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Abstract

Let G be an (edge-)colored graph. A heterochromatic matching of G is a match-
ing in which no two edges have the same color. For a vertex v, let dc(v) be the
color degree of v. We show that if dc(v) ≥ k for every vertex v of G, then G has
a heterochromatic matching of size

⌈

5k−3

12

⌉

. For a colored bipartite graph with bi-
partition (X,Y ), we prove that if it satisfies a Hall-like condition, then it has a

heterochromatic matching of cardinality
⌈ |X|

2

⌉

, and we show that this bound is best
possible.

1 Introduction and notation

We consider simple undirected graphs. Let G = (V, E) be a graph. An edge coloring of
G is a function C : E → {0, 1, 2, · · · }. If G is assigned such a coloring C, then we say
that G is an edge colored graph, or simply colored graph. Denote by C(e) the color of
the edge e ∈ E. For a subgraph H of G, let C(H) = {C(e) : e ∈ E(H)}.

We study heterochromatic matchings, the case H is a matching. Unlike uncolored
matchings for which the maximum matching problem is solvable in polynomial time (see
[13]), the maximum heterochromatic matching problem is NP -complete, even for bipartite
graphs (see [9]).

the electronic journal of combinatorics 15 (2008), #R138 1



The heterochromatic subgraphs have received increasing attention in the last decade as
mentioned below. Albert, Frieze and Reed [2] proved that the colored complete graph Kn

has a heterochromatic Hamiltonian cycle if n is sufficiently large and no color appears more
than dcne times, where c < 1/32. Suzuki [17] gave a sufficient and necessary condition
for the existence of a heterochromatic spanning tree in a colored connected graph. For
more references, see [3, 6, 7, 8, 10].

Theorem 1.1 [16] Every n × n Latin square has a partial transversal of length at least
n − 5.53(log n)2, namely every properly edge-colored complete bipartite graph Kn,n with n
colors has a heterochromatic matching with at least n − 5.53(log n)2 edges.

For colored complete graphs, Kaneko and Suzuki gave the following result.

Theorem 1.2 [12] For n ≥ 3, each proper edge coloring of K2n has a heterochromatic
perfect matching.

Let G be a colored graph. For a vertex set S, a color neighborhood of S is defined as a
set T ⊆ N(S) such that there are |T | edges between S and T that are incident at distinct
vertices of T and have distinct colors. A maximum color neighborhood N c(S) is a color
neighborhood of S with maximum size. In particular, if S = {v}, then let dc(v) = |N c(v)|
and call it the color degree of v. Given a set S and a color neighborhood T of S, denote by
C(S, T ) a set of |T | distinct colors on some such set of |T | edges between S and distinct
vertices of T .

In [15], we obtained the following result concerning heterochromatic matchings in
colored bipartite graphs meeting a color degree condition.

Theorem 1.3 [15] For a colored bipartite graph G, if dc(v) ≥ k ≥ 3 for each vertex
v ∈ V (G), then G has a heterochromatic matching of cardinality

⌈

2k
3

⌉

.

In this paper, we study heterochromatic matchings in general graphs and obtain the
following result.

Theorem 1.4 Let G be a colored graph. If dc(v) ≥ k for each vertex v ∈ V (G), then G
has a heterochromatic matching of cardinality

⌈

5k−3

12

⌉

.

We propose the following strengthening of Theorem 1.4.

Conjecture 1.1 Let G be a colored graph. Suppose that dc(v) ≥ k ≥ 4 for each vertex v
of G, then there exists a heterochromatic matching with

⌈

k
2

⌉

edges.

The complete graph Kk+1 with a proper edge coloring satisfies dc(v) = k for each
vertex v, and Kk+1 contains no heterochromatic matching of cardinality more than

⌈

k
2

⌉

.
Thus if the above conjecture holds, it would be best possible.

In [14], large heterochromatic matchings under some color neighborhood conditions in
colored bipartite graphs were studied and the following result was obtained.
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Theorem 1.5 [14] Let G be a colored bipartite graph with bipartition (X, Y ) and |X| =
|Y | = n. If |N c(S)| ≥ |S| for all S ⊆ X or S ⊆ Y , then G has a heterochromatic
matching of cardinality

⌈

3n
8

⌉

.

In the case of 3-partite 3-uniform hypergraphs, Aharoni [1] verified a conjecture of
Ryser. Using this result, we improve the bound in Theorem 1.5 as follows.

Theorem 1.6 Let G be a colored bipartite graph with bipartition (X, Y ). If |N c(S)| ≥ |S|

for all S ⊆ X, then G has a heterochromatic matching of cardinality
⌈ |X|

2

⌉

.

Moreover, we show that the bound in Theorem 1.6 is sharp.

2 Proof of Theorem 1.4

Before the proof of Theorem 1.4, we give some notations and a proposition. For a hete-
rochromatic matching M of G, let VM denote V (M). For a vertex v ∈ V (G − VM), let
bM(v) denote C(M) ∩ C({vx : x ∈ V (G − VM)}). For a subset V1 of V (G − VM), let
bM(V1) denote {bM (v) : v ∈ V1}. For simplicity, let bM = bM(V (G − VM)).

Relative a heterochromatic matching M , an alternating 3-path APM in G is a path
x′yxy′ such that C(xy′) = C(x′y) /∈ C(M), in which xy ∈ E(M) and x′, y′ ∈ V (G− VM).
Given two alternating 3-paths AP 1

M = x′
1y1x1y

′
1 and AP 2

M = x′
2y2x2y

′
2, AP 1

M is different
from AP 2

M , by the phrase we mean that C(x′
1y1) 6= C(x′

2y2) and x1y1 6= x2y2.
Easily, we can get the following proposition by Theorem 1.2.

Proposition 2.1 For m ≥ 5, each proper edge coloring of Km has a heterochromatic
matching of cardinality

⌈

m−1

2

⌉

.

Proof of Theorem 1.4

For k ≤ 3, Theorem 1.4 holds clearly. So we assume that k ≥ 4. Suppose the
conclusion is false, then we choose a heterochromatic matching M such that
(R1) |M | = t is maximum;
(R2) subject to (R1), |bM | is maximum.

Let C(M) = {c1, c2, · · · , ct}. Since for each vertex v, dc(v) ≥ k ≥ 4 and t ≤
⌈

5k−3

12

⌉

−1,
it holds that |V (G − VM)| ≥ 2. Choose vx, vy ∈ V (G − VM). Let N c(vx), N

c(vy) be
maximum color neighborhoods of vx, vy, respectively. Let N c(vx) = S1 ∪S2 (S1 ∩S2 = ∅),
where C(vx, S1) ∩ C(M) = ∅ and C(vx, S2) ⊆ C(M). Further let N c(vy) = S3 ∪ S4 (S3 ∩
S4 = ∅), in which C(vy, S3) ∩ C(M) = ∅ and C(vy, S4) ⊆ C(M). Clearly |S2|, |S4| ≤ t.

Claim 2.1 S1, S3 ⊆ VM .

Proof. Otherwise, there exists a vertex v ∈ V (G − VM) such that C(vxv)(or C(vyv)) /∈
C(M), then M ∪ {vxv}(or {vyv}) is a heterochromatic matching of cardinality t + 1, a
contradiction. �
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Claim 2.2 There exists an APM in G.

Proof. Since |N c(vx)| = |S1|+ |S2| ≥ k, it follows that |S1| ≥ k − |S2| ≥ k − t. Similarly
|S3| ≥ k − |S4| ≥ k − t. Hence |S1| + |S3| ≥ 2(k − t) = 2k − 2t > 2t = |VM |. Then there
exists an edge xy ∈ M such that x is adjacent with vy and y is adjacent with vx, moreover
C(xvy), C(vxy) /∈ C(M). If C(xvy) 6= C(vxy), letting M ′ = M ∪ {xvy, vxy} − {xy}, we
see that M ′ is a heterochromatic matching and |M ′| = t + 1, a contradiction. Thus
C(xvy) = C(vxy), and it follows that vxyxvy is an APM . �

Let l be the maximum number of the vertex-disjoint APMs in G satisfying that every
pair of APMs are different. Clearly 1 ≤ l ≤ t. For 1 ≤ i ≤ l, assume that AP i

M has edges
{x′

iyi, xiyi, xiy
′
i}, where xiyi ∈ E(M), x′

i, y
′
i ∈ V (G − VM) and C(xiy

′
i) = C(x′

iyi) = c′i.
Let VL denote {x′

1, x
′
2, · · · , x′

l} ∪ {y′
1, y

′
2, · · · , y′

l} and let VMl
denote {x1, x2, · · · , xl} ∪

{y1, y2, · · · , yl}, where {x1y1, x2y2, · · · , xlyl} = E(Ml) ⊆ E(M). We abbreviate Cl =
C(Ml) = {c1, c2, · · · , cl} and CL = {c′1, c

′
2, · · · , c′l}. Clearly C(M)−C(Ml) = C(M −Ml).

Let S0 = V − VM − VL, and we have the following claim.

Claim 2.3 |S0| ≥ 2.

Proof. Otherwise, we have that |S0| ≤ 1. If |S0| = 1, then assume that S0 = {u}. Since
for each vertex v of G, dc(v) ≥ k, then 2(t + l) + 1 ≥ k + 1. If 2(t + l) + 1 = k + 1,
then G is a colored complete graph such that |V (G)| = k + 1 and dc(v) = k ≥ 4 for each
vertex v of G. That is, G is an proper-edge-colored complete graph of order at least 5.
Thus, by Proposition 2.1, G has a heterochromatic matching of size

⌈

k
2

⌉

≥
⌈

5k−3

12

⌉

> t, a
contradiction. So we conclude that 2(t + l) ≥ k + 1, then l ≥ k+1

2
− t. Now consider the

vertices x′
1, y

′
1 and we have the following facts.

Fact 2.1 Suppose y′
1 has a neighbor v ∈ V (Ml)\{x1} and C(vy′

1) /∈ C(M − Ml), where
without loss of generality, let v = xi (2 ≤ i ≤ l). Then
(1) C(xiy

′
1) = c′i.

(2) |bM(x′
i)| ≥ 1.

(3) Cl ∩ bM(x′
i) = ∅.

Proof. Suppose, to the contrary, C(xiy
′
1) 6= c′i, then let

M ′ =

{

M ∪ {xiy
′
1, x

′
iyi} − {xiyi} C(xiy

′
1) /∈ Cl or C(xiy

′
1) = ci;

M ∪ {xiy
′
1, x

′
iyi, x

′
jyj} − {xiyi, xjyj} C(xiy

′
1) = cj, 1 ≤ j ≤ l, j 6= i.

Then M ′ is a heterochromatic matching of cardinality t + 1, which is a contradiction.
Thus it holds that C(xiy

′
1) = c′i.

If there is an edge e ∈ E(G − VM) such that C(e) = ci, then e = x′
iy

′
i. Otherwise,

assume that e is not incident with x′
i, then M ′ = M∪{x′

iyi, e}−{xiyi} is a heterochromatic
matching such that |M ′| > t, a contradiction. If |bM(x′

i)| = 0, letting M ′ = M ∪ {x′
iyi} −

{xiyi}, we see that M ′ is a heterochromatic matching such that |M ′| = t and |bM ′ | ≥
|bM | + |bM ′(xi)| ≥ |bM | + 1, a contradiction with the choice of M . Thus |bM(x′

i)| ≥ 1.
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If Cl ∩ bM(x′
i) 6= ∅, we assume that cj ∈ bM(x′

i), 1 ≤ j ≤ l. There exists an edge
x′

iz ∈ E(G − VM) such that C(x′
iz) = cj. Then let

M ′ =















M ∪ {x′
iz, xiy

′
i} − {xiyi} j = i, z = y′

1;
M ∪ {x′

iz, xiy
′
1} − {xiyi} j = i, z 6= y′

1;
M ∪ {x′

iz, x
′
jyj} − {xjyj} j 6= i, z = y′

j;
M ∪ {x′

iz, xjy
′
j} − {xjyj} j 6= i, z 6= y′

j.

Clearly, M ′ is a heterochromatic matching and |M ′| > t, a contradiction. �

Similarly to Fact 2.1, we can prove the following fact, for simplicity, we omit the proof.

Fact 2.1′. Suppose x′
1 has a neighbor v ∈ V (Ml)\{y1} and C(x′

1v) /∈ C(M − Ml), where
without loss of generality, let v = yi (2 ≤ i ≤ l). Then
(1) C(x′

1yi) = c′i.
(2) |bM(y′

i)| ≥ 1.
(3) Cl ∩ bM(y′

i) = ∅.

Let N c(y′
1) be a maximum color neighborhood of y′

1 such that x1 ∈ N c(y′
1). Assume

that N c(y′
1) = P1 ∪ P2 (P1 ∩ P2 = ∅), where C(y′

1, P1) ∩ (C(M − Ml) ∪ {c1}) = ∅ and
C(y′

1, P2) ⊆ C(M − Ml) ∪ {c1}. Further let P 1
1 = P1 ∩ (V (Ml)\{y1}), |P 1

1 | = p1 and
P 2

1 = P1\P
1
1 . Clearly |P2| ≤ t − l + 1.

Let N c(x′
1) be a maximum color neighborhood of x′

1 such that y1 ∈ N c(x′
1). Assume

that N c(x′
1) = P3 ∪ P4 (P3 ∩ P4 = ∅), where C(x′

1, P3) ∩ (C(M − Ml) ∪ {c1}) = ∅ and
C(x′

1, P4) ⊆ C(M − Ml) ∪ {c1}. Further let P 1
3 = P3 ∩ (V (Ml)\{x1}), |P 1

3 | = p3 and
P 2

3 = P3\P
1
3 . Clearly |P4| ≤ t − l + 1.

By symmetry and without loss of generality, we assume that P 1
1 = {xk1

(xk1
=

x1), xk2
· · · , xkp1

} and let P 1′

1 denote {x′
k2

, · · ·x′
kp1

}. Similarly we assume that P 1
3 =

{yj1(yj1 = y1), yj2, · · · , yjp3
} and let P 1′

3 denote {y′
j2
, · · · y′

jp3

}. Firstly, we assume that

P 1′

1 , P 1′

3 6= ∅.

Fact 2.2 |bM(P 1′

1 )| ≥ p1 − 1 and |bM(P 1′

3 )| ≥ p3 − 1.

Proof. If |bM(P 1′

1 )| < p1−1 then M ′ = M∪ {x′
k2

yk2
, · · · , x′

kp1

ykp1
}−{xk2

yk2
, · · · , xkp1

ykp1
}

is a heterochromatic matching such that |M ′| = t and |bM ′ | ≥ |bM |+ p1 − 1− |bM(P 1′

1 )| >
|bM |, a contradiction. Thus |bM (P 1′

1 )| ≥ p1 − 1. Similarly, we can prove that |bM(P 1′

3 )| ≥
p3 − 1. �

Without loss of generality, we assume that bM(P 1′

1 ) = {cl+1, cl+2, · · · , cl+p2
}. Let

V (Mp2
) = {xl+1, xl+2, · · · , xl+p2

} ∪ {yl+1, yl+2, · · · , yl+p2
}. Similarly, we assume that

bM(P 1′

3 ) = {ci1, ci2 , · · · , cip4
}. Let V (Mp4

) denote {xi1 , xi2, · · · , xip4
} ∪ {yi1, yi2, · · · , yip4

}.

Fact 2.3 Suppose x′
1 and y′

1 have a common neighbor v ∈ V (Mp4
)∪V (Mp2

), then C(vx′
1) ∈

C(M − Ml) ∪ {c1} or C(vy′
1) ∈ C(M − Ml) ∪ {c1}.
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Proof. By contradiction. Otherwise, C(vx′
1), C(vy′

1) /∈ C(M − Ml) ∪ {c1}. Without loss
of generality, assume that v = xi1 ∈ V (Mp4

) and since ci1 ∈ bM(P 1′

3 ), moreover we can
assume that ci1 ∈ bM (y′

j2
). By the definition of the bM(y′

j2
), we conclude that there is an

edge y′
j2

z ∈ E(G − VM) such that C(y′
j2

z) = ci1. We distinguish the following cases.
Case 1. z = x′

1. Then let

M ′ =







M ∪ {xi1y
′
1, y

′
j2

z} − {xi1yi1} C(xi1y
′
1) /∈ Cl;

M ∪ {xi1y
′
1, y

′
j2

z, x′
j2

yj2} − {xi1yi1 , xj2yj2} C(xi1y
′
1) = cj2;

M ∪ {xi1y
′
1, x

′
jyj, y

′
j2
z} − {xi1yi1, xjyj} C(xi1y

′
1) = cj, 2 ≤ j ≤ l and j 6= j2.

Case 2. z = y′
1. Then let

M ′=







M ∪ {xi1x
′
1, y

′
j2

z} − {xi1yi1} C(xi1x
′
1) /∈ Cl;

M ∪ {xi1x
′
1, y

′
j2

z, x′
j2

yj2} − {xi1yi1 , xj2yj2} C(xi1x
′
1) = cj2;

M ∪ {xi1x
′
1, x

′
jyj, y

′
j2
z} − {xi1yi1, xjyj} C(xi1x

′
1) = cj, 2 ≤ j ≤ l and j 6= j2.

Case 3. z /∈ {x′
1, y

′
1}. Then let

M ′=















M ∪ {xi1y
′
1, y

′
j2

z} − {xi1yi1} C(xi1y
′
1) /∈ Cl;

M ∪ {xi1y
′
1, y

′
j2

z, x′
j2

yj2} − {xi1yi1 , xj2yj2} C(xi1y
′
1) = cj2;

M ∪ {xi1y
′
1, xjy

′
j, y

′
j2
z} − {xi1yi1, xjyj} C(xi1y

′
1) = cj, 2 ≤ j ≤ l, j 6= j2, z 6= y′

j;
M ∪ {xi1y

′
1, x

′
jyj, y

′
j2
z} − {xi1yi1, xjyj} C(xi1y

′
1) = cj, 2 ≤ j ≤ l, j 6= j2, z = y′

j.

In any case, M ′ is a heterochromatic matching and |M ′| > t, which is a contradiction. �

For simplicity, let V ′ denote V (M − Ml).

Fact 2.4 P 2
1 ⊆ V ′ ∪ {y1} and P 2

3 ⊆ V ′ ∪ {x1}.

Proof. Suppose, to the contrary, there is a vertex z ∈ P 2
1 and z /∈ V (M − Ml) ∪ {y1}.

Since P 2
1 = P1\P

1
1 , then z /∈ V (Ml) and C(y′

1z) /∈ C(M − Ml) ∪ {c1}. We distinguish the
following two cases.

Case 1. z ∈ V (G − VM − VL). In fact, if V (G − VM − VL) 6= ∅, then z = u. Then let

M ′ =

{

M ∪ {y′
1z} C(y′

1z) /∈ Cl;
M ∪ {y′

1z, x
′
jyj} − {xjyj} C(y′

1z) = cj, 2 ≤ j ≤ l.

Case 2. z ∈ VL. Assume that z = x′
i(1 ≤ i ≤ l), then let

M ′ =

{

M ∪ {y′
1z} C(y′

1z) /∈ Cl;
M ∪ {y′

1z, xjy
′
j} − {xjyj} C(y′

1z) = cj, 2 ≤ j ≤ l.

In both cases, M ′ is a heterochromatic matching and |M ′| > t, which is a contradiction.
Thus it holds that P 2

1 ⊆ V ′ ∪ {y1}. Similarly, we have that P 2
3 ⊆ V ′ ∪ {x1}. �

By Facts 2.3 and 2.4, we conclude that

|P 2

1 ∩ V ′| + |P 2

3 ∩ V ′| ≤ 2|V ′| − |Mp2
| − |Mp4

|

≤ 4(t − l) − p2 − p4
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On the other hand, |P 2
1 ∩ V ′| ≥ k − |P2| − |P 1

1 | − |P 2
1 ∩ {y1}| ≥ k − (t − l + 1) − p1 − 1

and |P 2
3 | ≥ k − |P4| − |P 1

3 ∩ {x1}| ≥ k − t + l − p3 − 2. Since t ≤
⌈

5k−3

12

⌉

− 1, l ≥ k+1

2
− t

and, by Fact 2.2, p2 ≥ p1 − 1, p4 ≥ p3 − 1, it follows that

|P 2

1∩V ′| + |P 2

3 ∩ V ′| − [4(t − l) − p2 − p4]

≥ 2k − 2t + 2l − p1 − p3 − 4 − 4t + 4l + p1 + p3 − 2

≥ 2k − 6t + 6l − 6

≥ 5k − 12t − 3

> 0.

Note that if P 1′

1 = ∅ or P 1′

3 = ∅, the above two inequalities also hold, which is a contra-
diction.

So we have that |S0| ≥ 2, which completes the proof of Claim 2.3. �

Now let w1, w2 ∈ S0. Choose a maximum color neighborhood N c(w1) of w1. Assume
that N c(w1) = T1 ∪ T2 (T1 ∩ T2 = ∅), where C(w1, T1)∩C(M −Ml) = ∅ and C(w1, T2) ⊆
C(M −Ml). Further let T 1

1 = T1 ∩V (Ml), |T
1
1 | = t1 and T 2

1 = T1\T
2
1 . Clearly |T2| ≤ t− l.

Similarly, choose a maximum color neighborhood N c(w2) of w2. And let N c(w2) =
T3 ∪ T4 (T3 ∩ T4 = ∅), where C(w2, T3) ∩ C(M − Ml) = ∅ and C(w2, T4) ⊆ C(M − Ml).
Further let T 1

3 = T3 ∩ V (Ml), |T
1
3 | = t2 and T 2

3 = T3\T
1
3 . Clearly |T4| ≤ t − l.

Claim 2.4 Suppose w(w ∈ {w1, w2}) has a neighbor v ∈ V (Ml) and C(wv) /∈ C(M−Ml),
where without loss of generality, let v = xi (1 ≤ i ≤ l). Then C(wxi) = c′i.

Proof. Otherwise, if C(wxi) /∈ C(M − Ml) and C(wxi) 6= c′i. Then let

M ′ =

{

M ∪ {wxi, x
′
iyi} − {xiyi} C(wxi) /∈ Cl or C(wxi) = ci;

M ∪ {wxi, x
′
iyi, x

′
jyj} − {xiyi, xjyj} C(wxi) = cj, 1 ≤ j ≤ l, j 6= i.

Then M ′ is a heterochromatic matching of cardinality t + 1, which is a contradiction. �

Claim 2.5 T 2
1 ⊆ V (M − Ml) and T 2

3 ⊆ V (M − Ml).

Proof. By symmetry, we only prove that T 2
1 ⊆ V (M − Ml). Otherwise, there is an

edge w1z such that C(w1z) /∈ C(M − Ml), in which z ∈ T 2
1 and z /∈ V (M − Ml). Since

T 2
1 = T1\T

1
1 , z /∈ V (Ml). We distinguish the following two cases.

Case 1. z ∈ V (G − VM − VL). Then let

M ′ =

{

M ∪ {w1z} C(w1z) /∈ Cl;
M ∪ {w1z, x

′
jyj} − {xjyj} C(w1z) = cj, 1 ≤ j ≤ l.

Case 2. z ∈ VL. Without loss of generality, assume that z = x′
1, then let

M ′ =

{

M ∪ {w1z} C(w1z) /∈ Cl;
M ∪ {w1z, xjy

′
j} − {xjyj} C(w1z) = cj, 1 ≤ j ≤ l.
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In both cases, M ′ is a heterochromatic matching and |M ′| > t, which is a contradiction.
�

Since |N c(w1)| = |T1|+ |T2| ≥ k, it follows that |T 2
1 | ≥ k−|T2|− |T 1

1 | ≥ k− (t− l)− t1 .
Similarly it holds that |T 2

3 | ≥ k − (t − l) − t2. Then

|T 2

1 | + |T 2

3 | − |V ′| ≥ 2k − 2t + 2l − t1 − t2 − 2(t − l)

≥ 2k − 4t + 4l − t1 − t2

≥ 2l + 1.

So there exists an edge x0y0 ∈ E(M − Ml), where x0 ∈ T 2
1 , y0 ∈ T 2

3 and C(w1x0) /∈
Cl ∪ CL. Note that C(w1x0), C(w2y0) /∈ C(M − Ml).

If C(w2y0) ∈ Cl, suppose C(w2y0) = ci, 1 ≤ i ≤ l. Let M ′ = M ∪ {w1x0, w2y0, xiy
′
i} −

{xiyi, x0y0}, then M ′ is a heterochromatic matching and |M ′| > t, a contradiction.
If C(w2y0) /∈ Cl and C(w2y0) 6= C(w1x0), then let M ′ = M ∪ {w1x0, w2y0} − {x0y0}.

Thus M ′ is a heterochromatic matching and |M ′| > t, a contradiction.
If C(w2y0) = C(w1x0), then we obtain an APM = w2y0x0w1, where C(w2y0) =

C(w1x0) /∈ C(M) ∪ CL, x0y0 ∈ E(M − Ml) and w1, w2 ∈ V (G − VM). So there ex-
ists (l + 1) vertex-disjoint APMs, in which every pair of APMs are different, which is a
contradiction.

The proof of Theorem 1.4 is complete. �

3 Proof of Theorem 1.6

Firstly, we give some preliminaries. A hypergraph is a set of subsets, called hyperedges, of
some ground set, whose elements are called vertices. A hypergraph H is called r-uniform
(or an r -graph) if all its hyperedges are of the same size, r. An r-uniform hypergraph
is called r-partite if its vertex set V (H) can be partitioned into sets V1, · · · , Vr in such a
way that each hyperedge meets each Vi in precisely one vertex.

A matching in a hypergraph is a set of disjoint hyperedges. The matching number,
ν(H), of a hypergraph H is the maximal size of a matching in H.

A cover of a hypergraph H is a subset of V (H) meeting all hyperedges of H. The
covering number, τ(H), of H is the minimal size of a cover of H. Obviously, τ ≥ ν for all
hypergraphs. In a r-uniform hypergraph τ ≤ rν, since the union of the hyperedges of a
maximal matching forms a cover.

Ryser gave a conjecture as follows.

Conjecture 3.1 In a r-partite r-uniform hypergraph (where r > 1), τ ≤ (r − 1)ν.

This conjecture appeared in the Ph.D thesis of Henderson, a student of Ryser. For
small values of r, only the case r = 3 was studied for general ν. The bounds for this case
were improved successively: τ ≤ 25

9
ν [11], τ ≤ 8

3
ν [18], τ ≤ 5

2
ν [19]. Finally, it was proved

by Aharoni [1].
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Theorem 3.1 [1] In a tripartite 3-graph, τ ≤ 2ν.

Proof of Theorem 1.6

Construct a 3-partite 3-uniform hypergraph H as follows. Let V1 = X, V2 = Y and
V3 = C(G). A hyperedge e = {x, y, c} ∈ E(H) if and only if in graph G, x ∈ X, y ∈ Y
and C(xy) = c. Clearly, a matching of a hypergraph H is a heterochromatic matching of
G. Let M be a maximum heterochromatic matching. Then |M | = ν(H).

We conclude that τ(H) ≥ |X|. Otherwise, assume that D = D1 ∪ D2 ∪ D3 is a
cover of H with |D| ≤ |X| − 1, in which D1 ∈ V1, D2 ∈ V2 and D3 ∈ V3. Now consider
F = X\D1 in graph G, then there exists a maximum color neighborhood N c(F ) such
that |N c(F )| ≥ |F | = |X|− |D1|. Thus in the hypergraph H, there exists a hyperedge set
E1 with |E1| ≥ |F | such that
(i) for each hyperedge e = {x, y, c} ∈ E1, it holds that x ∈ F ;
(ii) for two hyperedges e = {x, y, c}, e′ = {x′, y′, c′}, it holds that y 6= y′ and c 6= c′.

By (i), D1 does not meet any hyperedge of E1. And D = D1 ∪ D2 ∪ D3 is a cover
of H, so D2 ∪ D3 meets each hyperedge of E1. Thus by (ii) and since D2 ∩ D3 = ∅, we
conclude that |D2|+ |D3| ≥ |E1| ≥ |F | = |X|− |D1|. Therefore, |D1|+ |D2|+ |D3| ≥ |X|,
a contradiction. So τ(H) ≥ |X| and by Theorem 3.1, |X| = τ(H) ≤ 2ν(H) = 2|M |. That

is |M | ≥ |X|
2

, which completes the proof. �

Let G = sC4, a graph with s components, each a C4. Let C be a proper edge coloring
of G with 2s colors so that each color appears exactly twice, both times in the same
C4. Any bipartition (X, Y ) for G meets the condition in Theorem 1.6. Yet the largest

heterochromatic matching has cardinality s = |X|
2

. Thus this example shows that the
bound in Theorem 1.6 is best possible.
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