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Abstract

Given an assignment of weights w to the edges of an infinite graph G, a matching
M in G is called strongly w-maximal if for any matching N there holds

∑

{w(e) |
e ∈ N \ M} ≤

∑

{w(e) | e ∈ M \ N}. We prove that if w assumes only finitely
many values all of which are rational then G has a strongly w-maximal matching.
This result is best possible in the sense that if we allow irrational values or infinitely
many values then there need not be a strongly w-maximal matching.

1 introduction

Infinite min-max theorems are rather weak when stated in terms of cardinalities. Cardi-
nalities are too crude a measure to capture the duality relationship. To exemplify this
point, consider Menger’s theorem, the first combinatorial theorem that was cast in the
form of a min-max equality. Formulated in terms of cardinalities, it states that given two

∗The research of the first author was supported by grant no. 780-04 of the Israel Science Foundation,
by the Technion’s research promotion fund, a BSF grant, and by the Discont Bank chair.

†The research of the second author was supported by a BSF grant
‡The research of the first, third and fourth authors was supported by GIF grant no. I-879-124.6.

the electronic journal of combinatorics 15 (2008), #R136 1



sets, A and B in an infinite graph, the maximal cardinality κ of a family of disjoint A–B
paths is equal to the minimal cardinality of a vertex-set separating A from B. This is
easy to prove: if κ is finite then it follows from the finite version of the theorem, and if
it is infinite then we can take a maximal set P of disjoint A–B paths, and choose the set
of vertices appearing in P as our separating set. A more succinct formulation, captur-
ing the duality in its full strength is the following, which is known as the Erdős-Menger
Conjecture:

Theorem 1.1 ([2]). Given two vertex-sets, A and B in an infinite graph, there exists a
set F of disjoint A–B paths and an A–B separating set S such that S consists of a choice
of precisely one vertex from every path in F .

This formulation is tantamount to requiring the complementary slackness conditions
to hold between the two dual objects.

A similar situation occurs when studying matchings in infinite graphs. It is easy to
prove the existence of a maximal matching with respect to cardinality, however, it is
possible to find matchings that are maximal in a stronger sense:

Definition 1.2. A matching M in a hypergraph H is said to be strongly maximal if |N \
M | ≤ |M \ N | for any matching N .

The notion of strong maximality is closely related to duality results. Namely, it is
used to prove duality results, and conversely, a main tool in proofs of existence of strongly
maximal matchings is duality theorems. In particular, Theorem 1.1 is equivalent (in the
sense of easy derivation, in both directions) to the statement that in the hypergraph of
A–B paths (a path being identified with its vertex set) there exists a strongly maximal
matching. The set S in Theorem 1.1 is a strongly minimal cover in this hypergraph,
where the notion of strong minimality is defined in an analogous way. It is interesting
to note that not every strongly minimal separating set S has a corresponding matching
F as in the theorem. An example showing this is the bipartite graph G with sides A
and B, where A = {a0, a1, a2, . . . , }, B = {b1, b2, . . .}, and E(G) = {(ai, bi) | 1 ≤ i <
ω} ∪ {(a0, bi) | 1 ≤ i < ω}. The side A is a strongly minimal separating set, but there is
no F corresponding to it as in the theorem, since, easily, A is unmatchable.

The main result of [1] implies:

Theorem 1.3. In any graph there exists a strongly maximal matching.

As expected, the theorem follows from a duality result. The proof will be given in
Section 3. Beyond graphs very little is known. The main conjectures on the notions of
strong maximality and strong minimality are the following:

Conjecture 1.4. In any hypergraph with finitely bounded size of edges there exists a
strongly maximal matching and a strongly minimal cover of the vertex set by edges of the
hypergraph.

Conjecture 1.5. In every graph there exists a strongly minimal cover of the vertex set
by independent sets.
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An interesting conjecture that would follow from a positive answer to Conjecture 1.5
is the following:

Conjecture 1.6. In any poset of bounded width there exists a chain C and a partition of
the vertex set into independent sets, all meeting C.

In this paper we are going to extend Theorem 1.3 to graphs with weighted edges. Here
and throughout the paper, for a set F of edges we define w[F ] :=

∑

e∈F w(e). Let G be
a graph and w : E(G) → R an assignment of weights to the edges of G fixed throughout
this section.

Definition 1.7. A matching M in G is called strongly w-maximal if w[N \M ] ≤ w[M \N ]
for any matching N in G with |M \ N |, |N \ M | < ∞.

Theorem 1.8. If w assumes only finitely many values all of which are rational, then G
has a strongly w-maximal matching.

On the way to the proof of Theorem 1.8 we shall prove:

Theorem 1.9. Suppose that G is complete and w assumes only finitely many values all of
which are rational. Then there exists a strongly w-minimal perfect matching, or a strongly
w-minimal almost perfect matching.

A strongly w-minimal perfect or almost perfect matching M is a perfect or almost
perfect matching that is strongly w-minimal (which is defined analogously to strongly w-
maximal) among all perfect and almost perfect matchings in G (i.e. there is no perfect or
almost perfect matching N with |M \N |, |N \M | < ∞ and w[N \M ] < w[M \N ]). Note
that such a matching will, in general, not be strongly w-minimal among all matchings in
G.

As we shall see, Theorem 1.9 is best possible in the sense that it false if we allow
irrational weights or if we demand the matching to be perfect rather than almost perfect.

2 Definitions

We will be using the terminology of [4].
The support of a matching M , denoted by supp(M), is the set of vertices incident with

M .
Let M be a matching. A path or a cycle P is said to be M -alternating if one of any two

adjacent edges on P lies in M . An M -alternating path Q is said to be finitely improving
(or finitely M-improving) if it is finite and both its endpoints do not belong to supp(M).
It is said to be infinitely improving (or infinitely M-improving) if it is infinite, has one
endpoint, and this endpoint does not belong to supp(M). It is said to be M-indifferent
if it is either two way infinite or it is finite and has one endpoint in supp(M) and one
endpoint outside supp(M).
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Given two matchings M and N , a path or cycle is said to be M–N -alternating if it
is both M -alternating and N -alternating. For example, an M–N -alternating path may
consist of only one edge belonging to both M and N .

Given to sets K, L of edges, their symmetric difference is the set K4L := (K ∪ L) \
(K ∩ L).

A graph C is called almost matchable if C−v has a perfect matching for some v ∈ V (C).
It is called uniformly almost matchable if C−v has a perfect matching for every v ∈ V (C).

For a graph G and a set of vertices U of G we write G[U ] for the subgraph of G induced
by the vertices in U .

3 Strongly maximal matchings in graphs

In this section we prove Theorem 1.3 and develop some tools for the proof of Theorem 1.8.

Lemma 3.1. A matching M is strongly maximal if and only if there does not exist a
finitely improving M-alternating path.

Proof. If P is a finitely improving M -alternating path then the matching M4E(P ) wit-
nesses the fact that M is not strongly maximal. For the converse, assume that M is
not strongly maximal, namely there exists a matching N such that |N \ M | > |M \ N |.
It is easy to see that M4N spans a set F of M–N alternating paths and cycles. Now
N \ M =

⋃

Q∈F(N ∩ E(Q) \ M ∩ E(Q)) and M \ N =
⋃

Q∈F(M ∩ E(Q) \ N ∩ E(Q)),
thus the inequality |N \ M | > |M \ N | implies the existence of a path Q in F such that
|N ∩ E(Q)| > |M ∩ E(Q)|. Then, Q is a finitely improving M -alternating path.

We will use the following result from [3], stating that the classical Gallai-Edmonds
decomposition theorem is valid also for infinite graphs. A graph C is called factor critical
if it is uniformly almost matchable but does not have a perfect matching.

Theorem 3.2. In any graph G there exists a set of vertices T , a set F of factor critical
components of G − T , and an injective function F : T → F such that

(i) for every t ∈ T there exists a vertex v(t) of F (t) connected to t in G, and

(ii) G − T −
⋃

F∈F V (F ) has a perfect matching.

Proof of Theorem 1.3. Let T and F be as in Theorem 3.2. Let G consist of those elements
of F belonging to the range of F , and let H = F \ G. For every t in T let Jt be a perfect
matching of the graph F (t) − v(t). For every F ∈ H choose an almost perfect matching
JF . Let N be a perfect matching in the graph G − T −

⋃

F∈F V (F ). We claim that
the matching M defined as {tvt | t ∈ T} ∪

⋃

t∈T Jt ∪
⋃

F∈H JF ∪ N is strongly maximal.
Suppose not; then, by Lemma 3.1, there exists a finite improving M -alternating path
Q. By the construction of M the endpoints of Q are unmatched vertices v1, v2 of some
F1, F2 ∈ H respectively where F1 6= F2. Now go along Q, starting at v1. Since F1 is a
component of G−T , the path Q can leave F1 only through T . Let t1 be the first vertex of
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Q in T . Since the edge of Q leading to t1 does not belong to M , the edge e of Q leaving
t1 does belong to M ; let e =: t1u1, where u1 ∈ F (t1). But when Q leaves F (t1), it is again
through an edge not belonging to M that contains a vertex t2 of T . Thus, again, the
edge of Q leaving t2 belongs to M , and continuing this way we see that Q cannot leave
T ∪

⋃

G, contradicting the fact that v2 ∈ F2 ∈ H.

An even stronger notion than strong maximality of a matching in a graph is that
of having (inclusion-wise) maximal support. Similarly to the proof of Lemma 3.1 it is
possible to show:

Lemma 3.3. A matching M has maximal support if and only if there does not exist any
(finitely or infinitely) improving M-alternating path.

In [7] the following stronger version of Theorem 1.3 was proved for countable graphs:

Theorem 3.4. In every countable graph there exists a matching with maximal support.

In our proof of Theorem 1.9 we are going to need the following corollary of Theorem 1.3:

Lemma 3.5. For any graph G, and every matching M in G there exists a strongly max-
imal matching N such that supp(N) ⊇ supp(M).

Proof. Let K be a strongly maximal matching of G, which exists by Theorem 1.3. Then,
the symmetric difference K4M spans a set G of disjoint M–K-alternating paths and
cycles. Let G ′ ⊆ G be the set of those elements of G that are either finite K-indifferent
paths or infinitely K-improving paths. We can derive a new matching N from K by
switching between K and M along all paths in G ′; formally, let N := K4

⋃

P∈G′ E(P ).
Clearly, since there are no finitely K-improving paths by Lemma 3.1, supp(N) ⊇ supp(M).
We claim that N is strongly maximal.

Suppose not. Then, by Lemma 3.1, there exists a finitely improving N -alternating
path Q. We shall use Q in order to construct a matching L such that |L \ K| > |K \ L|
contradicting the strong maximality of K. As an intermediate step, we first construct a
further matching K ′ by removing finitely many edges from K and adding the same amount
of new edges. To define K ′, we start with K and perform the following operations:

(i) For every finite element P of G ′ incident with Q, replace K ∩ E(P ) by M ∩ E(P )
(the resulting matching thus coincides with N on E(P ); note that P has even length
as it is a finite K-indifferent path).

(ii) For every infinite element R of G ′ (i.e. for every infinitely K-improving path in G)
incident with Q, let k = k(R) be the last edge on R that lies in K and is incident
with Q. Replace all edges of R that lie in K and precede k on R, including k itself,
by the edges of M lying on R and preceding k.

Let K ′ be the resulting matching. By construction, K ′ satisfies |K ′ \K| = |K \K ′| <
∞. Moreover, K ′∩E(Q) = N∩E(Q) holds by construction and thus Q is a K ′-alternating
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path as it is an N -alternating path, and in fact it is a finitely K ′-improving one: To prove
this, we have to show that the endvertices of Q do not lie in supp(K ′). As Q is finitely
N -improving, its endvertices do not lie in supp(N). If an endvertex v of Q does not lie
in supp(K), it clearly also does not lie in supp(K ′) (as supp(K ′) ⊂ supp(K) ∪ supp(N)).
On the other hand, if v lies in supp(K) and hence in supp(K) \ supp(N), then by the
construction of N it is the endvertex of a finite K-indifferent path in G ′. This path was
considered in (i) and hence v /∈ supp(K ′). Therefore the endvertices of Q do not lie in
supp(K ′) and Q is a finitely K ′-improving path.

Letting L = K ′4E(Q) we thus have |L \ K ′| > |K ′ \ L|, from which it easily follows
that |L \ K| > |K \ L|, contradicting the fact that K is strongly maximal.

4 Strongly maximal weighted matchings

In this section we prove Theorem 1.9 and Theorem 1.8. Before we do so, let us argue
that Theorem 1.9 is in a way best possible. First, we claim that the requirement that
G be a complete graph is essential in it. Indeed, if G is any graph that has an almost
perfect matching, then it does not necessarily have an almost perfect strongly w-minimal
matching. To see this, consider the graph consisting of a set of paths P1, P2, . . . that have
precisely their first vertex w in common, such that each Pi comprises 2i edges weighted
alternatingly with zeros and ones (starting at w with a zero-weight edge). Any almost
perfect matching of this graph that matches w by an edge e can be improved by matching
w by the first edge of a Pj with a higher index than the Pi containing e, and the almost
perfect matching that does not match w can be improved by any almost perfect matching.
This example can easily be modified to obtain a graph that has a perfect matching but
no perfect strongly w-minimal one: add a copy K of Kℵ0

to the graph, identifying the
final vertex of each Pi with a distinct vertex of K and let all edges of K have weight 0.

Next, let us see why we cannot improve Theorem 1.9 by always demanding a strongly
w-minimal perfect matching rather than an almost perfect one. Let G be a complete
graph of any infinite cardinality, pick a vertex v ∈ V (G), and let M be a perfect matching
of G − v. Now let w(e) = 0 if e ∈ M and w(e) = 1 otherwise. Suppose that N is a
strongly w-minimal perfect matching of G, let e1 = vw be the edge of N matching v and
let e2 = w′y be the edge of N matching the vertex w′ that lies with w in an edge of M .
But then, (N\{e1, e2}) ∪ {vy, ww′} improves N , contradicting the fact that it is strongly
w-minimal. Thus, G has no strongly w-minimal perfect matching.

It is easy to construct counterexamples to Theorem 1.9 and Theorem 1.8 if w assumes
infinitely many values. In the last section we will construct a counterexample in the case
that w assumes finitely many values that are not all rational.

Proof of Theorem 1.9. Without loss of generality we may assume that all weights are
positive, since otherwise we can add a large positive constant to all of them. Since w
assumes only finitely many values, we may further assume that all weights are integers.
All M -alternating paths (for some given matching M) considered in this section start
with an edge that does not lie in M .
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Our proof is an adaptation of Edmonds’ algorithm for finite graphs ([5], see also [6]).
This is a “primal-dual” optimisation algorithm, where the primal problem is minimising
the total weight of a perfect matching and the dual is maximising the sum of a set of
“potentials” πi(U) assigned to some vertex sets U . In the infinite case though, comparing
the total weight of a perfect matching with the sum of the potentials does not help, as
both values will in general be infinite. However, in order to show that a matching cannot
be locally improved, i.e. it is strongly minimal, we will only have to compare finitely many
edge weights to the sum of finitely many potentials.

The basic idea of Edmonds’ algorithm is the following: In the unweighted case, the
problem of constructing a maximal matching reduces to the problem of finding a (finitely)
improving M -alternating path for a given matching M . An improving M -alternating path,
however, is not easy to construct. On the other hand, M -alternating walks are easy to
construct, but as they may contain cycles they cannot be used to improve M by taking
the symmetric difference. However, if an M -alternating walk starting in an unmatched
vertex runs into a cycle, then this cycle has to be odd and is thus uniformly almost
matchable. In Edmonds’ algorithm, such odd cycles are contracted (‘shrunk’) whenever
they occur. At the end of the process the cycles are recursively decontracted using the
fact that they are uniformly almost matchable to extend the maximal matching of the
graph with contracted vertices to a maximal matching of the original graph.

In the weighted case, one wants to find a minimum-weight perfect matching under the
assumption that the graph has a perfect matching. The algorithm starts with considering
only the edges of smallest weight. Like in the non-weighted case, the algorithm contracts
odd cycles that can occur in alternating walks and it improves the current matching by
finding improving alternating paths. When all contractions of odd cycles and improve-
ments of the current matching are done, the algorithm considers some of the edges that
had not been considered so far. Whether an edge will be considered or not at a given
step depends on the potentials πi mentioned earlier. Unlike the non-weighted case, some
sets have to be decontracted during the construction, and again whether a set will be
decontracted or not depends on the potentials πi.

Our adaptation of Edmonds’ algorithm has two major differences: Firstly, we will
not only contract odd cycles but some larger sets of vertices (possibly infinite). These
sets of vertices will be uniformly almost matchable, which will become important when
decontracting. Secondly, we will not improve our matchings by finding improving alter-
nating paths as this might take infinitely many steps. Instead, we will in each step extend
our current matching to a strongly maximal matching using Lemma 3.5, then perform
contractions, and finally add more edges before we proceed to the next step.

Our construction follows a recursive procedure, in each step i of which we will be
manipulating several ingredients:

• a collection Ωi whose elements are vertex sets, sets of vertex sets, sets of sets of
vertex sets and so on, and an assignment of potentials πi : Ωi → R.

• an auxiliary graph Gi on V = V (G).
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• an auxiliary graph G′
i, having as vertices the maximal sets in Ωi.

• an auxiliary graph Hi(U) for each set U ∈ Ωi, having U as its vertex set.

• a matching Mi in G′
i.

The elements of Ωi represent the vertex sets contracted so far. For practical reasons we
do not want all elements of Ωi to be vertex sets but also allow sets of vertex sets, sets of
sets of vertex sets, and so on. The graph Gi will consist of all edges considered in step i,
while the graph G′

i is obtained from Gi by performing the contractions. The matchings
Mi are to be ‘unfolded’ at the end of the process, to form the desired strongly minimal
matching in G.

For a set U in Ωi we denote by
⊔

U the set of vertices nested in U ; formally, a vertex
x ∈ V (G) lies in

⊔

U if and only if there is a finite sequence of sets U1 ∈ U2 ∈ · · · ∈ Uk

where Uk = U and x ∈ U1. The collection Ωi will be laminar, that is, for any U, W ∈ Ωi

either
⊔

U ∩
⊔

W = ∅ or
⊔

U ⊆
⊔

W or
⊔

W ⊆
⊔

U will hold. Moreover, Ωi will contain
{v} for every v ∈ V .

The auxiliary graph Gi is defined at each step i by Gi = (V, Ei), where Ei is the set
of edges of G for which

∑

U∈Ωi

e∈δ(U)

πi(U) = w(e) (1)

holds, where δ(U) is the set of edges that have precisely one endvertex in
⊔

U .
Let ΩMAX

i be the set of maximal elements of Ωi with respect to containment, and
note that {

⊔

U | U ∈ ΩMAX
i } is a partition of V (G) as Ωi is laminar and every vertex v

is contained in some
⊔

U , eg. in
⊔

{v} = {v}. For U ∈ Ωi we now define an auxiliary
multigraph Hi(U). The vertices of Hi(U) are the elements of U , and for every edge
e = xw of Gi such that x ∈

⊔

X and w ∈
⊔

W where X, W are distinct elements of U we
put an X-W edge e′ in Hi(U). Throughout the paper we shall not formally distinguish
the edges e and e′. With this abuse of notation, the auxiliary graph G′

i is defined by
G′

i := Hi(Ω
MAX
i ), where Hi(Ω

MAX
i ) is defined analogously to Hi(U).

At each step i the following conditions will be satisfied:

πi(U) ≥ 0 for every U ∈ Ωi with
∣

∣

∣

⊔

U
∣

∣

∣
≥ 3, (2)

∑

U∈Ωi

e∈δ(U)

πi(U) ≤ w(e) for every e ∈ E, (3)

Hi(U) is uniformly almost matchable for every U ∈ Ωi. (4)

The procedure stops in case that Mi is perfect or almost perfect. Then, using condi-
tion (4) we will recursively decontract the sets in Ωi so as to extend Mi to a perfect or
almost perfect matching of Gi (and hence of G), and use conditions (2) and (3) to prove
that it is strongly w-minimal in G.
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To start the inductive definition, we set Ω0 = {{v} | v ∈ V (G)} and π = π0({v}) = 0
for every v. By its definition, G0 contains all 0-weight edges in G; the graph G′

0 is
essentially the same, with the subtle difference that its vertices are singleton sets, and not
vertices; and the graphs Hi(U) are all trivial, namely they have one vertex each, and no
edges. Finally let M0 be a strongly maximal matching in G′

0, the existence of which is
guaranteed by Theorem 1.3.

Now for i = 0, 1, . . . do the following.
If Mi is perfect or almost perfect then stop the iteration (at the end of this proof

we will use Mi to construct the required matching of G). So, assume that the set X ′
i of

vertices unmatched by Mi contains more than one vertex.
In order to enlarge Mi we now would like to add new edges, i.e. to change the π-values

so as to let new edges satisfy (1). As we want to be able to match vertices in X ′
i, we could

try and increase the π-values on X ′
i. But then any edge of G′

i at a vertex in X ′
i will fail to

satisfy (3) as it already satisfied (1) before and the π-value of one of its endpoints has been
increased while the other remained the same. Hence we have to decrease the π-values of
all neighbours of X ′

i in G′
i. Now consider an edge in Mi incident with such a neighbour

of X ′
i. As it satisfied (1) before and the π-value of at least one of its endvertices has been

decreased while the other has not been increased, it will not satisfy (1) in the next step.
In order to prevent this loss of matching edges, we have to increase the π-value of every
vertex that is matched in Mi to a neighbour of X ′

i. Continuing this way, we obtain that
we want to increase the π-value on the set T ′

i of all vertices of G′
i that are reachable from

X ′
i by an even Mi-alternating path (possibly trivial), while we want to decrease it on the

set S ′
i of vertices reachable from X ′

i by an odd Mi-alternating path.
We could proceed like this if S ′

i and T ′
i were disjoint, but in general this will not be the

case. For instance, the vertices on the odd cycles contracted in Edmonds’ algorithm have
the property that they are reachable from the set of unmatched vertices by alternating
paths both of even and odd lengths. To amend this, we will contract each component of
G′

i − (S ′
i \T ′

i ) that contains a vertex of T ′
i , so as to obtain a new graph G∗

i . In this graph,
we will be able to perform the desired changes of π-values.

Formally, let

Ui := {V (C) | C is a component of G′
i − (S ′

i \ T ′
i ) that contains a vertex in T ′

i},

put Vi := Ωi ∪Ui, and let G∗
i := Hi(V

MAX
i ) (where VMAX

i is defined analogously to ΩMAX
i ).

Note that Vi is laminar since Ωi is and Vi \ Ωi = Ui consists of disjoint subsets of ΩMAX
i .

Let Xi be the set of vertices of G∗
i that are not matched by M ∗

i := Mi ∩E(G∗
i ) (which,

as we shall see soon, will be a matching in G∗
i ), let Si be the set of vertices s of G∗

i for
which there is an M ∗

i -alternating Xi − s path of odd length in G∗
i , and let Ti be the set of

vertices t of G∗
i for which there is a (possibly trivial) M ∗

i -alternating Xi − t path of even
length. We claim that:

Proposition 4.1. The following assertions are true:

(i) Hi(U) = G′
i[U ] is uniformly almost matchable for every U ∈ Ui;
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(ii) |Mi ∩ δ(U)| = 0 if U ∩ X ′
i 6= ∅ and |Mi ∩ δ(U)| = 1 otherwise for every U ∈ Ui, and

(iii) Si = S ′
i \ T ′

i and Ti = Ui.

Part (i) is simply (4) for the sets in Ui, while (ii) ensures that M ∗
i is a matching in G∗

i

(which is trivial in the case of finite graphs, when only odd cycles are contracted) and (iii)
will enable us to increase the π-values on Ti and decrease them on Si so as to obtain new
edges, in particular at the vertices in Xi.

Before we proceed with the proof of Proposition 4.1 let us show how we use it to
construct Ωi+1, πi+1, and Mi+1, the main ingredients of the next step of our construction.
By Proposition 4.1(iii) and the definition of Ui we have Si ∩ Ti = ∅, and moreover

If U ∈ Ti and U ′ is a neighbour of U in Gi|V
MAX

i , then U ′ ∈ Si. (5)

Hence we can define πi+1 : Vi → R as follows (in fact we want Ωi+1 to be the domain
of πi+1 but Ωi+1 is going to be a subset of Vi):

πi+1(U) :=











1
2

if U ∈ Ti = Ui,

πi(U) − 1
2

if U ∈ Si,

πi(U) otherwise.

For every set U ∈ Si with |
⊔

U | > 1 and πi+1(U) = 0, remove U from Vi to obtain
Ωi+1. This will later guarantee that (2) is satisfied. Since we have now defined Ωi+1 and
πi+1, the graphs Gi+1 and G′

i+1 are also defined. It remains to define Mi+1.
For this purpose, we first show that for every U ∈ Vi the graph Hi+1(U) is uniformly

almost matchable. We distinguish two cases. If U ∈ Ωi, then we have Hi+1(U) = Hi(U)
because πi(W ) = πi+1(W ) holds for every W ∈ U since Si and Ti by definition only
contain maximal elements of Vi, so any relevant edge of G is present in Gi if and only if it
is present in Gi+1. Thus Hi+1(U) is uniformly almost matchable since Hi(U) is (by (4)).
For the second case, when U ∈ Ui = Vi \ Ωi, then by Proposition 4.1 Hi(U) is uniformly
almost matchable, and again this implies that Hi+1(U) is uniformly almost matchable as
well since πi(W ) = πi+1(W ) holds for every W ∈ U .

Thus we have proved our claim. In particular, since Ωi+1 ⊆ Vi, this implies by induc-
tion:

Proposition 4.2. Condition (4) is satisfied.

By (ii) of Proposition 4.1, M ∗
i is a matching in G∗

i . Using the fact that for every
U ∈ Vi \ Ωi+1 the graph Hi+1(U) is uniformly almost matchable, we extend M ∗

i to a
matching Ni in G′

i+1 with U ⊆ supp(Ni) for every U ∈ Vi \ Ωi+1; this is possible since
by (ii) of Proposition 4.1 there is precisely one vertex of U that is incident with an edge
in Mi, and this edge is also in M ∗

i . By Lemma 3.5 there is a strongly maximal matching
Mi+1 in G′

i+1 with supp(Ni) ⊆ supp(Mi+1).
Finally, before we switch over to the proof of Proposition 4.1, let us show that the

choice of Ni and Mi+1 imply that
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Every vertex U of G′
i+1 that is not matched by Mi+1 is a set of vertices

of G′
i (i.e. U /∈ Ωi) and precisely one of the elements of U is unmatched

by Mi.
(6)

This will, at the end of the construction, help us to show that the resulting matching
is strongly w-minimal.

Indeed, consider such a U and note that U is also unmatched by Ni as supp(Ni) ⊆
supp(Mi+1). Suppose that U ∈ Ωi. If U ∈ ΩMAX

i then U /∈ X ′
i, since otherwise the

definition of Ui would imply that there is a set U ′ ∈ Ui that contains U ; this would in turn
imply that U ′ ∈ Ti by (iii) of Proposition 4.1, and hence U ′ ∈ Ωi+1 which contradicts the
assumption that U ∈ V (G′

i+1) = ΩMAX
i+1 . Thus U /∈ ΩMAX

i . Suppose that U ∈ Ωi \ ΩMAX
i .

As U is a vertex of G′
i+1 there is a set U ′ 3 U with U ′ ∈ Vi \Ωi+1 ⊂ Si. Since all elements

of Si = S ′
i \ T ′

i are matched in Mi, they are also matched in M ∗
i . Thus U ′ is matched

in M∗
i and hence all its elements—in particular U—are matched in Ni, a contradiction.

This proves U /∈ Ωi, and by the construction of the graphs G′
i we obtain that U is a set

of vertices of G′
i. To prove (6) it remains to show that there is an element of U that is

unmatched in Mi. But this follows immediately from Proposition 4.1(ii).

Proof of Proposition 4.1. We will derive both (i) and (ii) from another fact. For this, note
first that Ui is the set of vertex sets of components of G′

i[T
′
i ], since any vertex adjacent

to a vertex of T ′
i in G′

i lies, clearly, in S ′
i ∪ T ′

i . Now let U ∈ Ui and u ∈ U ; then there
is an x ∈ X ′

i and a (possibly trivial) Mi-alternating x − u path of even length P in G′
i.

Moreover, for any neighbour v ∈ U of u, we find a y ∈ X ′
i and a (possibly trivial) Mi-

alternating y − v path of even length Q in G′
i. It is easy to see that P ∪ {uv} ∪ Q either

contains an Mi-alternating x − y path or an Mi-alternating x − v path of even length;
indeed, if P and Q are disjoint then P ∪ {uv} ∪ Q is itself an Mi-alternating x–y path,
and otherwise, if q is the first vertex on P that lies in Q, then either the path xPqQy or
the path xPqQv is Mi-alternating. But an Mi-alternating path between vertices in X ′

i is
finitely Mi-improving, thus, since Mi is strongly maximal, the latter holds. This proves
that any vertex x in X ′

i that sends an Mi-alternating path of even length in G′
i to some

vertex of U sends an Mi-alternating path of even length in G′
i to every vertex of U . In

particular, U cannot contain more than one element of X ′
i.

Let x, y ∈ V (G′
i). We say that x dominates y if there is an Mi-alternating x–y path

of even length. If a set X ⊂ V (G′
i) contains the vertices of such a path, we say that x

dominates y via X. We claim that

For every U ∈ Ui there is a vertex xU ∈ U that dominates every v ∈ U
via U .

(7)

For a vertex xU as in (7) we say that xU dominates U . Clearly (7) implies that every
vertex v in U−xU is matched by Mi to another vertex in U−xU (namely, to its predecessor
in the Mi-alternating xU–v path in G′

i[U ] of even length), while xU either lies in X ′
i (i.e. is

unmatched by Mi) or is matched by Mi to a vertex outside U . In particular, each U can
be dominated by at most one vertex. Moreover, (7) implies (i) and (ii): Indeed, consider
any set U ∈ Ui. For every v ∈ U , the symmetric difference of Mi with the Mi-alternating

the electronic journal of combinatorics 15 (2008), #R136 11



xU–v path of even length in G′
i[U ] is a matching of U − v, which shows (i). Furthermore,

as noted above, |Mi ∩ δ(U)| = 0 if xU ∈ X ′
i and |Mi ∩ δ(U)| = 1 otherwise. Since no

vertex in U − xU lies in X ′
i this implies (ii).

For the proof of (7), we distinguish two cases. The first case is when U contains a
vertex of X ′

i, say x. Recall that there is a vertex in X ′
i sending an Mi-alternating path

of even length to every vertex in U , and clearly this vertex must be x. We claim that x
dominates U . Indeed, let U ′ be a maximal subset of U such that x dominates every u ∈ U ′

via U ′, and suppose that U ′ 6= U . As G′
i[U ] is connected, there is a vertex u ∈ U \ U ′

which has a neighbour v ∈ U ′. Every vertex y ∈ U ′ − x is matched in Mi to a vertex in
U ′, namely to the penultimate vertex on any Mi-alternating x–y path in G′

i[U
′] of even

length. Therefore no edge in δ(U ′) lies in Mi; in particular, vu does not lie in Mi. Let
P be an Mi-alternating x–u path of even length (possibly using vertices outside U) and
let w be its last vertex in U ′. Then, the first edge of wPu does not lie in Mi. Now since
there is an x–v path of even length in U ′ it is easy to see that all vertices on wPu lie in
T ′

i and hence in U ; moreover, for every y ∈ wPu there is an Mi-alternating x–y path in
G′

i[U
′ ∪ V (wPu)] of even length, thus x dominates y via U ′ ∪ V (wPu), contradicting the

maximality of U ′.
The second case is when U ∩ X ′

i = ∅. Again, recall that there is a vertex x ∈ X ′
i

that sends an Mi-alternating path of even length in G′
i to every vertex of U ; let P be

an Mi-alternating x − U path, and note that it has even length since its penultimate
vertex cannot lie in T ′

i . Let z be the last vertex of P and let e be the last edge of P
(hence e ∈ Mi). We claim that z dominates every vertex in U . Indeed, let U ′ ⊂ U be
maximal such that z dominates every v ∈ U ′ via U ′. Consider a vertex u ∈ U \ U ′ which
has a neighbour v ∈ U ′. Like in the previous case, no edge in δ(U ′) \ {e}, in particular
vu, lies in Mi. Let Q be an Mi-alternating x–u path of even length, let y be its last
vertex outside U and let f be the edge on Q after y. Since y ∈ S ′

i \ T ′
i , the path xQy

has odd length and hence f ∈ Mi. We claim that there is a vertex on yQu that lies in
U ′. If y is the predecessor of z on P , then f = e and z is such a vertex. We may thus
assume that y is not the predecessor of z on P . This implies that y does not lie on P ,
as otherwise P would have to use f and would hence meet U before z. If yQu avoids U ′,
then there is an Mi-alternating x–y path of even length: go from x to z along P , then
from z to v within G′

i[U
′], then use the edge vu and finally along uQy to y. But y /∈ T ′

i ,
a contradiction. Hence yQu has a last vertex w in U ′, and all vertices of wQu lie in U .
Now like in the previous case it follows that z dominates every vertex in U ′ ∪ wQu via
U ′ ∪ wQu, contradicting the maximality of U ′. This proves (7), and hence (i) and (ii) as
discussed above.

A consequence of (ii) is

For every Mi-alternating path P starting in X ′
i and every U ∈ Ui, if

P ∩G′
i[U ] has more than one vertex then it is a subpath of P whose first

edge is not in Mi and whose last edge is an edge of Mi or the last edge
of P .

(8)

Indeed, let P and U be as in the statement of (8), and assume that P contains more than
one vertex from U . For every vertex u ∈ U ∩V (P ) whose predecessor v on P does not lie
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in U the edge vu lies in Mi, as otherwise Pv would have even length, contradicting the
fact that v ∈ S ′

i \T ′
i . By (ii) there is no such u if U contains the starting vertex of P , and

there is at most one such u otherwise. Therefore, P ∩G′
i[U ] is a subpath of P , and if the

endvertex of P does not lie in U , then again by (ii) the edge of P from U to V (G′
i) \ U

does not lie in Mi, and hence the last edge of P ∩ G′
i[U ] does lie in Mi.

It remains to show (iii). Let us first show Si ⊃ S ′
i \ T ′

i and Ti ⊃ Ui. Let v ∈ S ′
i \ T ′

i

and pick an Mi-alternating path P in G′
i of odd length from a vertex x ∈ X ′

i to v. Note
that v is not contained in any element of Ui. Let U0 be the element of Ui that contains
x, and note that U0 ∈ Xi by (ii). Then by (8) contracting the sets in Ui turns P into an
M∗

i -alternating path P ∗ in G∗
i of odd length starting in Xi, hence v ∈ Si.

Now let U ∈ Ui, pick a vertex u ∈ U and an Mi-alternating path P of even length in
G′

i from a vertex x ∈ X ′
i to u. Again (8) yields that contracting the sets in Ui turns P

into an M∗
i -alternating path P ∗ of even length in G∗

i starting in Xi, whence U ∈ Ti.
To prove Si ⊂ S ′

i \ T ′
i and Ti ⊂ Ui, let P ∗ be an M∗

i -alternating path in G∗
i from

UX ∈ Xi to a vertex U of G∗
i ; we will use P ∗ to construct an Mi-alternating path P in G′

i

whose length has the same parity as that of P ∗. Let U0 = UX , U1, . . . , Un be the vertices
in Ui that lie (in this order) on P ∗. Note that if U ∈ Ui then Un = U . For j > 0 let uj

be the vertex on P ∗ before Uj, and for j < n let wj be the vertex on P ∗ after Uj. Note
that each uj and each wj are neighbours of Uj (which is a component of G′

i − (S ′
i \ T ′

i ))
and hence lie in S ′

i \T ′
i . Each edge ujUj in P ∗ corresponds to an edge ujv

−
j in E(G′

i) with
v−

j ∈ Uj, while each edge Ujwj corresponds to an edge v+
j wj in E(G′

i). For j = 0, 1, . . . , n
let vj := xUj

; by (ii) we have v0 ∈ X ′
i.

Recursively for j = 0, 1, . . . , n, we construct Mi-alternating paths Pj of even length in
G′

i from v0 to vj so that Pj meets Uj only in vj, starting with the trivial path P0 = v0.
For 1 ≤ j ≤ n, since Pj−1 is an Mi-alternating path of even length in G′

i, its last edge (if
existent) is in Mi. Hence by (ii) every other edge in δ(Uj−1), in particular v+

j−1wj−1, does
not lie in Mi. As vj−1 dominates v+

j−1 via Uj−1, there is an Mi-alternating path Qj−1 of
even length in G′

i[Uj−1] from vj−1 to v+
j−1. We can thus prolong Pj−1 to an Mi-alternating

path Pj from v0 to a vertex in Uj: Let Pj := Pj−1vj−1Qj−1v
+
j−1wj−1P

∗ujv
−
j . We claim

that Pj has even length and that v−
j = vj. Indeed, as uj ∈ S ′

i \ T ′
i , the Mi-alternating

path Pjuj has odd length and thus ujv
−
j ∈ Mi. As the only edge in δ(Uj)∩Mi is incident

with vj, we have vj = v−
j as desired.

If U ∈ Ui, we have thus constructed an Mi-alternating path P = Pn in G′
i whose last

edge coincides with the last edge of P ∗ and hence either both P and P ∗ have even length
or they both have odd length. If U /∈ Ui, then we can apply the same construction as
before to obtain an Mi-alternating v0–U path P from Pn whose length has the same parity
as the length of P ∗. If this parity is even then the last vertex of P is in T ′

i and hence in
a set in Ui, which implies Ti ⊂ Ui. If the parity is odd then U /∈ Ui (as otherwise P = Pn

and this path has even length), hence U is a vertex of G′
i and lies in S ′

i \T ′
i , which proves

Si ⊂ S ′
i \ T ′

i . This completes the proof of Proposition 4.1.

Proposition 4.3. The function πi+1 satisfies (2) and (3).

Proof. By the definition of πi+1 we have πi+1(U) = 1
2

for every U ∈ Ui, thus every U with
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|
⊔

U | > 1 begins its life with a positive potential. Since we only change potentials by
1
2
, the potential of U cannot obtain a negative value without becoming 0 at some step k.

But then U is removed from Ωk+1, so (2) holds.
To prove that (3) holds, let e = uv be an edge of G and suppose that (3) does not

hold for e and πi+1. Since it holds for e and πi and we raised the potential only for sets
in Ti, there is a set U1 ∈ Ti (and hence U1 ∈ ΩMAX

i+1 ) with e ∈ δ(U1), say u ∈
⊔

U1 and
v /∈

⊔

U1. Therefore, there is no set U ∈ Ωi with {u, v} ⊂
⊔

U . Since Vi is laminar there
is a unique set U2 ∈ VMAX

i \ {U1} with e ∈ δ(U2), i.e. v ∈
⊔

U2 and u /∈
⊔

U2. Clearly, we
have

∑

U∈Ωi+1

e∈δ(U)

πi+1(U) −
∑

U∈Ωi

e∈δ(U)

πi(U) =











0 if U2 ∈ Si,

1 if U2 ∈ Ti,
1
2

otherwise.

(9)

As (3) holds for e and πi but not for e and πi+1, this means that U2 /∈ Si (in particular
U2 ∈ Ωi+1).

Suppose that
∑

U∈Ωi,e∈δ(U) πi(U) = w(e), i.e. e is present in Gi. Therefore, U1 and

U2 are neighbours in Gi|V
MAX
i and (5) yields U2 ∈ Si, a contradiction. This means that

∑

U∈Ωi,e∈δ(U) πi(U) < w(e) <
∑

U∈Ωi+1,e∈δ(U) πi+1(U). Thus
∑

U∈Ωi,e∈δ(U) πi(U) = w(e)− 1
2

and
∑

U∈Ωi+1,e∈δ(U) πi+1(U) = w(e) + 1
2

and hence U2 ∈ Ti by (9).

For every vertex x ∈ G, define the ith energy of x as pi(x) :=
∑

x∈
F

U πi(U). As there

is no U ∈ Ωi with {u, v} ⊂
⊔

U , we have
∑

U∈Ωi,e∈δ(U) πi(U) = pi(u) + pi(v) and hence

pi(u) + pi(v) = w(e) − 1
2

is not an integer. We will see that this leads to a contradiction.
We claim that for every component C of Gi and any two vertices x, y ∈ C, the value

pi(x) + pi(y) is an integer (or equivalently: for every component C of Gi either the ith
energy is an integer for all vertices in C or it is not an integer for all vertices in C); indeed,
if xy is an edge of Gi (it clearly suffices to consider this case) then it satisfies (1). But
then

w(xy) =
∑

U∈Ωi

xy∈δ(U)

πi(U) = pi(x) + pi(y) −
∑

U∈Ωi

{x,y}⊂
F

U

2πi(U),

and as w(xy) and 2πi(U) for each U are integers, our claim follows. As Gi[
⊔

U ] is
connected for every U ∈ Ωi (which follows immediately from the construction), the ith
energy is either integral for every vertex in U or non-integral for every vertex in U .

Furthermore, by applying (6) recursively it is easy to show that for any set X ∈ Xi

there is precisely one vertex x ∈
⊔

X such that the sets U j
x ∈ ΩMAX

j with x ∈
⊔

U j
x have

been unmatched by Mj in every step j of the construction and thus

pi(x) =
1

2
i. (10)

By the definition of Ti, every element U of Ti lies in the same component of G′
i as some

X ∈ X ′
i and hence every vertex in

⊔

U lies in the same component of Gi as any vertex in
⊔

X. This easily implies that the ith energy is either integral for all vertices in
⋃

U∈Ti

⊔

U
(if i is even) or non-integral for all such vertices (if i is odd). As u ∈

⊔

U1 ∈ Ti and
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v ∈
⊔

U2 ∈ Ti, this implies that pi(u) and pi(v) are either both integral or both non-
integral, in particular, pi(u)+pi(v) is integral, which yields the desired contradiction.

Proposition 4.4. The procedure terminates.

Proof. We claim that after i = maxe∈E(G) w(e) steps (if not earlier) there is at most one
unmatched vertex in G′

i. Suppose for contradiction that there are two, U, Y say. There
are vertices u ∈

⊔

U and y ∈
⊔

Y with pi(u) = pi(y) = 1
2
i, i.e. that satisfy (10). Now

the edge uy lies in G′
i since by (10) pi(u) + pi(y) = maxe∈E(G) w(e) ≥ w(uy), and this

contradicts the maximality of Mi.

Thus, after finitely many steps, n say, we have a perfect or almost perfect matching
Mn in G′

n. By recursively applying condition (4) we can extend Mn to a perfect or almost
perfect matching M of G with the additional property that

For every U ∈ Ωn we have |M ∩ δ(U)| ∈ {0, 1}, and |M ∩ δ(U)| = 0 if
and only if M is almost perfect and

⊔

U contains the vertex unmatched
by M .

(11)

We now claim that M is strongly w-minimal.
Firstly, consider the case when M is perfect. Pick any perfect matching M ′ so that

M4M ′ is finite, that is, there are disjoint finite edge-sets N ⊂ M and F ⊂ M ′ so that
M ′ = M − N + F . By the definition of Gi we have

∑

e∈N

w(e) =
∑

e∈N

∑

U∈Ωn

e∈δ(U)

πn(U), (12)

and by (3) we have
∑

e∈F

w(e) ≥
∑

e∈F

∑

U∈Ωn

e∈δ(U)

πn(U). (13)

By (11), for any element U of Ωn there is at most one edge of M in δ(U), thus U
appears in the first sum at most once. Moreover, as both M and M ′ are perfect, F ∪ N
is a finite set of disjoint cycles and thus if πn(U) appears in the sum of (12) then it also
appears in the sum of (13). By the same argument, any U with negative potential (hence
|U | = 1 by (2)) appearing in (13) also appears in (12). Thus

∑

e∈N

∑

U∈Ωn

e∈δ(U)

πn(U) ≤
∑

e∈F

∑

U∈Ωn

e∈δ(U)

πn(U), (14)

which by (12) and (13) implies that
∑

e∈N w(e) ≤
∑

e∈F w(e). As M ′ was chosen
arbitrarily, this proves that M is strongly w-minimal.

Next, consider the case when M is almost perfect. There is only a difference to the
previous case when F meets the only vertex x not matched by M , however (14) remains
true since by (10) x has maximum energy (in particular non-negative). Thus M is strongly
w-minimal also in this case.
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Proof of Theorem 1.8. Clearly, we may assume that all weights w(e) are positive. Let
G′ be the complete graph resulting from G by adding an edge of weight 0 between any
two non-adjacent vertices of G, and define w′(e) := −w(e) for every e ∈ E(G′). By
Theorem 1.9, G′ has a strongly w′-minimal perfect or almost perfect matching M , and
then M ′ := M ∩E(G) is a strongly w-maximal matching of G. Indeed, suppose that there
is a matching M ′′ where M ′′4M ′ is finite such that

w[M ′′\M ′] < w[M ′\M ′′]. (15)

Let L be the set of edges of M\M ′ that are incident with an edge of M ′′\M ′. Then,
N := (M ∪ (M ′′\M ′))\(L ∪ M ′\M ′′) is a matching in G′ with N4M finite, and since
w[L] = 0 we obtain w[N\M ] < w[M\N ] by (15). If N leaves more than one vertex of
G′ unmatched then, as G′ is complete, we can arbitrarily match all but at most one of
those unmatched vertices to extend N to a perfect or almost perfect matching of G′. As
w(e) ≤ 0 for every e ∈ e(G′), this contradicts the fact that M is strongly w-minimal.

5 The irrational case

We now show that Theorem 1.9 and Theorem 1.8 fail when we allow non-rational weights.
Since Theorem 1.8 follows from Theorem 1.9, it suffices to construct a counterexample to
the former. This counterexample G will consist of two vertices x and y, joined by infinitely
many paths P1, P2, . . . . The idea is to choose the weights w(e) so that a potential strongly
w-maximal matching has to match both x and y, and it has to match them in the same
path Pi, and so that any such matching can be locally improved by changing it along
Pi ∪ Pi+1 so as to match x and y in Pi+1.

In order to achieve this situation, we will need an irrational value a as a weight with
the property that for every ε > 0, there is an n ∈ N such that na differs from some integer
by less than ε. This is satisfied for instance for a :=

∑∞
i=1 101− 1

2
i(i+1) = 1.010010001 . . . .

The only weights in our graph will be a, 2a, and 2a − 1. We will choose the paths Pi so
that each of them contains an odd number of edges, 2ni +1 say. Every second edge on Pi

will have weight 2a − 1, while the remaining ni + 1 edges on Pi will have weights a and
2a, and the sum of their weights will be larger than ni(2a − 1), i.e. than the sum of the
weights of the other edges, by a value that is strictly increasing with i.

First, let us define the numbers ni. Let n1 := 1 and, for i = 1, 2, . . . , let ni+1 :=
10i+1ni + 1. (Thus, n2 = 101, n3 = 101001 etc.) It is not hard to check that

10−(i+1) < 10
1

2
i(i+1)−1a − ni < 10−i. (16)

We write Pi = xi
0x

i
1 . . . xi

2ni
xi

2ni+1, where x = xi
0 and y = xi

2ni+1. As already mentioned,
we put w(e) := 2a − 1 for each edge e = xi

2j−1x
i
2j , 1 ≤ j ≤ ni. We call these edges the

even edges of Pi; the other edges on Pi are the odd edges of Pi. Define the weights of the
odd edges of Pi as follows. Inductively, for k = 0, 1, . . . , ni, we put

w(xi
2kx

i
2k+1) :=

{

2a if
∑k−1

j=0 w(xi
2jx

i
2j+1) < k(2a − 1)

a otherwise
(17)
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By this definition, we achieve that on every subpath xPix
i
2k of Pi, the sums of weights

of the even edges (which equals k(2a − 1)) and of the odd edges do not differ too much.
Indeed, it is easy to check that

1 − a ≤
k−1
∑

j=0

w(xi
2jx

i
2j+1) − k(2a − 1) < 1. (18)

Given a subpath P of some Pi, we write even(P ) (respectively odd(P )) for the sum of the
weights of the even (resp. odd) edges of Pi on P . With this notation and (18), we have
the two inequations

odd(xPix
i
k) − even(xPix

i
k) < 1 for k even, and (19)

odd(xPix
i
k) − even(xPix

i
k) ≥ a for k odd. (20)

Suppose there is is a strongly w-maximal matching M in G. First, we show that
on each Pi there is at most one unmatched vertex. Indeed, if there are at least two
unmatched vertices on some Pi, then we can pick two of them xi

j and xi
k with j < k so

that all vertices xi
l with j < l < k are matched. Note that the path P = xi

jPix
i
k has

odd length. If j is even then k is odd, and we have odd(P ) − even(P ) = odd(xPix
i
k) −

even(xPix
i
k)−

(

odd(xPix
i
j)− even(xPix

i
j)

)

> a− 1 > 0. If j is odd, we have by a similar
calculation again even(P ) − odd(P ) > a − 1 > 0. This means that we can replace the
edges in M ∩E(P ) by the edges in E(P )\M and improve M , a contradiction. Therefore,
every Pi contains at most one unmatched vertex. In particular, x and y cannot both be
unmatched.

Thus one of x, y, say x, is matched in M , to xi
1 say. If y = xi

2ni+1 is unmatched and
Pi has odd length, there has to be another unmatched vertex on Pi, which again leads to
a contradiction. Thus, y is matched in M , to xj

2nj
say. Easily, for k 6= i, j each vertex

on Pk is matched. Suppose i 6= j; then there are unmatched vertices xi
m and xj

n. Since
no other vertex on Pi ∪ Pj is unmatched, m is even and n is odd. Furthermore, the path
P := xi

mPixPjx
j
n is an M -alternating path; we claim that replacing the edges in M∩E(P )

by those in E(P ) \ M is an improvement of M . Indeed, on xi
mPix, we replace the odd

edges by the even ones and lose less than 1 by (19), while on xPjx
j
n, we replace the even

edges by the odd ones and gain at least a by (20). Since a > 1, this contradicts the strong
w-maximality of M and hence i = j.

Thus, M is a perfect matching. We claim that we can improve M by replacing its edges
in Pi∪Pi+1 by those in E(Pi∪Pi+1)\M . Indeed, M consists of the odd edges of Pi and the
even edges of all the other Pj. Clearly, we have even(Pj) = even(xPjx

j
2nj

) = nj(2a − 1)

and odd(Pj) = odd(xPjx
j
2nj

) + w(xj
2nj

xj
2nj+1) for every j, and if kj denotes of odd edges

of xPjx
j
2nj

with weight a, then we have odd(Pj) = nj2a − kja + w(xj
2nj

xj
2nj+1) and hence

odd(Pj) − even(Pj) = nj − kja + w(xj
2nj

xj
2nj+1).

If kj < 10
1

2
j(j+1)−1 then odd(xPjx

j
2nj

) − even(xPjx
j
2nj

) = nj − kja > a − 10−(j+1) by (16),

which contradicts (19) as a − 10−(j+1) > 1. On the other hand, if kj > 10
1

2
j(j+1)−1 then
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odd(xPjx
j
2nj

) − even(xPjx
j
2nj

) = nj − kja < −a − 10−j by (16), which contradicts (18).

Thus, kj = 10
1

2
j(j+1)−1 and −10−j < odd(xPjx

j
2nj

) − even(xPjx
j
2nj

) < −10−(j+1) < 0.

By (17) we have w(xj
2nj

xj
2nj+1) = 2a and thus

2a − 10−j < odd(Pj) − even(Pj) < 2a − 10−(j+1).

In particular, odd(Pi)− even(Pi) < odd(Pi+1)− even(Pi+1) and hence we can improve M
by using the even edges of Pi and the odd edges of Pi+1 instead of the odd edges of Pi

and the even edges of Pi+1. Thus we get a contradiction, proving that G has no strongly
w-maximal matching.
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