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Abstract

We construct a group Kn with properties similar to infinite Coxeter groups.
In particular, it has a geometric representation featuring hyperplanes, simplicial
chambers and a Tits cone. The generators of Kn are given by 2-element subsets of
{0, . . . , n}. We provide some generalities to deal with groups like these. We give
some easy combinatorial results on the finite residues of Kn, which are equivalent
to certain simplicial real central hyperplane arrangements.

1 Introduction

A Coxeter group is a group W presented with generating set S and relations s2 for all s ∈ S
and at most one relation (st)m(s,t) for every pair {s, t} ⊂ S (where m(s, t) = m(t, s) ≥ 2
if s 6= t). It is known that then the natural map S → W is injective; we think of it as an
inclusion. We call the pair (W, S) a Coxeter system and #S its rank.

We generalise this as follows. For any set S, let FS denote the free monoid on S. A
fully coloured graph is a triple (V, S, m) where V, S are sets, m: V × S × S → Z≥1 ∪ {∞}
is a map, and an action V × FS → V written (v, g) 7→ vg is specified, satisfying the
following.

◦ (1)The action of FS on V is transitive.

◦ For all v ∈ V , s ∈ S we have (vs)s = v.

◦ Let v ∈ V , s, t ∈ S. Then m(v; s, t) = 1 if and only if s = t. Moreover
m(v; s, t) = m(v; t, s) and m(v; s, t) = m(vs; s, t). Also, if k := m(v; s, t) is
finite then v(st)k = v.

◦ (2)The set V is simply 2-connected. That is, let (V ′, S, m′) satisfy the above
too and let f : V ′ → V be a map satisfying (i) (fv)s = f(vs) for all v, s; (ii)
m′(v; s, t) = m(fv; s, t) for all v, s, t. Then f is injective.
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As the name suggests, a graph is involved: it has vertex set V and edges {x, xs} of colour
s whenever x ∈ V , s ∈ S. In this language, (1) means that the graph is connected.

Every Coxeter system (W, S) gives rise to a Coxeter fully coloured graph (W, S, m)
where one defines m(w; s, t) to be the order of st and the action W × S → W to be
multiplication.

More generally, every simplicial real hyperplane arrangement gives rise to a fully
coloured graph; see lemma 8.

Equivalent to (2) is saying that if we attach 2-cells to the graph along loops with label
(st)m(v;s,t) based at v, then the result is simply connected.

Let (V, S, m) be a fully coloured graph. For I ⊂ S, an I-residue is a subset of V of
the form {vg | g ∈ FI}. We also call it an r-residue if r = #I.

A celebrated result by Tits [B, section 5.4.4], [V], [H, section 5.13] implies that every
Coxeter group W has a faithful linear representation W → GL(Q) whose dimension
equals the rank of W . His result gives more than this though. In particular, there is a
W -invariant convex cone U ⊂ Q, known as the Tits cone, and W acts properly on the
interior of U . This is a marvellous example of a local-to-global result: the assumptions of
the theorem are local, the assertion global.

Our first result, theorem 24 (together with its corollaries in the same section) is a
generalisation of Tits’s result to fully coloured graphs. Our proof is not very different
from Tits’s original one in [B, section 5.4.4]. As a fully coloured graph doesn’t involve a
group, the theorem doesn’t mention any linear representation. Instead, it gives a convex
cone U in a real vector space Q of dimension #S, a collection A of hyperplanes in Q, and
a natural bijection between V and the set of connected components of U r (∪A). Again,
the assumptions are local (we call them a realisation; see definition 12) and the assertion
is global.

Before theorem 24 can be applied to a particular case, two hurdles need to be taken
which are trivial in the case of Coxeter groups: (a) the combinatorial challenge of finding
a fully coloured graph; and (b) the algebraic hurdle of finding a realisation. Contrary to
the Coxeter case, a fully coloured graph may not have a realisation, and it is unclear how
many it has in general.

We approach (b) as follows. We define a (2, 3,∞)-graph to be a fully coloured graph
(V, S, m) such that m(v; s, t) ∈ {2, 3,∞} for all v, s, t and which has a (necessarily unique)
realisation of a specific form; see definition 30 for the details. The fully coloured graph
associated with a Coxeter system (W, S) is a (2, 3,∞)-graph if and only m(s, t) ∈ {2, 3,∞}
for all s, t ∈ S.

Our second main result, theorem 35, gives a combinatorial local condition for a fully
coloured graph to be a (2, 3,∞)-graph. In particular, a fully coloured graph is a (2, 3,∞)-
graph if and only if its k-residues are for all k ≤ 3.

By a (2, 3)-graph we mean a (2, 3,∞)-graph (V, S, m) such that m(v; s, t) ∈ {2, 3} for
all v, s, t. Up to isomorphism, there is just one non-Coxeter (2, 3)-graph of rank 3. It
plays a special role in the paper and is depicted in figure 2.
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For n ≥ 0, let Kn be the group presented by a set Tn ⊂ Kn of
(

n+1
2

)
generators written

Tn =
{(

a
b

) ∣∣∣ a, b ∈ {0, 1, . . . , n}, a < b
}

and relations s2 for all s ∈ Tn and

(
a
b

)(
c
d

)(
a
b

)(
c
d

)

whenever 0 ≤ a < b ≤ c < d ≤ n;

(
a
b

)(
a + x
b − y

)(
a
b

)(
a + y
b − x

)

whenever x, y ≥ 0 and 0 ≤ a < a + x + y < b ≤ n; and

(
a

b − z

)(
a + y

b

)(
a

b − x

)(
a + z

b

)(
a

b − y

)(
a + x

b

)

whenever x, y, z > 0 and 0 ≤ a ≤ a + x + y + z = b ≤ n.
Some motivation for this definition is provided by the observation that there exists a

Kn-action on {1, . . . , n} given by

(
a
b

)
(x) =

{
a + b + 1 − x if a + 1 ≤ x ≤ b,

x otherwise.

Based on the presentation of Kn, we define a class of fully coloured graphs called
admissible graphs in definition 59. One of them, written Γn, has the property that the
underlying graph is the Cayley graph of (Kn, Tn). More precisely, Kn acts from the left
on Γn; the action on the vertex set of Γn is simply transitive; and there exists a vertex 1u

of Γn such that, for all a ∈ Kn, the pair {1u, a 1u} is an edge if and only if a ∈ Tn.
The colour of the edge {x 1u, x a 1u} (x ∈ Kn, a ∈ Tn) does not depend only on a.

Equivalently, the action of Kn on the colour set of Γn is non-trivial. For otherwise Kn

would have to be a Coxeter group; see lemma 10 and the text after lemma 49.
Our third main result, theorem 67, states that every admissible graph (in particular,

Γn) is a (2, 3)-graph. We give a case-by-case proof of the theorem by looking at every
3-residue separately.

It follows that Kn is linear; see corollary 69. The fact that some admissible graphs
have a group (namely, Kn) for vertex set, is ignored in most of the paper.

Contrary to the Coxeter case, a residue of Γn is not necessarily isomorphic to any
Γk. It can be shown that, up to isomorphism, admissible graphs are the same thing as
residues of Γn (use corollary 29). We don’t take this as a definition for admissible graphs
for technical reasons.

Among the (2, 3)-graphs the finite ones are especially interesting. Theorem 24 as-
sociates a simplicial real central hyperplane arrangement to each of them. We list the
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irreducible rank 4 (2, 3)-graphs without proof in proposition 79. There are four of them,
two of which are Coxeter and two of them are not. Both of the non-Coxeter ones are
admissible. This suggests that Γn may be a good source for finite (2, 3)-graphs.

In section 2, titled Fully coloured graphs and their realisations, we introduce fully
coloured graphs and generalise the Tits representations of Coxeter groups to them.

In section 3 with title (2, 3,∞)-Graphs we define (2, 3,∞)-graphs and classify them
locally.

Section 4, titled An example, studies admissible graphs and their relation with (2, 3)-
graphs.

Acknowledgement Many thanks to both referees for many useful comments.

2 Fully coloured graphs and their realisations

For a set S, let FS be the free monoid on S. We consider S to be a subset of FS. If S ⊂ T
then FS ⊂ FT .

Definition 3. A fully coloured graph is a triple (V, S, m) where V, S are sets, m: V × S ×
S → Z≥1 ∪ {∞} is a map, and an action V × FS → V written (v, g) 7→ vg is specified
(though suppressed in the notation) satisfying the following.

◦ (4)The action of FS on V is transitive.

◦ (5)For all v ∈ V , s ∈ S we have (vs)s = v.

◦ (6)Let v ∈ V , s, t ∈ S. Then m(v; s, t) = 1 if and only if s = t. Moreover
m(v; s, t) = m(v; t, s) and m(v; s, t) = m(vs; s, t). Also, if k := m(v; s, t) is
finite then v(st)k = v.

◦ (7)The set V is simply 2-connected. That is, let (V ′, S, m′) satisfy the above
too and let f : V ′ → V be a map satisfying (i) (fv)s = f(vs) for all v, s; (ii)
m′(v; s, t) = m(fv; s, t) for all v, s, t. Then f is injective.

Apart from the m-function, (4)–(6) define what is known as a thin chamber system
[T], [R], but we shall not use this term.

In an earlier version of the paper we also considered coloured graphs . We keep the
term fully coloured graph for backward compatibility only.

Let (V, S, m) be a fully coloured graph and let I ⊂ S. An I-residue is a subset of V
of the form vFI where v ∈ V . We also call it an r-residue if r = #I.

Let R be the {s, t}-residue through v. It follows from (6) that m(v; s, t) depends only
on (R, s, t). We write it as m(R; s, t) accordingly.

The following well-known result motivates the definition of fully coloured graphs.

Lemma 8. Let Q be a finite dimensional real vector space. Let A be a simplicial central
hyperplane arrangement in Q (see [OT] for these notions). Then there exists a fully
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coloured graph (V, S, m) such that V is the set of closed chambers of A and, for every
k-residue R with k ≤ 2, the codimension in Q of ∩C∈RC is k.

Proof. In this proof, we consider closed chambers of A only. By a panel we mean a
1-codimensional intersection of chambers. Let E be the set of panels. For a chamber C,
let E(C) be the set of panels contained in C. Then #E(C) = d where d = dim Q. Let S
be any set of d elements. We shall construct a colouring map g: E → S whose restriction
E(C) → S is bijective for every C ∈ V .

Let C1, C2 be adjacent chambers, that is, their intersection e has codimension 1. Two
bijections fi: E(Ci) → S are called compatible if f1(e) = f2(e) and cod f−1

1 (s)∩f−1
2 (s) = 2

for all s ∈ S r {f1(e)}.
Observe now that every bijection f1: E(C1) → S is compatible with precisely one

bijection f2: E(C2) → S.
If one chooses g0 = g|E(C0) for one chamber C0 to begin with, there is at most one way

to extend g0 to a map g with the required properties: to find the restriction g1 = g|E(C1)

for another chamber C1 one chooses a path from C0 to C1 and extends g0 along the path
by compatibility. It remains to show that g1 does not depend on the path from C0 to
C1 chosen. It is enough to prove this in the case where the intersection of all chambers
involved (that is, in either path) has codimension 2. A moment’s thought shows that it
is true. It follows that the colouring map g exists as promised.

The proof is finished by taking the action V × S → V to be C1 s := C2 whenever
e = C1 ∩ C2 is a panel and c(e) = s, and taking m to be minimal, that is, m(C; s, t) is
half the cardinality of the {s, t}-residue through C. �

Definition 9. An automorphism g of a fully coloured graph (V, S, m) consists of a per-
mutation of V and one of S, both written g, such that g(vs) = (gv)(gs) and m(v; s, t) =
m(gv; gs, gt) for all v, s, t.

As explained in the introduction, every Coxeter system gives rise to a fully coloured
graph. The following converse is easy.

Lemma 10. Let Γ = (V, S, m) be a fully coloured graph. Let W be a group acting on
Γ by automorphisms of the fully coloured graph which don’t permute the colours (see
definition 9). If W acts simply transitively on V then W is a Coxeter group.

More precisely, let v ∈ V be a vertex, and let T be the set of elements t ∈ W such that
{v, tv} is an edge (that is, tv = vs for some s ∈ S). Then (W, T ) is a Coxeter system. �

Remark 11. (a). Let (V, S, m) be a fully coloured graph. There is an equivalence relation
on V with two equivalence classes such that v, vs are not equivalent for all v ∈ V , s ∈ S.
In particular, v 6= vs. This follows from the simple 2-connectedness (7) and the fact that
the relations (5), (6) have even length.

(b). In a Coxeter fully coloured graph we have #R = 2m(R; s, t) for every {s, t}-
residue R. In an arbitrary fully coloured graph it is still true that #R divides 2m(R; s, t),
but equality doesn’t necessarily hold, as the following example shows.
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Put V = (Z/2)3 and S = {r, s, t} ⊂ V where r = (1, 0, 0), s = (0, 1, 0), t = (0, 0, 1).
Let S act on V by right multiplication. Define m(v; a, b) = 2 for all v, a, b except if
{a, b} = {s, t} and v ∈ R := 〈s, t〉 in which case we put m(v; s, t) = 4. Then (V, S, m) is
a fully coloured graph but 2m(R; s, t) = 8 6= 4 = #R.

Let Q be a real vector space. A hyperplane in Q is a 1-codimensional linear subspace.
An open (respectively, closed) half-space is a subset of Q of the form f−1(R>0) (respec-
tively, f−1(R≥0)) where f : Q → R is a nonzero linear map. If H is one of the above
half-spaces, then the boundary ∂H is defined to be f−1(0).

Definition 12. Let Γ = (V, S, m) be a fully coloured graph. A realisation of Γ consists of
the data (13)–(14) satisfying properties (15)–(17) below.

◦ (13)For every v ∈ V a real vector space P (v) with basis {p(v, s) | s ∈ S} (a set
in bijection with S) is specified.

◦ (14)Whenever w = vs (v, w ∈ V , s ∈ S) an isomorphism

φv,s: P (v) → P (w)

is specified such that p(v, t) φv,s = p(w, t) for all t ∈ S r s.

◦ (15)Let Q denote the quotient of the disjoint union tv∈V P (v) by the smallest
equivalence relation ≡ such that x φv,s ≡ x for all v, s and all x ∈ P (v). Then
the natural map P (v) → Q is bijective for one hence all v ∈ V .

Note that the condition (15) is equivalent to φv1,s1
· · ·φvn,sn

= 1 (indices in Z/n) whenever
visi = vi+1 for all i. It is sufficient for this to hold for #{s1, . . . , sn} = 2, by (7).

The image in Q of p(v, s) is written q(v, s). It follows from (15) that Q is a real vector
space with basis {q(v, s) | s ∈ S} (a set in bijection with S) whenever v ∈ V . For v ∈ V
we define the chamber C(v) =

∑
s∈S R≥0 q(v, s).

◦ (16)We have C(v)0∩C(vs)0 = ∅ for all v ∈ V , s ∈ S, where 0 denotes the relative
interior.

◦ (17)Let R ⊂ V be an {s, t}-residue, s 6= t, and write X = ∩v∈RC(v).
If k = m(R; s, t) is finite then there exist k (distinct) hyperplanes in Q con-

taining X such that every component of the complement of these hyperplanes
meets C(v) for a unique v ∈ R. In particular, #R = 2m(R; s, t).

If m(R; s, t) is infinite then ∪v∈RC(v) is contained in some closed half-
space whose boundary contains X. �

Suppose vs = w (v, w ∈ V , s ∈ S). Then there are unique ct ∈ R (t ∈ S) such that

q(w, s) =
∑

t∈S

ct q(v, t).

Now (16) is equivalent to cs < 0.
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Example 18. It is well-known and not hard to show that every Coxeter fully coloured
graph admits a (covariant) realisation

p(v, s) φv,s = −p(vs, s) +
∑

t∈Sr{s}

2 cos
π

m(s, t)
p(vs, t). (19)

The dual form is more common; see [B, section 5.4.3], [H, section 5.3], [V].

Consider a fully coloured graph Γ = (V, S, m) with a realisation with the above nota-
tion. Let g be an automorphism of Γ which we recall may permute the colours (defini-
tion 9). For v ∈ V , define the g-folding map g∗: P (v) → P (gv) by g∗ p(v, s) = p(gv, gs).
We say that g preserves the realisation if, for all v ∈ V and s ∈ S, we have a commuting
diagram

P (v) P (gv)

P (vs) P ((gv)(gs)).

g∗

g∗

φv,s φgv,gs (20)

Lemma 21. Let Γ = (V, S, m) be a fully coloured graph with a realisation. Let G be the
group of automorphisms of Γ preserving the realisation. Then, there exists a unique linear
representation L: G → GL(Q), g 7→ Lg such that Lg q(v, s) = q(gv, gs) for all g, v, s. In
particular, Lg C(v) = C(gv).

In corollary 26 below we shall see that this representation is faithful.

Proof. Let g ∈ G. For all v ∈ V , define Lg,v ∈ GL(Q) by the commuting diagram

P (v) P (gv)

Q Q

g∗

Lg,v

(22)

where the top arrow is a g-folding map and the vertical arrows are natural. By the
commuting diagram (20), Lg,v = Lg,vs. By an obvious induction, Lg,v does not depend on
v; let Lg be their common value. By (22) we have Lg q(v, s) = q(gv, gs). That g 7→ Lg is
a homomorphism follows by Lg Lh q(v, s) = Lg q(hv, hs) = q(ghv, ghs) = Lgh q(v, s). �

Remark 23. Suppose that the fully coloured graph (V, S, m) admits a realisation. Let
v ∈ V and let s, t ∈ S be distinct. Then the {s, t}-residue through v has 2m(v; s, t)
elements. This follows immediately from (17). In particular, vs 6= vt.

In the case of Coxeter groups, this is the usual proof that the order of st equals m(s, t)
rather than a proper divisor of it.

Let (V, S, m) be a fully coloured graph. For v, w ∈ V , define d(v, w) to be the least
k ≥ 0 such that there are s1, . . . , sk ∈ S with vs1 · · · sk = w. Then d is a metric. By a semi-
geodesic we mean a tuple (v1, . . . , vn) of vertices such that d(v1, vn) =

∑n−1
i=1 d(vi, vi+1).
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For v ∈ V , s ∈ S, we define

H(v, s) :=
{∑

t∈S

ct q(v, t)
∣∣∣ ct ∈ R for all t ∈ S and cs ≥ 0

}
⊂ Q.

Equivalently, H(v, s) is the closed half-space in Q containing C(v) whose boundary con-
tains C(v) ∩ C(vs).

In the remainder of this section, we consider a fully coloured graph with a realisation,
and use the above notation.

The remainder of this section is similar to [B, section 5.4.4].

Theorem 24. Let v, w ∈ V , s ∈ S and write v′ = vs. Suppose that (v, v′, w) is a
semi-geodesic. Then C(w) ⊂ H(v′, s).

Proof. Induction on n = d(v′, w). For n = 0 it is trivial. If n ≥ 1, let v′′ = v′t (t ∈ S) be
a neighbour of v′ such that (v′, v′′, w) is a semi-geodesic. Note that s 6= t and that v ′′ 6= v.

Let R be the {s, t}-residue through v′. For a, b ∈ R, let d0(a, b) be the least k ≥ 0
such that there exist s1, . . . , sk ∈ {s, t} with b = as1 · · · sk. So d0(a, b) ≥ d(a, b).

Let A denote the set of those a ∈ R for which d(v ′, w) = d0(v
′, a)+ d(a, w). Let x ∈ A

be an element with d(x, w) minimal.
We have #R ≥ 2 because v′, v′′ ∈ R. Let y ∈ R be a neighbour of x, that is,

d0(x, y) = 1.
We claim that (y, x, w) is a semi-geodesic. If not, we would have d(w, y) = d(w, x)− 1

and hence

d(w, v′) ≤ d(w, y) + d(y, v′) ≤ d(w, y) + d0(y, v′)

= (d(w, x) − 1) + d0(y, v′)

≤ d(w, x) − 1 + d0(x, v′) + 1 = d(w, v′).

So equality holds throughout, forcing d(w, v′) = d(w, y) + d0(y, v′), and therefore y ∈ A,
contrary to d(w, y) < d(w, x).

Note that v′′ ∈ A, whence d(w, x) ≤ d(w, v′′) < d(w, v′). Therefore we may apply the
induction hypothesis to the triples (x, w, r) for r ∈ {s, t}. We find that

C(w) ⊂ H(x, s) ∩ H(x, t). (25)

It follows that d0(x, v) > d0(x, v′), since otherwise

d(w, v) ≤ d(w, x) + d(x, v) ≤ d(w, x) + d0(x, v)

< d(w, x) + d0(x, v′) = d(w, v′),

a contradiction. By (17), this shows that H(x, s) ∩ H(x, t) ⊂ H(v ′, s). By (25) we find
C(w) ⊂ H(v′, s) as required. �

Corollary 26. If v, w ∈ V are distinct then C(v)0 ∩ C(w)0 = ∅.
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Proof. Let (v, v′, w) be a semi-geodesic with v′ = vs, s ∈ S. Now apply theorem 24. �

A cell is a set of the form
∑

s∈I R≥0 q(v, s) (which is {0} if I = ∅) for v ∈ V , I ⊂ S.

Corollary 27. Let X, Y be distinct cells. Then X0 ∩ Y 0 = ∅.

Proof. Let v, w be vertices such that X ⊂ C(v), Y ⊂ C(w) with n = d(v, w) minimal.
(We don’t assume that X is a “face” of C(v) or Y is of C(w).) If n = 0 it is trivial so
suppose n > 0. Let v′ = vs be a neighbour of v such that (v, v′, w) is a semi-geodesic. Then
X 6⊂ C(v′) by minimality of n. So X0 ∩H(v′, s) = ∅. We also have Y ⊂ C(w) ⊂ H(v′, s)
so X0 ∩ Y 0 = ∅. �

The union of all C(v) is denoted U and generalises the well-known Tits cone for
Coxeter groups.

Corollary 28. The following hold.

(a) U is convex.

(b) For all x, y ∈ U , the line segment [x, y] := {tx + (1 − t)y | 0 ≤ t ≤ 1} meets finitely
many cells of U .

Proof. By corollary 27 we can prove parts (a) and (b) at once by showing that for all
x, y ∈ U , the line segment [x, y] is contained in the union of finitely many cells. Let v, w
be vertices with x ∈ C(v), y ∈ C(w), n = d(v, w) minimal. Induction on n. If n = 0 it
is trivial. If n > 0, write [x, y] ∩ C(v) = [x, z]. Since y 6∈ C(v), we have y 6∈ H(v, s) for
some s ∈ S with z ∈ ∂H(v, s). Since y ∈ C(w)\H(v, s), it follows from theorem 24 that
d(v′, w) < d(v, w). Since z ∈ C(v′), the segment [z, y] is contained in finitely many cells
by induction. Moreover, [x, z] is clearly contained in finitely many cells. This proves the
induction step which finishes the proof. �

Corollary 29. Every residue of a realisable fully coloured graph is simply 2-connected
(hence is itself a fully coloured graph).

Proof. Use corollary 28(a). �

3 (2, 3,∞)-Graphs

Definition 30. A (2, 3,∞)-graph is a fully coloured graph (V, S, m) which admits a (nec-
essarily essentially unique) realisation (13)–(17) with the following properties.

◦ (31)We have m(v; s, t) ∈ {2, 3,∞} for all v, s, t.

◦ (32)We define a bijection N : {2, 3,∞} → {0, 1, 2} by N(2) = 0, N(3) =
1, N(∞) = 2. Equivalently, N(k) = 2 cos(π/k). We put n(v; s, t) :=
N
(
m(v; s, t)

)
and n(R; s, t) = n(v; s, t) if R is the {s, t}-residue through v.

the electronic journal of combinatorics 15 (2008), #R134 9



Suppose vs = w (v ∈ V , s ∈ S). Then

p(v, s) φv,s = −p(w, s) +
∑

t∈Sr{s}

n(v; s, t) p(w, t)

= −p(w, s) +
∑

t∈Sr{s}

2 cos
π

m(v; s, t)
p(w, t)

Compare with (19).

The realisation with these properties is called the standard realisation in order to dis-
tinguish it from other realisations, if any. Note that the uniqueness of the standard
realisation follows immediately from (32). �

Recall definition 9 of automorphisms of fully coloured graphs.

Lemma 33. Let Γ be a (2, 3,∞)-graph.

(a) Every automorphism of Γ preserves the standard realisation, that is, makes (20)
commute.

(b) We have a faithful representation Aut(Γ) → GL(Q), g 7→ Lg.

Proof. Part (a) is clear. Part (b) follows from (a), lemma 21 and corollary 26. �

Our next aim is to provide an explicit local criterion for a fully coloured graph to be
a (2, 3,∞)-graph. We need the notion of structure sequence, which we shall now define
(see figure 1).

Figure 1. Structure sequences.

This picture shows part of a 3-residue T

containing an {s, t}-residue R = {vi | i}

with m(R; s, t) = 3. In the middle of ev-

ery 2-residue Ri in T meeting R in an edge

{vi, vi+1} of colour u ∈ {s, t} the picture

shows the value of n(Ri; r, u). The structure

sequence for R is (0, 0, 1, 0, 0, 1).
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Definition 34. Let (V, S, m) be a fully coloured graph satisfying (31). Let s, t ∈ S be
distinct and let R ⊂ V be an {s, t}-residue. Write k = m(R; s, t) and R = {vi | i ∈ Z/2k},
v2i−1t = v2i = v2i+1s for all i (see figure 1). Note that there is no guarantee yet that
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#R = 2k. The map

f : Z/2k −→ {0, 1, 2}

2i 7−→ n(v2i; r, s)

2i + 1 7−→ n(v2i+1; r, t)

is called the structure sequence of the {s, t}-residue R. We denote it by (f(1), . . . , f(2k)).
We always consider two structure sequences to be equal if they differ only by a cyclic
permutation or reversal. Therefore the structure sequence is determined by (R; s, t). We
don’t associate structure sequences to infinite 2-residues. �

Theorem 35.

(a) Let Γ be a fully coloured graph satisfying (31). Then Γ is a (2, 3,∞)-graph if and
only if the following hold.

All structure sequences of length 4 are of the
form (n1, n2, n1, n2), n1, n2 ∈ {0, 1, 2}.

(36)

All structure sequences of length 6 are of the
form (ni)i∈Z/6 where ni ∈ {0, 1, 2} are such that
(−1)i(ni − ni+3) is independent on i.

(37)

(b) In particular, Γ is a (2, 3,∞)-graph if and only if its k-residues are for all k ≤ 3.

(c) The length 6 structure sequences satisfying the condition of (37) are precisely

(0, 0, 0, 0, 0, 0) (0, 0, 2, 0, 0, 2) (1, 2, 2, 1, 2, 2)
(0, 0, 1, 0, 0, 1) (0, 2, 0, 2, 0, 2) (2, 2, 2, 2, 2, 2)
(0, 1, 0, 1, 0, 1) (0, 2, 2, 0, 2, 2) (1, 1, 1, 0, 2, 0)
(0, 1, 1, 0, 1, 1) (1, 1, 2, 1, 1, 2) (1, 1, 1, 2, 0, 2)
(1, 1, 1, 1, 1, 1) (1, 2, 1, 2, 1, 2) (0, 1, 2, 0, 1, 2)

up to cyclic permutation and reversing.

Proof. Define P (v) (v ∈ V ) and φv,s: P (v) → P (vs) uniquely by (13), (14), (32). By the
definition of realisations of fully coloured graphs, Γ is a (2, 3,∞)-graph if and only if (15),
(16) and (17) hold.

Let P ∗(v) be the dual to P (v). Let 〈·, ·〉: P (v) × P ∗(v) → R be the natural pairing
and let {p∗(v, s) | s ∈ S} be the dual basis of P ∗(v) defined by

〈
p(v, s), p∗(v, t)

〉
=

{
1 if s = t,
0 otherwise.

Then φ−1
v,s induces a map φ∗

v,s: P ∗(v) → P ∗(w). For all v ∈ V and all distinct s, t ∈ S we
have

p∗(v, s) φv,s = −p∗(vs, s), (38)

p∗(v, t) φv,s = p∗(vs, t) + n(v; s, t) p∗(vs, s).

Let (39k=2) and (39k=3) denote the relevant special cases of the following statement.
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◦ (39)Let v0, s, t be such that m(v0; s, t) = k. Let {vi | i ∈ Z/2k} be the {s, t}-
residue through v0, and visi = vi+1 for all i, and si = s for even i and si = t
for odd i. Then φv1,s1

· · ·φvn,sn
= 1.

Then (15) is equivalent to (39k=2) and (39k=3). We begin by proving that (39k=3) is
equivalent to (37) if #S ≥ 3. Let s, t, vi, si be as in (39k=3) and let r ∈ S r {s, t}. Define
the rows of vectors

fi :=
(
p∗(vi, s), p

∗(vi, t), p
∗(vi, r)

)
if i is even, (40)

fi :=
(
p∗(vi, t), p

∗(vi, s), p
∗(vi, r)

)
if i is odd. (41)

After interchanging s, t if necessary, we have fi φvi,si
= fi M(ni) for all i, where φvi,si

acts
componentwise and

M(n) =




0 −1 0
1 1 0
0 n 1


 .

We have

M(n1) M(n2) M(n3) =




0 −1 0
1 1 0
0 n1 1






0 −1 0
1 1 0
0 n2 1


M(n3)

=



−1 −1 0
1 0 0
n1 n1 + n2 1






0 −1 0
1 1 0
0 n3 1


 =




−1 0 0
0 −1 0

n1 + n2 n2 + n3 1


 (42)

which is an involution. It follows that

6∏

i=1

M(ni) = 1 ⇐⇒ M(n1) M(n2) M(n3) = M(n4) M(n5) M(n6)

⇐⇒ (n4, n5, n6) = (n1, n2, n3) + (k,−k, k) for some k

⇐⇒ (−1)i(ni − ni+3) is independent of i.

We have proved that (39k=3) is equivalent to (37) if #S ≥ 3. In case #S < 3 the proof is
the same as above except that r is absent, that is, the last row and column of M(n) are
removed.

Next we prove that (39k=2) is equivalent to (36). Let s, t, vi, si be as in (39k=2) and
let r ∈ S r {s, t}. As before, define fi by (40), (41). After interchanging s, t if necessary,
we have fi φvi,si

= fi L(ni) for all i where

L(n) =




0 −1 0
1 0 0
0 n 1


 .

Now

L(n1) L(n2) =




0 −1 0
1 0 0
0 n1 1






0 −1 0
1 0 0
0 n2 1


 =



−1 0 0
0 −1 0
n1 n2 1




the electronic journal of combinatorics 15 (2008), #R134 12



from which it readily follows that

L(n1) · · ·L(n4) = 1 ⇐⇒ (n1, n2, n3, n4) = (n1, n2, n1, n2).

This proves that (39k=2) is equivalent to (36). (The case #S < 3 is again a consequence
of the same computation). Therefore, (15) is equivalent to (36) and (37). Assume now
(15). It remains to prove (16) and (17).

Condition (16) states that neighbouring open chambers are disjoint; it holds because
of the negative sign in (38).

The proof of (17) splits into three cases, according to whether m(R; s, t) is 2, 3 or ∞.
Suppose first that m(R; s, t) = 3. Let s, t, vi, si be as in (39k=3). Let W be the span

of X, that is, W =
∑

u∈Sr{s,t} R q(v1, u) and define

gi :=
(
q(vi, s) + W, q(vi, t) + W

)T
if i is even,

gi :=
(
q(vi, t) + W, q(vi, s) + W

)T
if i is odd

where T denotes transpose. Taking transposes everywhere in our identity fi φvi,si
=

fi M(ni) and removing the third entries, we find gi+1 = K(ni) gi for all i, where K(n) is
the transpose of M(n) without the last row and columns, that is, K(n) = ( 0 1

−1 1 ). By (42)
or direct computation we find K(n)3 = −1 and gi+3 = −gi as desired. This proves (17) if
m(R; s, t) = 3. The case where m(R; s, t) = 2 is similar and left to the reader.

Finally, we prove (17) if m(R; s, t) = ∞. Define s, t, vi, si, W, gi as before. Now (32)
yields that gi − 2gi−1 + gi−2 = 0 for all i. Let h: Q/W → R be the linear map defined by
h(g0) = 1 and h(g1) = 1. Then h(gi) = 1 for all i. It follows that h

(
C(v) + W

)
⊂ R>0 for

all v ∈ R, that is, the half-space

H :=
{
x ∈ Q

∣∣ h(x + W ) > 0
}

contains ∪v∈RC(v). Its boundary contains W and therefore X. This proves (17) if
m(R; s, t) = ∞.

This finishes the proof of (a). Part (b) follows immediately from (a). Part (c) is
straightforward. �

With a little work, part (b) of the above theorem can be stated for all fully coloured
graphs — it isn’t confined to (2, 3)-graphs. Moreover, the natural proof of it is almost a
tautology. We won’t need any of this.

The rank of a fully coloured graph (V, S, m) is defined to be #S.
The product of two fully coloured graphs (Vi, Si, mi) (i = 1, 2) is defined to be (V1 ×

V2, S1 t S2, m) (t is disjoint union) where

(v1, v2) s1 = (v1s1, v2) if vi ∈ Vi for all i and s1 ∈ S1,

(v1, v2) s2 = (v1, v2s2) if vi ∈ Vi for all i and s2 ∈ S2,

m
(
(v1, v2); s, t

)
= mi(vi; s, t) if s, t ∈ Si,

m
(
(v1, v2); s1, s2

)
= 2 if si ∈ Si for all i.

the electronic journal of combinatorics 15 (2008), #R134 13



Figure 2. A(3, 7).
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The (2, 3)-graph A(3, 7). The three edge colours are

here indicated by different line types. The graph has 32

vertices and 48 edges and its automorphism group is

isomorphic to S4 × C2. Its colour preserving automor-

phism group is isomorphic to (C2)
3 and is generated by

the reflections in the edges of the gray region in the dual

picture of figure 8(b). Its Poincaré polynomial is [1][3]2

(see [OT, section 2.3] for the definition of the Poincaré

polynomial; we use the notation [n] = 1 + nt). Being a

(2, 3)-graph, A(3, 7) has a realisation by hyperplanes; it

is given by xyz(x + y)(y + z)(z + x)(x + y + z) = 0.

It is clear that the product of two (2, 3,∞)-graphs is again a (2, 3,∞)-graph. A fully
coloured graph is irreducible if it is not isomorphic to a product of two fully coloured
graphs of positive rank.

By a (2, 3)-graph we mean a (2, 3,∞)-graph (V, S, m) such that m(v; s, t) ∈ {2, 3} for
all v, s, t. We aim to classify the irreducible (2, 3)-graphs of rank 3. Two of these are
well-known: they are the Coxeter (2, 3)-graphs A3 and Ã2. For names of Coxeter groups,
see [B, section 6.4.1], [H, 2.4].

We define a fully coloured graph A(3, 7) of rank 3 by figure 2. Using theorem 35, it is
easy to observe that it is a (2, 3)-graph. In [G1] A(3, 7) (or the arrangement dual to it) is
called A1(7) and in [G2] it is A(7, 1).

Proposition 43. Up to isomorphism there are just three irreducible (2, 3)-graphs of rank
3: A3, Ã2 and A(3, 7).

Proof. Using theorem 35 this is an easy exercise involving drawings of graphs, and is left
to the reader. �

Note that Ã2 is infinite while A3 and A(3, 7) are finite.

4 An example

4.1 An extension of the symmetric group

From now on we fix an integer n ≥ 0. Let Gn be the free monoid on a set Tn ⊂ Gn of(
n+1

2

)
elements written

Tn =
{(

a
b

) ∣∣∣ a, b ∈ {0, 1, . . . , n}, a < b
}

.
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A subset R ⊂ Gn is closed under cyclic permutations if ab ∈ R implies ba ∈ R, for all
a, b ∈ Gn. We call ba a cyclic permutation of ab.

We define Qn ⊂ Gn to be the smallest subset, closed under cyclic permutations,
containing (

a
b

)(
c
d

)(
a
b

)(
c
d

)

whenever 0 ≤ a < b ≤ c < d ≤ n;

(a
b

)(a + x
b − y

)(a
b

)(a + y
b − x

)

whenever x, y ≥ 0 and 0 ≤ a < a + x + y < b ≤ n; and

(
a

b − z

)(
a + y

b

)(
a

b − x

)(
a + z

b

)(
a

b − y

)(
a + x

b

)

whenever x, y, z > 0 and 0 ≤ a ≤ a + x + y + z = b ≤ n.
In order to motivate the definition of Qn, note that the action of Gn on {1, . . . , n}

defined by
(

a
b

)
(x) =

{
a + b + 1 − x if a + 1 ≤ x ≤ b,

x otherwise
(44)

has the property that the elements of Qn act trivially.
Let Kn be the group presented by the generating set Tn and relations s2 = 1 for all

s ∈ Tn and the relations in Qn. One of our aims is to show that Kn is naturally the vertex
set of a (2, 3)-graph.

If one drops the relations of length 6 from the presentation of Kn one obtains a group
similar to the cactus group defined on page 118 of [DJS].

4.2 Admissible graphs

We observe now:

◦ (45)For all distinct a, b ∈ Tn, the set abGn ∩ Qn has precisely one element. Also,
a2Gn ∩ Qn = ∅ for all a ∈ Tn.

◦ (46)The set Qn is invariant under reversal, that is, under the anti-automorphism
of Gn which fixes every element of Tn.

Definition 47. We define an action Tn×Gn → Tn written (a, b) 7→ a∗b as follows. Firstly,
a ∗ a = a for all a ∈ Tn. Let a, b, c ∈ Tn and assume that Qn meets abcGn. Then a ∗ b = c.

Note that this is well-defined by (45). Also note that (a ∗ b) ∗ b = a for all a, b ∈ Tn by
(46). Later on in proposition 68 we prove that it descends to an action Tn × Kn → Tn.

Definition 48. (a). For any set I, we define UI to be the set of injective maps I → Tn.
(b). Recall that FI is the free monoid on I. We define an action UI × FI → UI

written (u, g) 7→ uOg by [uOs](t) = u(t) ∗ u(s) for all s, t ∈ I. In particular, we have
[uOs](s) = u(s) for all s ∈ I. Note also that uOss = u for all s ∈ I.

the electronic journal of combinatorics 15 (2008), #R134 15



Lemma 49. Let h ∈ Gn, u0 ∈ UI . Define ui ∈ UI for 0 < i ≤ k and si ∈ I for 0 ≤ i ≤ k
uniquely by

h = u0(s0) · · ·uk−1(sk−1),

uiOsi = ui+1 for all i.

(a) If h ∈ Qn then si = si+2 for all i.

(b) Conversely, if si = si+2 for all i then there exists h′ ∈ Gn such that hh′ is a power of
an element of Qn.

(c) We have uk(r) = u0(r) ∗ h for all r ∈ I.

(d) We have u0 = uk ⇔ a ∗ h = a for all a ∈ u0(I).

Proof. Proof of (a). Write h = a0 · · ·ak−1, ai ∈ Tn. For all i we have ui+1(si) = ui(si)
because ui+1 = uiOsi. Therefore,

ui(si−1) = ui−1(si−1) = ai−1 = ai+1 ∗ ai = ui+1(si+1) ∗ ui(si)

= ui+1(si+1) ∗ ui+1(si) = (ui+1Osi)(si+1) = ui(si+1)

thus proving (a).
Part (b) is similar to (a) and left to the reader.
Proof of (c). We have ui(r) ∗ ai = ui+1(r) because ui(r) ∗ ai = ui(r) ∗ ui(si) =

(uiOsi)(r) = ui+1(r). It follows that u0(r) ∗ h = u0(r) ∗ a0 · · ·ak−1 = uk(r).
Proof of (d). We have

u0 = uk ⇐⇒ u0(r) = uk(r) for all r ∈ I

⇐⇒ u0(r) = u0(r) ∗ h for all r ∈ I by (c)

⇐⇒ a = a ∗ h for all a ∈ u0(I). �

We shall prove that there exists a (2, 3)-graph whose vertex set is Kn and whose edges
are {x, xa} whenever x ∈ Kn, a ∈ Tn. The colour of the edge {x, xa} cannot depend only
on a, because otherwise Kn would be a Coxeter group with Tn as the standard generating
set (see lemma 10) which easily leads to a contradiction. Before giving the correct edge
colouring, we define a closely related groupoid RI .

Recall that a groupoid is a category all of whose morphisms are isomorphisms. If X, Y
are objects of a category C we write C(X, Y ) for the set of morphisms of C from X to Y .
All our categories are on the right, that is, the composition C(X, Y )×C(Y, Z) → C(X, Z)
is written (f, g) 7→ fg (rather than gf).

Definition 50. For any set I, we define a groupoid RI with object set UI by the presen-
tation with generators (

u
s

uOs

)
∈ RI(u, uOs)
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whenever u ∈ UI , s ∈ I, and relations

(u0

s
u1

)(u1

t
u2

)(u2

s
u3

)(u3

t
u4

)
· · ·

(u2k−2

s
u2k−1

)(u2k−1

t
u2k

)
(51)

whenever u0 = u2k and either s = t or the element

h := u0(s) u1(t) u2(s) u3(t) · · ·u2k−2(s) u2k−1(t) (52)

is a power of an element of Qn.

Lemma 53. Let I be a set. There exists a unique functor F : RI → Kn (where we
consider Kn as a groupoid with just one object) such that

F

( u
s

uOs

)
= u(s) (54)

for all s ∈ I, u ∈ RI .

Proof. Recall that RI is defined by a certain presentation. The F -values of the generators
of RI are prescribed by (54) and unicity of F follows.

In order to prove the existence of F , we need to prove that (54) takes relations for
RI to the identity morphism in Kn. For the relation (51) with s = t this holds because
u(s)2 = 1 in Kn. Consider finally the relation (51) where u0 = u2k, and h defined by (52)
is a power of an element of Qn. Then h defines the identity element in Kn. Moreover,
applying (54) to each of the 2k factors of the relation (51) yields precisely h, thus finishing
the proof. �

Remark 55. It is clear that the following assertions are equivalent:

◦ (56)We have a ∗ g = a for all a ∈ Tn, g ∈ Qn.

◦ (57)The condition that u0 = u2k in definition 50 is a consequence of the other
assumptions.

◦ (58)The restriction RI(u,−) → Kn of the functor F of lemma 53 is injective.

In proposition 68 we shall see that these are true. This could be proved here directly
by a tedious calculation, but better is to give it as a byproduct of some more general
calculations in example 62 that we need to do anyway.

Definition 59. Let u ∈ UI . We define a fully coloured graph Γ(u) = (V, I, m) called an
admissible graph as follows. Firstly, V := RI(u,−), the set of morphisms in RI from u to
any object. The action V × I → V is defined by

(v, s) 7→ vs := v ·

( u0

s
u0Os

)
whenever v ∈ RI(u, u0)
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where a dot denotes composition in RI . We define m to be the minimal possible: for
v ∈ V and s, t ∈ I distinct, we let m(v; s, t) be the least k > 0 such that v(st)k = v.

It is clear that Γ(u) is a fully coloured graph. Notice that Γ(u) has a natural base
vertex 1u ∈ RI(u, u). Note that if u1, u2 are isomorphic objects of RI then there is an
isomorphism of fully coloured graphs Γ(u1) → Γ(u2) (preserving I pointwise) but it may
not respect the base points. Therefore we may reasonably write Γn instead of Γ(u) if
u: I → Tn is bijective. Examples of admissible graphs can be found in figures 5, 7 and 8.

4.3 Equivalence relations

Recall that Tn =
{(

a
b

)
| 0 ≤ a < b ≤ n

}
.

Definition 60. (a). For a subset A ⊂ {0, 1, . . . , n} we define T (A) :=
{(

a
b

)
| a, b ∈ A, a <

b
}
⊂ Tn.
(b). Let u ∈ UI . The support of u is defined to be supp(u) :=

{
a, b |

(
a
b

)
∈ u(I)

}
, that

is, the smallest A such that u(I) ⊂ T (A).
(c). Let u1, u2 ∈ UI and write Ai = supp(ui) (i ∈ {1, 2}). We write u1 ∼ u2 if there

exists a map f : A1 → A2 which is either an increasing bijection or a decreasing one, and
u2 = g ◦ u1 where g: T (A1) → T (A2) is defined by g

(
a
b

)
=
(

fa
fb

)
.

(d). For the sake of question 78, we include the following definition. Let u1, u2 ∈ UI and
suppose A = supp(u1) = supp(u2). By a cyclic permutation of A we mean a power of the
permutation of A which takes every non-maximal element of A to the next bigger element
of A. We say that u1 is a cyclic permutation of u2 if there exists a cyclic permutation f
of A such that u2 = g ◦ u1 where g: T (A) → T (A) is defined by g

(
a
b

)
=
(

fa
fb

)
.

Clearly, ∼ is an equivalence relation on UI .

Lemma 61. Let u1, u2 ∈ UI be such that u1 ∼ u2.
(a). Then u1Og ∼ u2Og for all g ∈ FI .
(b). Write Ej := ujOFI . Then there is a unique isomorphism of FI-sets f : E1 → E2

(that is, a bijection such that f(uOg) = (fu)Og for all u ∈ E1, g ∈ FI) such that
f(u1) = f(u2).

(c). For j ∈ {1, 2}, let Rj ⊂ RI be the component of uj, that is, the biggest subcategory
of RI whose object set is Ej. Then there is a unique isomorphism of categories h: R1 → R2

such that h(u) = f(u) for all objects u (f as in (b)) and

h

(u3

s
u4

)
=

(f(u3)
s

f(u4)

)

whenever the left hand side is defined.
(d). There is a unique isomorphism Γ(u1) → Γ(u2) of pointed fully coloured graphs

which preserves I pointwise.
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Proof. Easy and left to the reader. �

Let ≈ be the equivalence relation on UI generated by ∼ defined in definition 60 and
∼= (isomorphism in the groupoid RI).

Let ≈s be the equivalence relation on UI generated by ≈ and the graph of the symmet-
ric group on I. In other words, u1 ≈s u2 if and only if u1 ≈ u2 ◦ π for some permutation
π of I. Define ∼s and ∼=s likewise.

It is natural to draw pictures of objects of RI . The convention is easily understood
from figure 3 which shows an element of UI and some of its equivalence classes, and figure 4
which shows pictures for edges in admissible graphs. Figure 5 shows an admissible graph.

Figure 3. Vertices of admissible graphs. Let I = {r, s, t} have 3 elements. Part (a) shows a picture

of the object u ∈ UI defined by u(r) =
(
0
3

)
, u(s) =

(
1
6

)
, u(t) =

(
1
7

)
. The picture in (a) is flat but

we usually prefer the (equivalent) curled up version of (b)–(d). In (b) we see the ∼-class of u. The

precise values 0, 1, 3, 6, 7 are forgotten but their ordering is not as it is still shown in the picture. In

(c) we divide out the symmetric group on I and in (d) we divide out ∼s.
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Figure 4. Edges of admissible graphs. Suppose that the left hand side in (a) depicts some u ∈ UI

with I = {r, s, t}. Then the right hand side is uOt. Part (b) is obtained from (a) by taking ∼-classes

— we know by lemma 61 that admissible graphs survive division by ∼.
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4.4 Main result

Example 62. We now have a detailed look at three rank 3 admissible graphs. Our under-
standing of them will be crucial in the case-by-case proof of theorem 67.
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Figure 5. An example of an admissible graph (on the left) together with the corresponding part of

the Cayley graph of (Kn, Tn) (on the right). This graph is reducible, but the relation
(
1
7

)(
2
5

)(
1
7

)(
3
6

)

is not of the form abab.
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Figure 6. Schematic version of Γ(u) for u ∈ L2 ∪ L3. See figure 7 for a full picture. The colour

preserving automorphism group of this graph has order 6 and preserves the 2-residue labelled 1.
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Figure 7. The admissible graph Γ(u) for u ∈ L2∪L3. A schematic version of it is shown in figure 6.
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Figure 8. Picture (a). Part of the admissible graph Γ(u) for u ∈ L4∪L5∪L6. The dashed triangle

is exactly one eighth of it and corresponds to the gray region of (b) and (c). Pictures (b) and

(c). The line arrangement defined by xyz(x + y)(y + z)(z + x)(x + y + z) = 0. It is dual to the

(2, 3)-graph A(3, 7). The gray region is the dashed triangle of (a). See figure 2 for A(3, 7).
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(b) Spherical picture of A(3, 7). (c) Projective picture of A(3, 7).
The line at infinity is included.
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(a). One rank 3 admissible graph Γ is given in figure 7. You should verify it. The
verification is helped by the schematic version of the graph in figure 6 and the order 6
colour preserving automorphism group (which fixes the 2-residue numbered 1). Note that
the vertices can be taken to be ∼-classes by lemma 61.

An observation which will be important in the proof of theorem 67 is that Γ is a
(2, 3)-graph. Indeed, it is isomorphic to the Coxeter graph of type A3.

(b). Figure 8(a) shows part of another rank 3 admissible graph Γ. Convince yourself
that it is correct. The dashed triangle is precisely 1/8 of the whole graph. The colour
preserving automorphism group of Γ is of order 8 and generated by the reflections in the
edges of the dashed triangle.

Again, we observe that Γ(u) is a (2, 3)-graph (use theorem 35 or proposition 43). In
the classification of rank 3 (2, 3)-graphs (proposition 43) we said that it is of type A(3, 7).
See figure 2 for another picture of it. As every (2, 3)-graph, it has a realisation as a
hyperplane arrangement. This arrangement is shown in figure 8(b), which also serves to
give a full picture rather than 1/8 of it.

(c). Let I and u ∈ UI be such that u(I) =
{(

0

2

)
,
(
1

3

)
,
(
2

4

)}
. Then u is a single isomorphism

class in RI and one easily deduces that Γ(u) must be a Coxeter fully coloured graph.
Indeed it is of type A3 and again it is a (2, 3)-graph.

Definition 63. Let u ∈ UI . We call u reducible if I can be written as the union of two
non-empty disjoint sets A, B such that for all (a, b) ∈ A × B there exist x, y ∈ Tn such
that u(a) u(b) x y ∈ Qn. Otherwise it is called irreducible.

For example, if the image of u is
{(

1

7

)
,
(
2

5

)
,
(
3

6

)}
then u is reducible because of the partition{(

1

7

)}
,
{(

2

5

)
,
(
3

6

)}
. See figure 5 for the associated reducible admissible graph.

Lemma 64.

(a) Let a, b, c ∈ Tn be distinct. Define f, g, h uniquely by

f ∈ caGn ∩ Qn, g ∈ abGn ∩ Qn, h ∈ bcGn ∩ Qn.

Suppose that f and g have length 4. Then a ∗ h = a.

(b) Let u ∈ UI . If u is reducible then Γ(u) is reducible as a fully coloured graph.

Proof. Part (a) is a straightforward and not-so-tedious calculation, and rather similar to
the existence of the homomorphism Kn → Sn given in (44). Part (b) follows immediately
from (a). �

Lemma 65. Suppose that n ≥ 5 and I is a set of 3 elements.

(a) There are precisely six ∼s-classes L1, . . . , L6 of irreducible elements in UI . They are
given by the following representatives.

ª«
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ª«

ª«

ª«
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¬­

¬­
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(b) The ≈s-classes of irreducible elements in UI are L1, L2 ∪ L3 and L4 ∪ L5 ∪ L6.

(c) Every rank 3 admissible graph is a (2, 3)-graph.

Remark 66. The classes L1, L2, L3 exist only if n ≥ 4 and L4, L5, L6 only if n ≥ 5. In
particular, irreducible rank 3 admissible graphs don’t exist if n < 4. For simplicity, we
put n ≥ 5 in lemma 65.

Proof. It is easy and left to the reader to prove (a).
Proof of (b). The (connected) graph of example 62(a) and figure 7 involves L2 and

L3 but no others (recall that reflection through a vertical line fixes every ∼-class by
definition). Therefore L2 ∪ L3 is a single ≈s-class. Likewise, the graph of example 62(b)
and figure 8(a) involves L4, L5 and L6 but no others so L4 ∪ L5 ∪ L6 is a ≈s-class. Only
one ∼s-class L1 remains which must therefore be a ≈s-class as well; we looked at the
related admissible graph in example 62(c).

Proof of (c). By (b) and lemma 64(b) we know all irreducible rank 3 admissible graphs.
As we already observed in example 62, all of them are (2, 3)-graphs. It is easy and left to
the reader to handle the reducible ones. �

Theorem 67. Every admissible graph is a (2, 3)-graph.

Proof. Consider an admissible graph Γ(u) = (V, I, m), u ∈ UI . In order to prove that
Γ(u) is connected, let f be any vertex of Γ(u), that is, f ∈ RI(u,−). Recall also the
vertex 1u ∈ RI(u, u) of Γ(u). By definition of RI , we can write

f =

(u0

s0

u1

)
· · ·

(uk−1

sk−1

uk

)

with u0 = u. Therefore, f = 1u s0 · · · sk−1, which is in the same connected component as
1u. This proves that Γ(u) is connected. It is simply 2-connected by definition. Therefore,
Γ(u) is a fully coloured graph.

Next we prove that m(v; s, t) ∈ {2, 3} for all v, s, t. In lemma 65(c) we observed
this to be true in the rank 3 case. By lemma 49(d), this implies that a ∗ g = a for all
(a, g) ∈ Tn × Qn. Using lemma 49(d) backwards we find that m(v; s, t) ∈ {2, 3} for all
v, s, t.

Recall that a (2, 3)-graph is just a (2, 3,∞)-graph for which m(v; s, t) is never infinite.
By theorem 35 it remains to prove that all structure sequences of Γ(u) satisfy (36) and (37).
But all structure sequences of all admissible graphs occur in rank 3 admissible graphs. In
lemma 65 we already observed the latter to be (2, 3)-graphs, hence in particular to satisfy
the required conditions (36) and (37). �

Proposition 68. We have a ∗ g = a for all a ∈ Tn, g ∈ Qn.

Proof. Let b, c ∈ Tn be such that g ∈ bcGn. Let I and u ∈ UI be such that u(I) = {a, b, c}.
If #I = 2 then the result is immediate using the fact that (d∗e)∗e = d for all d, e ∈ Tn,

and that g has even length.
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Suppose now that #I = 3. If Γ(u) is reducible, the result is precisely lemma 64(a), so
suppose that Γ(u) is irreducible.

By lemma 64(b) and lemma 64(b) we know all irreducible rank 3 admissible graphs.
We drew these graphs in full detail in example 62. Inspection of the graphs immediately
shows the promised result. �

It follows from proposition 68 that there exists an action Tn × Kn → Tn (descending
from the star ∗ action by Gn) which by a slight abuse of notation we denote by a star
again.

Corollary 69. There exists a faithful linear representation of Kn of dimension #Tn.

Proof. Let u ∈ UI be such that u: I → Tn is bijective. By theorem 67, Γn := Γ(u)
is a (2, 3)-graph. Consider its standard realisation with its usual notation as given by
definition 30. Let AutΓ(u) be the automorphism group (see definition 9). By lemma 33,
there exists a faithful representation Aut Γ(u) → GL(Q) of dimension #Tn. It remains to
embed Kn into Aut Γ(u).

Consider the functor F : RI → Kn from lemma 53. Its restriction F0: RI(u,−) → Kn

is bijective by proposition 68 and the equivalence (56) ⇔ (58). Moreover, its restriction
F1: RI(u, u) → Kn is an injective group homomorphism whose image has finite index in
Kn.

Let us first construct a faithful colour preserving left action of RI(u, u) on Γ(u). We
define the RI(u, u)-action on the vertex set RI(u,−) to be left multiplication

RI(u, u)× RI(u,−) −→ RI(u,−).

This extends to a unique RI(u, u)-action on Γ(u) preserving the colours.
Thus, RI(u, u) has a faithful linear representation of dimension #Tn. Inducing it up

to Kn yields a faithful linear representation of Kn of dimension #Tn #(Kn/F1RI(u, u)).
To get the dimension as promised in the corollary, we need to work a bit harder.

Provided that #I = #Tn (as it is) let FI be the category with the same object set
UI as RI and defined by the same presentation as RI , except that there are no relations.
Thus, FI is a free category of which RI is a natural quotient. Recall that Kn is a quotient
of the free monoid Gn on Tn.

For every v ∈ UI , we have a bijection Θv: Gn → FI(v,−) defined by

Θv(a0 · · ·ak−1) =

(u0

s0

u1

)
· · ·

(uk−1

sk−1

uk

)

whenever ai ∈ Tn, u0 = v, ai = ui(si) for all i. We write v ⊗ a0 · · ·ak−1 := uk, thus
obtaining a right Gn-action on UI . We have

Θv(fg) = Θv(f) Θv⊗f(g) for all v ∈ UI , f, g ∈ Gn. (70)

Next we prove:
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◦ (71)The map Θv: Gn → FI(v,−) descends to a map θv: Kn → RI(v,−).

Gn FI(v,−)

Kn RI(v,−)

Θv

θv

In order to prove this, we must show that if f, g, h ∈ Gn and h ∈ Qn or h = a2 for some
a ∈ Tn, then

Θv(fhg) =RI
Θv(fg), (72)

where =RI
means having the same image in RI .

First we prove (72) if f = g = 1 and h ∈ Qn. Then a ∗ h = a for all a ∈ Tn by
proposition 68. By lemma 49(d) we find v ⊗ h = v. By lemma 49(a) Θv(h) is precisely a
relation (51) in the presentation of RI as required.

If f = g = 1 and h = a2, a ∈ Tn then

Θv(h) = Θv(a
2) =

( v
s

vOs

)(vOs
s
v

)
= 1v

where s = v−1(a). This proves (72) if f = g = 1.
The general case follows by using (70):

Θv(fhg) = Θv(f) Θv⊗f(h) Θv⊗fh(g) =RI
Θv(f) Θv⊗fh(g)

= Θv(f) Θv⊗f(g) = Θv(fg),

which finishes our proof of (72) and thereby (71). Of course, θu is the inverse of the
restriction F0: RI(u,−) → Kn of the functor F .

We define a left Kn-action on RI(u,−), the vertex set of Γ(u), by

Kn × RI(u,−) −→ RI(u,−) (73)

(a, f) 7−→ a ∧ f := θu[a θ−1
u (f)].

By proposition 68, there exists a right Kn-action on I, the colour set of Γ(u),

I × Kn −→ I (74)

(s, a) 7−→ s u a := u−1[u(s) ∗ a].

It remains to prove that (73) defines a Kn-action on the fully coloured graph Γ(u), taking
into account that the colours get permuted by (74). In formula,

(a ∧ f)s = a ∧ [f(s u a)] for all a ∈ Kn, f ∈ RI(u,−), s ∈ I. (75)

By (71), ⊗ descends to an action UI × Kn → UI which by a slight abuse of notation
we shall also denote (v, a) 7→ v ⊗ a.
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Let us now prove that

(v ⊗ a)s = v(s) ∗ a for all v ∈ UI , a ∈ Kn, s ∈ I. (76)

It suffices to prove this for a ∈ Tn. Then

θv(a) =

( v
v−1(a)

vOv−1(a)

)

whence (v ⊗ a)(s) = [vOv−1(a)](s) = v(s) ∗ a, thus proving (76).
Next we prove

(u ⊗ b)(s u a) = (u ⊗ ab)(s) for all a, b ∈ Kn, s ∈ I. (77)

Indeed,

(u ⊗ b)(s u a) = [u(s u a)] ∗ b by (76)

= [u(s) ∗ a] ∗ b by definition of u

= u(s) ∗ ab

= (u ⊗ ab)(s) by (76)

thus proving (77).
Finally we are in a position to prove (75). Writing b = θ−1

u (f) ∈ Kn we find

a ∧
[
f(s u a)

]
= a ∧

[
θu(b)(s u a)

]

= a ∧
[
θu(b) ·

( u ⊗ b
s u a

(u ⊗ b)O(s u a)

)]
= a ∧

[
θu

(
b · (u ⊗ b)(s u a)

)]

= θu

(
ab · (u ⊗ b)(s u a)

)
(77)
= θu

(
ab · (u ⊗ ab)(s)

)

= θu(ab) ·

( u ⊗ ab
s

(u ⊗ ab)Os

)
= θu(ab)s =

(
a ∧ θu(b)

)
s = (a ∧ f)s.

This proves (75) and thereby the corollary. �

Question 78. Recall that in definition 60(d) we defined cyclic permutations of elements
of UI . Observe now that every u1 ∈ L1 is a cyclic permutation of some u2 ∈ L2 (see
lemma 65(a) for the classification of rank 3 admissible graphs). Also, Γ(u1) and Γ(u2)
are isomorphic as fully coloured graphs because both are of Coxeter type A3 as we saw
in example 62(a) and (c). I don’t know if this is a coincidence. Is it true in general that
Γ(u3) and Γ(u4) are isomorphic whenever u3 is a cyclic permutation of u4?

We finish with a result without proof.
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Proposition 79. There are precisely four isomorphism classes of rank 4 irreducible finite
(2, 3)-graphs. They are the Coxeter ones A4, D4 and two more named A(4, 13), A(4, 15).
Among them, D4 is the only non-admissible one. Possible choices of u13, u15 ∈ UI such
that A(4, 13) = Γ(u13), A(4, 15) = Γ(u15) are as follows.

u13(I) =
{(

0
2

)
,
(
0
3

)
,
(
0
4

)
,
(
1
5

)}
, u15(I) =

{(
0
2

)
,
(
0
4

)
,
(
1
5

)
,
(
3
6

)}
.

Here are possible equations for A(4, 13), A(4, 15).

A(4,13) xyzw(x + y)(y + z)(z + w)(w + y)(y + z + w)

(x + y + z)(x + y + w)(x + y + z + w)(x + 2y + z + w)

A(4,15) xyzw(x + y)(y + z)(z + w)(w + y)

(x + y + z)(x + y + w)(y + z + w)(x + 2y + z)

(x + y + z + w)(x + 2y + z + w)(x + 2y + 2z + w)

The Poincaré polynomials of A(3, 7), A(4, 13), A(4, 15) are, respectively, [1][3]2, [1][3][4][5],
[1][4][5]2. �
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