

1

7

]

> f:=hookgen(%): hookexp(f^z, 5): map(factor, %);

[

z(a + 1),
za + 3a + z + 1

4
,

(za + 5a + z + 1)(za + 4a + z + 2)

18a + 12za + 6 + 12z
,

(za + z + 2 + 6a)(za + z + 1 + 7a)(za + z + 3 + 5a)

16(2za + 5a + 1 + 2z)(za + 2a + z + 1)
,

(za + z + 4 + 6a)(za + z + 1 + 9a)(za + z + 3 + 7a)(za + z + 2 + 8a)

20(2za + 2z + 3 + 5a)(za + 3a + z + 1)(2za + 2z + 1 + 7a)

]

(M.6.8)
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Theorem 6.8. We have

∑

T∈B(n)

∏

h∈H(T )

∏h−1
i=1 (za + z + (2h − i)a + i)

2h
∏h−2

i=1 (2za + 2z + (2h − 2 − i)a + i)

=
z(a + 1)

n!

n−1
∏

i=1

(za + z + (2n − i)a + i).(6.16)

Proof. Let f(x) be a power series in x defined by

f(x) = 1 + (a − 1)xf(x)2a/(a−1)

and Un(z, a) be the right-hand side of (6.16). Let g(x) = f(x) − 1, then

g(x) = (a − 1)x(g(x) + 1)2a/(a−1).

By the Lagrange inversion formula we have

[xn](g(x) + 1)z =
1

n
[xn−1]

(

z(x + 1)z−1(a − 1)n(x + 1)2an/(a−1)
)

=
z(a − 1)n

n
[xn−1](x + 1)z−1+2an/(a−1)

=
z(a − 1)n

n(n − 1)!

n−2
∏

i=0

(

z − 1 +
2an

a − 1
− i

)

.

=
z(a − 1)

n!

n−1
∏

i=1

(

z(a − 1) + 2an − i(a − 1)
)

,

so that

[xn]f(x)z((a+1)/(a−1) =
z(a + 1)

n!

n−1
∏

i=1

(

z(a + 1) + 2an − i(a − 1)
)

= Un(z, a).

By (6.3) we have

ρ(n) =
[xn]f(x)z(a+1)/(a−1)

[xn−1]f(x)2z(a+1)/(a−1)
=

Un(z, a)

Un−1(2z, a)
.

Remark. Theorem 6.8 unifies a lot of formulas, including the two classical hook
formulas (6.4) and (6.5), Postnikov’s formula (6.7) and the generalization due to
Lascoux, Du and Liu, another generalization of Postnikov’s formula (6.10), Theorems
6.6 and 6.7.
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> hookexp(tan(x)+sec(x), 8);

[

1,
1

4
,
1

6
,
1

8
,

1

10
,

1

12
,

1

14
,

1

16

]

> hookexp(z*tan(x)+sec(x), 8);

[

z,
1

4z
,

z

3 + 3z2
,

1

8z
,

z

5 + 5z2
,

1

12z
,

z

7 + 7z2
,

1

16z

]

(M.6.9)

Theorem 6.9. We have

(6.17)
∑

T∈B

x|T |
∏

h∈H(T ),h≥2

1

2h
= tan(x) + sec(x)

and

(6.18)
∑

T∈B

x|T |
∏

h∈H(T )

ρ(h) = z tan(x) + sec(x),

where

ρ(n) =











z, if n = 1;
1

2nz
, if n is even;
z

n(1+z2) , if n ≥ 3 is odd.

Proof. Let f(x) = z tan(x) + sec(x). Then

f2(x) =
1 + z2 sin2(x)

cos2(x)
+

2z sin(x)

cos2(x)
.

It is easy to verify that ρ(1) = z. For each k ≥ 1,

[x2k] f2(x) = [x2k]
1 + z2 sin2(x)

cos2(x)
− 1 = [x2k]

1 + z2 sin2(x) − cos2(x)

cos2(x)

= (1 + z2)[x2k] tan2(x) =
1 + z2

z
[x2k] z tan2(x)

=
1 + z2

z
[x2k] (z tan(x))′ − z)

=
1 + z2

z
(2k + 1)[x2k+1] (z tan(x)).

Thus

ρ(2k + 1) =
[x2k+1]f(x)

[x2k]f2(x)
=

z

(2k + 1)(1 + z2)
.
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On the other hand,

[x2k−1]
2z sin(x)

cos2(x)
= 2z[x2k−1]sec(x)′ = 2z(2k)[x2k]sec(x).

Hence

ρ(2k) =
[x2k]f(x)

[x2k−1]f2(x)
=

1

2z(2k)
.

Remark. Formula (6.17) has a combinatorial interpretation due to Foata, Schützen-
berger and Strehl [FS73; FS74; Vi81; FH01] by using the model of André permutations.
Note the difference with Theorem 7.1.

> hookexp((1+x)/(1+x^2), 9);

[

1,
−1

2
, 1,

−1

4
, 1,

−1

6
, 1,

−1

8
, 1

]

(M.6.10)

Theorem 6.10. We have

(6.19)
∑

T∈B

x|T |
∏

h∈H(T ),h even

−1

h
=

1 + x

1 + x2
.

Proof. Let

f(x) =
1

1 + x2
+

x

1 + x2
.

Then

f(x)2 =
1

1 + x2
+

2x

(1 + x2)2
.

We have

[x2k−1]
2x

(1 + x2)2
= −[x2k−1]

( 1

1 + x2

)′
= −(2k)[x2k]

1

1 + x2
,

so that

ρ(2k) =
[x2k]f(x)

[x2k−1]f2(x)
= − 1

2k

and

ρ(2k + 1) =
[x2k+1]f(x)

[x2k]f2(x)
= 1.

> hookexp((1+x)/(1+x^3), 12);

[

1, 0, −1,
1

2
, 0,

−1

2
,

1

3
, 0,

−1

3
,

1

4
, 0,

−1

4

]

(M.6.11)
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Theorem 6.11. We have

(6.20)
∑

T∈B

x|T |
∏

h∈H(T )

ρ(h) =
1 + x

1 + x3

where

ρ(n) =







1/k; if n = 3k − 2,
0; if n = 3k − 1,
−1/k; if n = 3k.

Proof. Let

f(x) =
1

1 + x3
+

x

1 + x3
.

Then

f(x)2 =
1

(1 + x3)2
+

2x

(1 + x3)2
+

x2

(1 + x3)2
.

Thus

[x3k−1]
x2

(1 + x3)2
= −1

3
[x3k−1]

( x

1 + x3

)′
= −k[x3k]

1

1 + x3
.(6.21)

It is easy to see that ρ(3k − 1) = 0 and

ρ(3k) =
[x3k]f(x)

[x3k−1]f2(x)
= − 1

k
.

On the other hand,

[x3k−2]
x

1 + x3
= [x3k−3]

1

1 + x3
= −[x3k]

1

1 + x3

and by (6.25)

[x3k−3]
1

(1 + x3)2
= [x3k−1]

x2

(1 + x3)2
= −k[x3k]

1

1 + x3
.

Finally,

ρ(3k − 2) =
[x3k−2]f(x)

[x3k−3]f2(x)
=

1

k
.

Consider the weight function ρ that counts the leaves of binary trees.

> [1, seq(2, i=1..7)];

[1, 2, 2, 2, 2, 2, 2, 2]

> hookgen(%);

1 + x + 4x2 + 18x3 + 88x4 + 456x5 + 2464x6 + 13736x7 + 78432x8

(M.6.12)

The above generating function corresponds to the sequence A068764 in the on-line
Encyclopedia of Integer Sequences [Slo]. It is equal to the generating function for the
generalized Catalan numbers.

the electronic journal of combinatorics 15 (2008), #R133 25



Theorem 6.12. We have

(6.22)
∑

λ∈B

x|λ|
∏

h∈H(λ),h≥2

2 =
1 −

√

1 − 8x(1 − x)

4x
.

More generally,

> [z, seq(1, i=1..7)];

[z, 1, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + (z)x + (2z)x2 + (2z + z2)x3 + (3z + 2z2)x4 + (2z + 5z2)x5

+ (4z + 6z2 + z3)x6 + (2z + 11z2 + 2z3)x7 + (4z + 13z2 + 5z3)x8

(M.6.13)

The coefficient of xnzj in the above generating function is the number of binary trees
with n vertices and j leaves, which is given by the following formulas [Pr96].

Theorem 6.13 [Prodinger]. We have

(6.17)
∑

λ∈B

x|λ|
∏

h∈H(λ),h=1

z =
∑

n≥0,j≥1

An,jx
nzj ,

where

An,j =
2n+1−2j(n − 1)!

j!(j − 1)!(n + 1 − 2j)!
.

7. Hook length formulas for complete binary trees

A complete binary tree T is a binary tree such that the two subtrees of each vertex
u are, either both empty, or both non-empty, except when u is the latest vertex in the
so-called inorder [Kn98a,p.319; Vi81]. In the latter case, the right subtree (resp. left
subtree) of u is empty (resp. non-empty) when |T | is even. For example, there are five
complete binary trees with n = 7 vertices.

��
��

��

@@
@@

@@

•
3 •

5 •
7

•
1

• 1

• 1

• 1

T1

@@
��

��
@@

��@@
• 3•

5 •
7

•
1

•1 • 1

• 1

T2

@@
��

��

��
@@

@@
•

3 •5•7

•
1

•
1

•1

•1

T3

@@
@@

��
��

��@@
• 3• 5• 7

•1
•1

•1 • 1

T4

��@@
�� ��AA AA
•

3
•3•

7

•
1

•
1

•
1

•
1

T5

We have the hook length multi-sets H(T1) = H(T2) = H(T3) = H(T4) = {1, 1, 1, 1, 3, 5,
7} and H(T5) = {1, 1, 1, 1, 3, 3, 7}. There are also five complete binary trees with n = 6
vertices.
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��
��

��

@@
@@•

3 •
5 •

6

•
1

• 1

• 1

T6

@@
��

��
��@@
• 3•

5 •
6

•
1

•1 • 1

T7

@@
��

��

��@@
•

3 •4•6

•
1

•
1

•1

T8

@@
@@

��
��

��
• 2• 4• 6

•1
•1

•1

T9

��@@
�� ��AA
•

3
•2•

6

•
1

•
1

•
1

T10

We have H(T6) = H(T7) = {1, 1, 1, 3, 5, 6}, H(T8) = {1, 1, 1, 3, 4, 6}, H(T9) =
{1, 1, 1, 2, 4, 6} and H(T10) = {1, 1, 1, 2, 3, 6}.

Let C (resp. C(n)) denote the set of all complete binary trees (resp. all complete
binary trees with n vertices), so that

C =
⋃

n≥0

C(n).

Again, define the hook length expansion for complete binary trees by

(7.1)
∑

T∈C

x|T |
∏

h∈H(T )

ρ(h) = f(x),

where f(x) ∈ K[[x]] is a power series in x with coefficients in K such that f(0) = 1.
See Sections 5 and 6 for more comments about the hook length expansion. Let
f(x) = 1 + f1x + f2x

2 + f3x
3 + · · · be the generating function for complete binary

trees by the weight function ρ. With each T ∈ C(n) (n ≥ 1) we can associate a triplet
(T ′, T ′′, v), where T ′ ∈ C(k) (0 ≤ k ≤ n− 1 and k is an odd integer), T ′′ ∈ C(n− 1− k)
and the root v of T whose hook length hv = n. Hence, (7.1) is equivalent to

(7.2) ρ(n)

n−1
∑

k=0,k odd

fkfn−1−k = fn (n ≥ 1).

Formula (7.2) can be used to calculate f(x) for a given ρ, or to calculate ρ for a given
f(x). It also has the equivalent form

(7.3) ρ(n) =
[xn]f(x)

[xn−1](f(x) − f(−x))f(x)/2
,

because
∑

k≥1,k odd

fkxk = (f(x) − f(−x))/2.

Next we use the maple package HookExp to find hook formulas for complete binary
trees, whose proofs are always based on (7.3).
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> hooktype:="CBT":

# working on complete binary trees

> hookexp(tan(x)+sec(x), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

> hookexp(z*tan(x)+sec(x), 9);

[

z,
1

2z
,

1

3z
,

1

4z
,

1

5z
,

1

6z
,

1

7z
,

1

8z
,

1

9z

]

(M.7.1)

Theorem 7.1. We have

(7.4)
∑

T∈C

x|T |
∏

h∈H(T )

1

h
= tan(x) + sec(x).

(7.5)
∑

T∈C

x|T |
∏

h∈H(T ),h=1

z
∏

h∈H(T ),h≥2

1

zh
= z tan(x) + sec(x).

Proof. By (7.3)

ρ(n) =
[xn]z tan(x) + sec(x)

[xn−1]z tan(x)(z tan(x) + sec(x))

=
[xn]z tan(x) + sec(x)

z[xn−1](z tan(x) + sec(x))′ − z

=
[xn] tan(x) + sec(x)

z[xn]n(tan(x) + sec(x))
=

1

zn
.

Remark. Recall that the n-th Euler number is the coefficient of xn/n! in the
expansion of the series tan(x) + sec(x) (see, e.g. [Vi81]). It is well-known that En is
equal to the number of alternating permutations of order n, which, in turn, is equal to
the number of increasing labeled complete binary trees (See Theorem 6.1), so that

∑

T∈C(n)

n!
∏

v∈T

1

hv
= En.

This gives a combinatorial proof of Theorem 7.1. Note that Theorem 6.9 also involves
the Euler numbers, but the combinatorial argument is totally different.

> hookexp(exp(x), 9);

[

1,
1

2
,
1

6
,

1

16
,

1

40
,

1

96
,

1

224
,

1

512
,

1

1152

]

(M.7.2)
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Theorem 7.2. We have

(7.6)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

1

h2h−2
= ex.

Proof. From (7.3)

ρ(n) =
[xn]ex

[xn−1](ex − e−x)ex/2
=

2[xn]ex

[xn−1]e2x − 1

=
2/n!

2n−1/(n − 1)!
=

1

n2n−2
.

Remark. We do not have any combinatorial proof of Theorem 7.2. See also [Ha08b].
It can be viewed as a complete binary tree version of Theorem 6.3.

> hookexp(1/(1-x), 14);

[

1, 1, 1,
1

2
,
1

2
,
1

3
,
1

3
,
1

4
,
1

4
,
1

5
,
1

5
,
1

6
,
1

6
,
1

7

]

(M.7.3)

Theorem 7.3. We have

(7.7)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

ρ(h) =
1

1 − x
,

where

(7.8) ρ(n) =







1, if n = 1;
1/k, if n = 2k + 1 (k ≥ 1);
1/k, if n = 2k (k ≥ 1).

Proof. Since

x

(1 − x)(1 − x2)
=

x + x2

(1 − x2)2
= (x + x2)

∑

k≥0

(k + 1)x2k,

we have
[x2k]

x

(1 − x)(1 − x2)
= [x2k−1]

x

(1 − x)(1 − x2)
= k.

By (7.3)

ρ(n) =
[xn]1/(1 − x)

[xn−1](1/(1 − x) − 1/(1 + x))/(1 − x)/2

=
1

[xn−1]x/(1 − x)/(1 − x2)
.
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Remark. For each complete binary tree T of 2k or 2k + 1 vertices we obtain, in
a bijective manner, a binary tree T ′ of k vertices by deleting all leaves of T [Kn98a,
p.399]. This gives a combinatorial proof of Theorem 7.3 via Theorem 7.1.

> hookexp( (1-sqrt(1-4*x^2))/(2*x^2)*(1+x), 9);

[1, 1, 1, 1, 1, 1, 1]

> hookexp( (1-sqrt(1-4*x^2))/(2*x^2)*(1+z*x), 9);

[

z,
1

z
,
1

z
,
1

z
,
1

z
,
1

z
,
1

z

]

(M.7.4)

Theorem 7.4. We have

(7.9)
∑

T∈C

x|T |
∏

h∈H(T )

1 =
1 −

√
1 − 4x2

2x2
(1 + x)

and

(7.10)
∑

T∈C

x|T |
∏

h∈H(T ),h=1

z
∏

h∈H(T ),h≥2

1

z
=

1 −
√

1 − 4x2

2x2
(1 + zx)

Proof. Let f(x) be the right-hand side of (7.10). We can verify

(f(x) − f(−x))f(x)

2
× x

z
= f(x) − 1 − zx.

ρ(n) =
[xn]f(x)

[xn−1](f(x) − f(−x))f(x)/2
=

1

z
.

Remark. The bijection between binary trees and complete binary trees described
in Theorem 7.3 gives a combinatorial proof of Theorem 7.4 via Theorem 6.2.

> hookexp( (1+x)/(1+x^2), 11);

[

1,−1,−1,
−1

2
,
−1

2
,
−1

3
,
−1

3
,
−1

4
,
−1

4
,
−1

5
,
−1

5

]

(M.7.5)

Theorem 7.5. We have

(7.11)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

ρ(h) =
1 + x

1 + x2
,
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where

(7.12) ρ(n) =







1, if n = 1;
−1/k, if n = 2k + 1 (k ≥ 1);
−1/k, if n = 2k (k ≥ 1).

Proof. Let f(x) be the right-hand side of (7.11)

f(x) :=
1 + x

1 + x2
= (1 + x)

∑

k≥0

(−1)kx2k

and

F (x) :=
(f(x) − f(−x))f(x)

2
=

x + x2

(1 + x2)2
= (x + x2)

∑

k≥0

(k + 1)(−1)kx2k.

We have

[x2k+1]f(x) = [x2k]f(x) = (−1)k;

[x2k]F (x) = [x2k−1]F (x) = (−1)k−1k.

By (7.3)

ρ(n) =
[xn]f(x)

[xn−1]F (x)
= − 1

k
.

> hookexp( (1+x)/(1+x^4), 4);

Denominator is zero, no solution for n=4.

> hookexp( (1+x)/(1+x^3), 16);

[

1, 0, −1, 1, 0, −1, 1, 0,
−1

2
,

1

2
, 0,

−1

2
,

1

2
, 0,

−1

3
,

1

3

]

(M.7.6)

Theorem 7.6. We have

(7.13)
∑

T∈C

x|T |
∏

h∈H(T ),h≥2

ρ(h) =
1 + x

1 + x3
,

where

(7.14) ρ(n) =











1, if n = 1;
0, if n = 3k − 1 (k ≥ 1);
−1/k, if n = 6k − 3 or n = 6k (k ≥ 1);
1/k, if n = 6k − 2 or n = 6k + 1 (k ≥ 1).
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Proof. Let f(x) be the right-hand side of (7.13)

f(x) :=
1 + x

1 + x3
= (1 + x)

∑

k≥0

(−1)kx3k

and

F (x) :=
(f(x) − f(−x))f(x)

2

=
x + x2 − x3 − 2x4 − x5 + x6 + x7

(1 − x6)2

= (x + x2 − x3 − 2x4 − x5 + x6 + x7)
∑

k≥0

(k + 1)x6k.

We have

[x3k+2]f(x) = 0;

[x3k+1]f(x) = [x3k]f(x) = (−1)k;

[x6k+2]F (x) = [x6k+6]F (x) = k + 1;

[x6k+3]F (x) = [x6k+5]F (x) = −(k + 1);

[x6k+4]F (x) = −2(k + 1).

By (7.3)

ρ(n) =
[xn]f(x)

[xn−1]F (x)
.

8. Hook length formulas for Fibonacci trees

A Fibonacci tree T is a binary tree such that the right subtree of each vertex u is
either an empty tree, or a binary tree with only one vertex [St75, SY89]. For example,
there are five Fibonacci trees with n = 4 vertices.

��
��

��
•

2
•

3
•

4

•
1

T1

��
��

@@
•

2
•

3
•

4

• 1

T2

��
��

@@•
1

•
3

•
4

• 1

T3

��
��@@

•
1

•
2

•
4

• 1

T4

��@@
@@
•

2
•

4

• 1
• 1

T5

We have the hook length multi-sets H(T1) = H(T2) = {1, 2, 3, 4}, H(T4) = H(T5) =
{1, 1, 2, 4} and H(T3) = {1, 1, 3, 4}.
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Let F (resp. F(n)) denote the set of all Fibonacci trees (resp. all Fibonacci trees
with n vertices), so that

F =
⋃

n≥0

F(n).

As for binary trees, we define the hook length expansion for Fibonacci trees by

(8.1)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(h) = f(x),

where f(x) ∈ K[[x]] is a power series in x with coefficients in K such that f(0) = 1.
See Sections 5 and 6 for more comments about the hook length expansion. Let
f(x) = 1 + f1x + f2x

2 + f3x
3 + · · · be the generating function for Fibonacci trees

by the weight function ρ. By definition of Fibonacci trees formula (8.1) is equivalent to

(8.2) fn = ρ(n)fn−1 + ρ(n)ρ(1)fn−2.

Formula (8.2) can be used to calculate f(x) for a given ρ, or to calculate ρ for a given
f(x). Next we use the maple package HookExp to find hook formulas for Fibonacci trees,
whose proofs are always based on (8.2).

> hooktype:="FT" # working on Fibonacci trees

> hookexp(1/(1-x-x^2), 9);

[1, 1, 1, 1, 1, 1, 1, 1, 1]

(M.8.1)

Theorem 8.1. We have

(8.3)
∑

T∈F

x|T |
∏

h∈H(T )

1 =
1

1 − x − x2
.

Proof. Let f(x) = 1 +
∑

n≥1 fnxn be the right-hand side of (8.3), then fn =

fn−1 + fn−2. Relation (8.2) is verified.

Remark. The number of Fibonacci trees with n vertices is the n-th Fibonacci
number.

> hookexp( exp(x), 9);

[

1,
1

4
,
1

9
,

1

16
,

1

25
,

1

36
,

1

49
,

1

64
,

1

81

]

(M.8.2)
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Theorem 8.2. We have

(8.4)
∑

T∈F

x|T |
∏

h∈H(T )

1

h2
= ex.

Proof. It suffices to verify relation (8.2).

(8.5)
1

n!
=

1

n2

1

(n − 1)!
+

1

n2

1

(n − 2)!
.

Remark. The number of ordered pairs of increasing labeled Fibonacci trees on
{1, 2, . . . , n} of the same shape (i.e., the same Fibonacci tree) is equal to n! (See, e.g.,
[St75, SY89]).

> hookexp( exp(x+x^2/2), 9);

[

1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9

]

(M.8.3)

Theorem 8.3. We have

(8.6)
∑

T∈F

x|T |
∏

h∈H(T )

1

h
= exp(x + x2/2).

Proof. Let f(x) = 1+
∑

n≥1 fnxn be the left-hand side of (8.6). From (8.2) we have

(8.7) fn =
1

n
fn−1 +

1

n
fn−2.

On the other hand, let
∑

n≥0 anxn/n! be right-hand side of (8.6). We know that an is
equal to the number of involutions of order n. Thus

(8.8) an = (n − 1)an−2 + an−1.

Comparing (8.7) and (8.8) yields fn = an/n!
Remark. The number of increasing labeled Fibonacci trees on [n] is equal to the

number of involutions of order n (see [St75, SY89]).

> hookexp(1/(1-x), 9);

[

1,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

]

(M.8.4)

the electronic journal of combinatorics 15 (2008), #R133 34



Theorem 8.4. We have

(8.9)
∑

T∈F

x|T |
∏

h∈H(T ),h≥2

1

2
=

1

1 − x
.

Proof. We check relation (8.2):

1 =
1

2
+

1

2
.

> hookexp(1/(1-x)^z, 6): map(factor, %);

[

z,
1 + z

4
,
(z + 2)(1 + z)

9z + 3
,
(z + 3)(z + 2)

16z + 8
,
(z + 4)(z + 3)

25z + 15
,
(z + 5)(z + 4)

36z + 24

]

(M.8.5)

Theorem 8.5. We have

(8.10)
∑

T∈F

x|T |
∏

h∈H(T )

(h + z − 1)(h + z − 2)

h(hz + h − 2)
=

1

(1 − x)z

or

(8.11)
∑

T∈F(n)

∏

h∈H(T )

(h + z − 1)(h + z − 2)

h(hz + h − 2)
=

(

n + z − 1

z − 1

)

.

Proof. We check relation (8.2):

(

n + z − 1

z − 1

)

=
(n + z − 1)(n + z − 2)

n(nz + n − 2)
(

(

n + z − 2

z − 1

)

+ z

(

n + z − 3

z − 1

)

).

> hookexp( (1-sqrt(1-4*x))/(2*x), 15);

[

1, 1,
5

3
, 2,

42

19
,
33

14
,
143

58
,
130

51
,
34

13
,
323

121
,
19

7
,
322

117
,
1150

413
,
45

16

]

> guess(%);
4(2n − 3)(2n − 1)

(n + 1)(5n − 6)

(M.8.6)

the electronic journal of combinatorics 15 (2008), #R133 35



Theorem 8.6. We have

(8.12)
∑

T∈F

x|T |
∏

h∈H(T ),h≥2

4(2h − 1)(2h − 3)

(h + 1)(5h − 6)
=

1 −
√

1 − 4x

2x

or

(8.13)
∑

T∈F(n)

∏

h∈H(T ),h≥2

4(2h − 1)(2h − 3)

(h + 1)(5h − 6)
=

1

n + 1

(

2n

n

)

.

Proof. We check relation (8.2):

1

n + 1

(

2n

n

)

=
4(2n − 1)(2n − 3)

(n + 1)(5n − 6)
(
1

n

(

2n − 2

n − 1

)

+
1

n − 1

(

2n − 4

n − 2

)

).

> hookexp( ((1-sqrt(1-4*x))/(2*x))^z, 7):

[

z,
3 + z

4
,

(z + 5)(z + 4)

9z + 9
,

(z + 5)(z + 7)(z + 6)

8(2z + 5)(z + 2)
,

(z + 9)(z + 8)(z + 7)(z + 6)

5(5z + 14)(z + 5)(3 + z)
,

(z + 10)(z + 9)(z + 8)(z + 11)

36(z + 4)(3 + z)(z + 6)

]

(M.8.7)

Theorem 8.7. We have

(8.14)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(z; n) =
(1 −

√
1 − 4x

2x

)z

,

where

ρ(z; n) =
(z + 2n − 4)(z + 2n − 3)(z + 2n − 2)(z + 2n − 1)

n(z + n − 2)(z + n)(nz + 4n − 6)
.

In other words,

(8.15)
∑

T∈F(n)

∏

h∈H(T )

ρ(z; n) =
z

n!

n−1
∏

i=1

(2n − i + z).

Proof. As for the proof of Theorem 8.6, we check relation (8.2).

> hookexp( (1-sqrt(1-4*x^2))/(2*x^2)*(1+z*x), 11);

[

z,
1

2z
,

z

1 + z2
,

1

z
,

2z

z2 + 2
,

5

4z
,

5z

2z2 + 5
,

7

5z
,

14z

5z2 + 14
,

3

2z

]

(M.8.8)
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Theorem 8.8. We have

(8.16)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(h) =
1 −

√
1 − 4x2

2x2
(1 + zx),

where

(8.17) ρ(n) =











z, if n = 1;
2k−1

(k+1)z , if n = 2k (k ≥ 1);

2(2k−1)z
(k+1)z2+2(2k−1) , if n = 2k + 1 (k ≥ 1).

In an equivalent manner, it means that

∑

T∈F(2k+1)

∏

h∈H(T )

ρ(h) =
z

k + 1

(

2k

k

)

;

∑

T∈F(2k)

∏

h∈H(T )

ρ(h) =
1

k + 1

(

2k

k

)

.

Proof. Relation (8.2) is being verified when n is odd (resp. even)

z

k + 1

(

2k

k

)

=
2(2k − 1)z

(k + 1)z2 + 2(2k − 1)
(

1

k + 1

(

2k

k

)

+ z
z

k

(

2k − 2

k − 1

)

)

(resp.
1

k + 1

(

2k

k

)

=
2k − 1

(k + 1)z
(
z

k

(

2k − 2

k − 1

)

+ z
1

k

(

2k − 2

k − 1

)

)).

> hookexp( (1+x)/(1+x^2), 4);

Denominator is zero, no solution for n=3.

> hookexp( (1+x)/(1+x^3), 16);

[1, 0,−1, 1, 0,−1, 1, 0,−1, 1, 0,−1, 1, 0,−1, 1]

(M.8.9)

Theorem 8.9. We have

(8.18)
∑

T∈F

x|T |
∏

h∈H(T )

ρ(h) =
1 + x

1 + x3
,

where

ρ(n) =

{

1, if n ≡ 1 mod 3;
0, if n ≡ 2 mod 3;
−1, if n ≡ 0 mod 3.
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Proof. Let
∑

n≥0

fnxn =
1 + x

1 + x3
=

1

1 − x + x2
.

We have f3k−1 = 0, f3k = (−1)f3k−2 and f3k−2 = f3k−3. Relation (8.2) is then verified.

In fact, there is another generalization of Theorem 8.4. Consider the weight function
ρ that counts the leaves of Fibonacci trees.

> [z,seq(1, i=1..6)];

[z, 1, 1, 1, 1, 1, 1]

> hookgen(%);

1 + (z)x + (2z)x2 + (z2 + 2z)x3 + (3z2 + 2z)x4 + (z3 + 5z2 + 2z)x5

+ (4z3 + 7z2 + 2z)x6 + (z4 + 9z3 + 9z2 + 2z)x7

(M.8.10)

The above generating function corresponds to the sequence A129710 in the on-line
Encyclopedia of Integer Sequences [Slo] and is equal to the right-hand side of (8.19)
below.

Theorem 8.10. We have

(8.19)
∑

λ∈F

x|λ|
∏

h∈H(λ),h=1

z =
1 + (z − 1)x

1 − x − zx2
.
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