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Abstract

To a directed graph without loops or 2-cycles, we can associate a skew-symmetric
matrix with integer entries. Mutations of such skew-symmetric matrices, and more
generally skew-symmetrizable matrices, have been defined in the context of cluster
algebras by Fomin and Zelevinsky. The mutation class of a graph Γ is the set of
all isomorphism classes of graphs that can be obtained from Γ by a sequence of
mutations. A graph is called mutation-finite if its mutation class is finite. Fomin,
Shapiro and Thurston constructed mutation-finite graphs from triangulations of ori-
ented bordered surfaces with marked points. We will call such graphs “of geometric
type”. Besides graphs with 2 vertices, and graphs of geometric type, there are only
9 other “exceptional” mutation classes that are known to be finite. In this paper
we introduce 2 new exceptional finite mutation classes.

Cluster algebras were introduced by Fomin and Zelevinsky in [5, 6] to create an alge-
braic framework for total positivity and canonical bases in semisimple algebraic groups.

An n × n matrix B = (bi,j) is called skew symmetrizable if there exists nonzero
d1, d2, . . . , dn such that dibi,j = −djbj,i for all i, j. An exchange matrix is a skew-
symmetrizable matrix with integer entries.

A seed is a pair (x, B) where B is an exchange matrix and x = {x1, x2, . . . , xn} is a
set of n algebraically independent elements. For any k with 1 ≤ k ≤ n we define another

∗This first author is partially supported by NSF grant DMS 0349019. This grant also supported the
REU research project of the second author on which this paper is based.
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seed (x′, B′) = µk(x, B) as follows. The matrix B ′ = (b′i,j) is given by

b′i,j =

{
−bi,j if i = k or j = k;
bi,j + [bi,k]+[bk,j]+ − [−bi,k]+[−bk,j]+ otherwise.

Here, [z]+ = max{z, 0} denotes the positive part of a real number z. Define

x′ = {x1, x2, . . . , xk−1, x
′

k, xk+1, . . . , xn}

where x′

k is given by

x′

k =

∏n

i=1 x
[bi,k]+
i +

∏n

i=1 x
[−bi,k]+
i

xk

.

Note that µk is an involution. Starting with an initial seed (x, B) one can construct
many seeds by applying sequences of mutations. If (x′, B′) is obtained from the initial
seed (x, B) by a sequence of mutations, then x′ is called a cluster, and the elements
of x′ are called cluster variables. The cluster algebra is the commutative subalgebra of
Q(x1, x2, . . . , xn) generated by all cluster variables. A cluster algebra is called of finite
type if there are only finitely many seeds that can be obtained from the initial seed by
sequences of mutations. Cluster algebras of finite type were classified in [6].

Example 1 (Cluster algebra of type A1) If we start with the initial seed (x, B) where
x = {x1, x2} and

B =

(
0 −1
1 0

)

Using mutations we get

{x1, x2},

(
0 1
−1 0

)
↔ {

1 + x2

x1
, x2},

(
0 −1
1 0

)
↔ {

1 + x2

x1
,
1 + x1 + x2

x1, x2
},

(
0 1
−1 0

)
↔

↔ {
1 + x1

x2
,
1 + x1 + x2

x1, x2
},

(
0 −1
1 0

)
↔ {

1 + x1

x2
, x1}

(
0 1
−1 0

)
↔ {x2, x1},

(
0 −1
1 0

)

The last seed

{x2, x1},

(
0 −1
1 0

)

is considered the same as the initial seed. We just need to exchange x1 and x2 (and
accordingly swap the 2 rows and swap the 2 columns in the exchange matrix) to get the
initial seed.

A cluster algebra is called mutation-finite if only finitely many exchange matrices appear
in the seeds. Obviously a cluster algebra of finite type is mutation-finite. But the converse
is not true. For example, the exchange matrix

B =

(
0 −2
2 0

)
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gives a cluster algebra that is not of finite type. However, the only exchange matrix that
appears is B (and −B, but −B is the same as B after swapping the 2 rows and swapping
the 2 columns).

In this paper we will only consider exchange matrices that are already skew-symmetric.
To a skew-symmetric n × n matrix B = (bi,j) we can associate a directed graph Γ(B) as
follows. The vertices of the graph are labeled by 1, 2, . . . , n. If bi,j > 0, draw bi,j arrows
from j to i. Any finite directed graph without loops or 2 cycles can be obtained from a
skew-symmetric exchange matrix in this way. We can understand mutations in terms of
the graph. If Γ = Γ(B) then µkΓ := Γ(µkB) is obtained from Γ as follows. Start with Γ.
For every incoming arrow a : i → k at k and every outgoing arrow b : k → j, draw a new
composition arrow ba : i → j. Then, revert every arrow that starts or ends at k. The
graph now may have 2-cycles. Discard 2-cycles until there are now more 2-cycles left. The
resulting graph is µkΓ. Two graphs are called mutation-equivalent, if one is obtained from
the other by a sequence of mutations and relabeling of the vertices. The mutation class
of a graph Γ is the set of all isomorphism classes of graphs that are mutation equivalent
to Γ. A graph is mutation-finite if its mutation class is finite.

Convention 2 In this paper, a subgraph of a directed graph Γ will always mean a full
subgraph, i.e., for every two vertices x, y in the subgraph, the subgraph also will contain
all arrows from x to y.

1 Known mutation-finite connected graphs

It is easy to see that a graph Γ is mutation-finite if and only if each of its connected
components is mutation finite. We will discuss all known examples of graphs of finite
mutation type.

1.1 Connected graphs with 2 vertices

Let Θ(m) be the graph with two vertices 1, 2 and m ≥ 1 arrows from 1 to 2. The mutation
class of Θ(m) is just the isomorphism class of Θ(m) itself. So Θ(m) is mutation-finite.

Θ(3) : •
//
//
// •

1.2 Graphs from cluster algebras of finite type.

An exchange matrix of a cluster algebra of finite type is mutation finite. The cluster alge-
bras of finite type were classified in [6]. This classification goes parallel to the classification
of simple Lie algebras, there are types

An,Bn,Cn,Dn,E6,E7,E8,F4,G2.
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The types with a skew-symmetric exchange graph correspond to the simply laced Dynkin
diagrams An,Dn,E6,E7,E8:

An : • // • // · · · // •

Dn : •

��
• // • // · · · // •

E6 : •

��
• // • // • •oo •oo

E7 : •

��
• // • // • •oo •oo •oo

E8 : •

��
• // • // • •oo •oo •oo •oo

The orientation of the arrows here were chosen somewhat arbitrarily. For each diagram,
a different choice of the orientation will still give the same mutation class.

1.3 Graphs from extended Dynkin diagrams

In [2] it was shown that a connected directed graph without oriented cycles is of finite
mutation type if and only if it has at 2 vertices (the graphs Θ(m), m ≥ 1) or the underlying
undirected graph is an extended Dynkin diagrams. The type D and E extended Dynkin
diagrams give rise to the following finite mutation classes:

D̂n : •

��

•

��
• // • // · · · // • // •

Ê6 : •

��
•

��
• // • // • •oo •oo
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Ê7 : •

��
• // • // • // • •oo •oo •oo

Ê8 : •

��
• // • // • •oo •oo •oo •oo •oo

Again, for these types, a different choice for the orientations of the arrows still give the
same mutation class. The diagram for Ân is an (n + 1)-gon. If all arrows go clockwise

or all arrows go counterclockwise, then we get the mutation class of Dn. Let Âp,q be the
mutation class of the graph where p arrows go counterclockwise and q arrows go clockwise,
where p ≥ q ≥ 1. For the mutation class it does not matter which arrows are chosen to
be counterclockwise and with ones are chosen counterclockwise.

1.4 Graphs coming from triangulations of surfaces

In [4] the authors construct cluster algebras from bordered oriented surfaces with marked
points. These cluster algebras are always of finite mutation type. The exchange matrices
for these types are skew-symmetric. The mutation-finite graphs that come from oriented
bordered surfaces with marked points will be called of geometric type. In §13 of that
paper, the authors give a description of the graphs of geometric type.

A block is one of the diagrams below:

I: ◦ // ◦ II: ◦

��@
@@

@@
@@

◦

??~~~~~~~
◦oo

IIIa: ◦

•

??~~~~~~~
•

__@@@@@@@

IIIb: ◦

��@
@@

@@
@@

��~~
~~

~~
~

• •

IV: •

��@
@@

@@
@@

◦

??~~~~~~~

��@
@@

@@
@@

◦oo

•

??~~~~~~~

V: •

��@
@@

@@
@@

•

��

oo

◦

??~~~~~~~

��~~
~~

~~
~

•

OO

// •

__@@@@@@@

Start with a disjoint union of blocks (every type may appear several times) and choose
a partial matching of the open vertices (◦). No vertex should be matched to a vertex of
the same block. Then construct a new graph by identifying the vertices that are matched
to each other. If in the resulting graph there are two vertices x and y with an arrow
from x to y and an arrow from y to x, then we omit both arrows (they cancel each other
out). A graph constructed in this way is called block decomposable. Fomin, Shapiro and
Thurston prove in [4, §13] that a graph is block decomposable if and only if the graph is
of geometric type.
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For example

•

��@
@@

@@
@@

•

◦ ◦ // ◦ ◦ // ◦

??~~~~~~~

��@
@@

@@
@@

•

??~~~~~~~
•

gives
•

��@
@@

@@
@@

•

• // • // •

??~~~~~~~

��@
@@

@@
@@

•

??~~~~~~~
•

of type D̂6. It is easy to see that all graphs of type An,Dn, Âp,q, D̂n are block decompos-
able. The partial matching

◦

��@
@@

@@
@@

��~~
~~

~~
~

◦

��

•

��@
@@

@@
@@

•

��~~
~~

~~
~

◦

__@@@@@@@

◦

OO

◦

??~~~~~~~

yields the block decomposable graph

•

��@
@@

@@
@@

��~~
~~

~~
~

•

��@
@@

@@
@@

•

OO

•

��~~
~~

~~
~

•

OO
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1.5 Graphs of extended affine types

The following graphs are also of finite mutation type:

E
(1,1)
6 : •

��~~
~~

~~
~

��@
@@

@@
@@

**UUUUUUUUUUUUUUUUUUUUU

• // •

��@
@@

@@
@@

•

��~~
~~

~~
~

•oo •

ttiiiiiiiiiiiiiiiiiiiii •oo

•

OO OO

E
(1,1)
7 : •

��~~
~~

~~
~

��@
@@

@@
@@

''OOOOOOOOOOOOOO

• // • // •

��@
@@

@@
@@

•

��~~
~~

~~
~

•

wwoooooooooooooo •oo •oo

•

OO OO

E
(1,1)
8 : •

��~~
~~

~~
~

��@
@@

@@
@@

''OOOOOOOOOOOOOO

• // •

��@
@@

@@
@@

•

��~~
~~

~~
~

•

wwoooooooooooooo •oo •oo •oo •oo

•

OO OO

These graphs are orientations of the Dynkin diagrams of extended affine roots systems
first described by Saito (see [10, Table 1]). The connection between extended affine
root systems and cluster combinatorics was first noticed by Geiss, Leclerc, and Schroër
in [8]. It was shown using that these graphs are of finite mutation type by an exhaustive
computer search using the Java applet for matrix mutations written by Bernhard Keller
([9]) and Lauren Williams.

1.6 Summary

All the known quivers of finite mutation type can be summarized as follows:

1. graphs of geometric type,

2. graphs with 2 vertices,

3. graphs in the 9 exceptional mutation classes

E6,E7,E8, Ê6, Ê7, Ê8,E
(1,1)
6 ,E

(1,1)
7 ,E

(1,1)
8 .

Fomin, Shapiro and Thurston asked to following question (see [4, Problem 12.10])1.

Problem 3 Are these all connected graphs of finite mutation type? If not, are there only
finitely many exceptional finite mutation classes?

In the next section, we will introduce 2 new mutation classes of finite type.

1In the statement of Problem 12.10 in [4], the authors accidentally wrote n ≥ 2 instead of n ≥ 3.
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2 New exceptional graphs of finite mutation-type

Proposition 4 The following two graphs are of finite mutation type:

X6 : •

��@
@@

@@
@@

•

��@
@@

@@
@@

��@
@@

@@
@@

•

??~~~~~~~

??~~~~~~~
•oo

??~~~~~~~
•oo

•

OO

X7 : •

��@
@@

@@
@@

•

��@
@@

@@
@@

��@
@@

@@
@@

•

??~~~~~~~

??~~~~~~~
•oo

??~~~~~~~

��@
@@

@@
@@

•oo

•

??~~~~~~~
•oo oo

Proof. This is easy to verify by hand or by using the applet [9]. The mutation classes
for X6 and X7 are surprisingly small. The mutation class of X6 consists of the following
5 graphs:

•

��@
@@

@@
@@

•

��@
@@

@@
@@

��@
@@

@@
@@

•

??~~~~~~~

??~~~~~~~
•oo

??~~~~~~~

��

•oo

•

•

��@
@@

@@
@@

•

��@
@@

@@
@@

��@
@@

@@
@@

•

??~~~~~~~

??~~~~~~~
•oo

??~~~~~~~
•oo

•

OO

•

��~~
~~

~~
~

��@
@@

@@
@@

• //

��

•

OO

��~~
~~

~~
~

��@
@@

@@
@@

•oo

��
•

77oooooooooooooo •

ggOOOOOOOOOOOOOO

•

��
•

??~~~~~~~

''OOOOOOOOOOOOOO •oo // •

__@@@@@@@

wwoooooooooooooo

•

OO ??~~~~~~~
•

__@@@@@@@

OO

• //

��~~
~~

~~
~

•

����
��
��
��
��
��
��

• // •

__@@@@@@@

��~~
~~

~~
~

•

__@@@@@@@
// •

WW//////////////
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The mutation class of X7 consists of the following 2 graphs:

•

��@
@@

@@
@@

•

��@
@@

@@
@@

��@
@@

@@
@@

•

??~~~~~~~

??~~~~~~~
•oo

??~~~~~~~

��@
@@

@@
@@

•oo

•

??~~~~~~~
•oooo

•

��

��~~
~~

~~
~

•oo

��~~
~~

~~
~

•

��@
@@

@@
@@

// •

__@@@@@@@
//

��~~
~~

~~
~

•

__@@@@@@@
jj

•

55

// •

__@@@@@@@

??~~~~~~~

•

Corollary 5 The graphs X6 and X7 are not mutation-equivalent to

E6,E7,E8, Ê6, Ê7, Ê8,E
(1,1)
6 ,E

(1,1)
7 ,E

(1,1)
8 .

Proof. The reader easily verifies that none of these 9 graphs are in the mutation classes
of X6 or X7. •

Proposition 6 The graphs X6 and X7 are not block decomposable. In particular, these
graphs do not come from oriented surfaces with marked points.

Proof. Suppose that X6 is block decomposable. None of the blocks will be of type V,
since the block V contains a 4-cycle which will not vanish after the matching, and X6

does not contain a 4-cycle. We label the vertices of X6 as follows:

z1

  A
AA

AA
AA

A
y2

  A
AA

AA
AA

A

  A
AA

AA
AA

A

y1

>>}}}}}}}}

>>}}}}}}}}
xoo

>>}}}}}}}}
z2oo

w

OO

(1)

At vertex x there are 2 arrows going out and 3 arrows coming in. To form a graph with
this property from the blocks, we must either glue blocks II and IV along x, or glue blocks
IIIa and IV along x.

If we glue blocks IIIa and IV we get the following graph:

•

��@
@@

@@
@@

•

��@
@@

@@
@@

x

??~~~~~~~

��@
@@

@@
@@

◦oo

•

??~~~~~~~
•

??~~~~~~~

where the open vertex (◦) may be matched further with other blocks. Even after further
matching, x will have at least 2 neighbors which are only connected to x.
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If blocks II and IV are matched to form a vertex x, then we get the following graph

•

��@
@@

@@
@@

◦

��~~
~~

~~
~

◦

??~~~~~~~

��@
@@

@@
@@

xoo

��@
@@

@@
@@

•

??~~~~~~~
◦

OO (2)

Here the open vertices can be matched further. However, they cannot be matched among
themselves, because this would change the number of incoming and outgoing arrows at
x. In X6, x has incoming arrows from w, z1, z2. So in (2), one of the vertices marked
with • has to correspond to z1 or z2. But it is clear that even after further matching, the
vertices marked with • will only have 1 incoming arrow. Contradiction. This shows that
X6 is not block decomposable. Therefore, X6 does not come from an a triangulation of
an oriented surface with marked points.

Since X6 is a subgraph of X7, X7 does not come from a triangulation of an oriented
surface with marked points either. •

3 Mutation-finite graphs containing X6 or X7

The following result was proven in [1]. We include the short proof for the reader’s conve-
nience.

Theorem 7 The finite mutation classes of connected quivers with 3 vertices are:

A3 : ◦

��@
@@

@@
@@

◦

??~~~~~~~
◦

◦

��@
@@

@@
@@

��~~
~~

~~
~

◦ ◦

◦

◦

??~~~~~~~
◦

__@@@@@@@

◦

��@
@@

@@
@@

◦

??~~~~~~~
◦oo

Â2 : ◦

��@
@@

@@
@@

◦

??~~~~~~~
// ◦

◦

��@
@@

@@
@@

◦

??~~~~~~~
◦oo oo

Z3 : ◦

��@
@@

@@
@@

��@
@@

@@
@@

◦

??~~~~~~~

??~~~~~~~
◦oooo

Proof. Suppose that Γ is a connected graph of finite mutation type with 3 vertices.
Assume that Γ, among all the graphs in its mutation class, has the largest possible number
of arrows. Without loss of generality we may assume that Γ is of the form

2
q

��=
==

==
==

1

p
@@�������

3r
oo

(3)
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where p, q, r ≥ 0 denote the number of arrows. If Γ is not of the form (3), then it is of
the form

2
q

��=
==

==
==

1

p
@@�������
r

// 3

. (4)

and mutation at vertex 2 will not decrease the number of arrows, and we obtain a graph
of the form (3). Without loss of generality we may assume that

p, q ≥ r. (5)

In particular,
p, q ≥ 1 (6)

otherwise the graph would not be connected. After mutation at vertex 2, we get

2
p

����
��

��
�

1
pq−r

// 3

q
^^=======

(7)

Since Γ had the maximal number of arrows, we have pq − r ≤ r, so

pq ≤ 2r. (8)

From r2 ≤ pq ≤ 2r follows that r = 0, 1, 2. If r = 0, then pq = 0 by (8) which contradicts
(6). If r = 1, then pq = 1 or pq = 2 by (8). If pq = 1, then p = q = 1 which yields type

A3. If pq = 2 then p = 2, q = 1 or p = 1, q = 2. In either case we get type Â2. If r = 2,
then (5) and (8) imply that p = q = 2 and we obtain type Z3. •

Corollary 8 If Γ is a graph of finite mutation type with ≥ 3 vertices Then the number
of arrows between any 2 vertices is at most 2.

Proof. Suppose x and y are vertices of Γ with p ≥ 1 arrows from x to y. Since Γ is
connected, there exists a vertex z that is connected to x or y.The subgraph with vertices
x, y, z is also of finite mutation type. From the classification in Theorem 7 it is clear that
p ≤ 2. •

Definition 9 An obstructive sequence for a graph Γ is a sequence of vertices x1, . . . , x`

such that the mutated graph
µx`

· · ·µx2
µx1

Γ

has two vertices with at least 3 arrows between them.

By Corollary 8, a graph for which an obstructive sequence exists cannot be of finite
mutation type.
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Lemma 10 If Γ is a mutation-finite connected graph with ≥ 4 vertices, then Γ cannot
contain Z3 as a subgraph.

Proof. Suppose Γ is a mutation-finite connected graph with ≥ 4 vertices containing Z3.
Then Γ has a mutation-finite connected subgraph with exactly 4 vertices containing Z3.
Without loss of generality we may assume that Γ has 4 vertices. We label the vertices of
Z3 as follows

x2

!!B
BB

BB
BB

B

!!B
BB

BB
BB

B

x1

==||||||||

==||||||||
x3oooo

Let y be the 4-th vertex of Γ. Now y is connected to at least one of the vertices of Z3, say
to x1. Because the subgraph with vertices {y, x1, x2} is of finite mutation type, all arrows
must go from y to x1 and not in the opposite direction by Theorem 7. But because the
subgraph with vertices {y, x1, x3} is of finite mutation type, all arrows must go from x1

to y. Contradiction. •

Corollary 11 If Γ is a mutation-finite graph with ≥ 4 vertices, then every connected
subgraph with 3 vertices must be of type A3 or Â2.

Theorem 12 The only connected mutation-finite quiver with 7 vertices containing X6 is
X7.

Proof. Suppose that Γ is a mutation finite quiver containing X6. We label the vertices of
X6 as shown in (1), and denote the other vertex by u. Since Γ is connected, u is connected
to at least 1 other vertex.

Case 1: Suppose that u is connected to 1 vertex of X6. If u is connected to y1

or z1 then the subgraph with vertices {u, y1, z1} is not of type A3 or Â2, contradicting
Corollary 11. Similarly u is not connected to y2 or z2.

Suppose u is connected to x. After mutation at u we may assume that arrows go from
u to x. From Corollary 11 applied to the subgraph with vertices {u, x, w} follows that
there can be only 1 arrow.

Now w, x, y1, z1, w, u is a obstructive sequence.
Suppose that u is connected to w. Without loss of generality we may assume that

arrows go from u to w. By Corollary 11 applied to the subgraph with vertices {u, w, x}
there is at most 1 arrow. Now x, w, y1, y2, z1, z2, x, w, y2, is a obstructive sequence.

attached to X6 by only one set of arrows.
Case 2: Suppose that u is connected to 2 vertices. If u is connected to y1 or z1, then

the only possibility is that there is one arrow from u1 to y1 and one arrow from z1 to u1.
An obstructive sequence is u, x, y1, y2.x, w, x, z2, y1. Similarly, u cannot be connected to
y2 or z2.

Therefore, u must be connected to w and x. The only cases that avoid a connected
subgraph with 3 vertices not of type A3 or Â2 are:

(a) : u
!!C

CC

x

>>}}}
woo

(b) : u
~~}}

}
!!C

CC

x woo

(c) : u

x

>>}}}
woo

aaCCC
(d) : u

!!C
CC

!!C
CC

x

>>}}}
woo
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Case (a) reduces to Case 1 after mutation at vertex u. Cases (b) and (c) give isomorphic
graphs. Case (b) has an obstructive sequence w, x, u. Case (d) gives us the graph X7.

Case 3: 3 attachments
Vertex u must be attached to either vertices y1 and z1 or vertices y2 and z2. Without

loss of generality, we may assume that u is connected to both y1 and z1. There is one
arrow from u to y1 and one arrow from z1 to u. The vertex u is also connected to either
w or x. There are 4 cases:

(a) : u

��
x

(b) : u

��
w

(c) : u

x

OO (d) u

w

OO

Case (a) has the obstructive sequence u, x, z1. Case (b) has the obstructive sequence
u, x, z1, w, x. In case (c) we have the obstructive sequence x, w, u, y1. Case (d) has the
obstructive sequence u, x, z2, y1, w.

Case 4: Suppose that u is connected to 4 vertices. If u is connected to y1, z1, y2, z2

then there is an arrow from u to y1 and to y2 and arrows from z1 and z2 to u. An
obstructive sequence is u, x, w, y2, z1.

Otherwise, u must be connected to either y1 and z1, or to y2 and z2, but not both.
Without loss of generality we may assume that u is connected to y1 and z1. Now u is also
connected to w and x. The only cases that avoid a connected subgraph with 3 vertices
not of type A3 or Â2 are:

(a) : u
!!C

CC

x

>>}}}
woo

(b) : u
~~}}

}
!!C

CC

x woo

(c) : u

x

>>}}}
woo

aaCCC
(d) : u

~~}}
}

x woo

aaCCC

Case (a) has the obstructive sequence u, x, y1. Case (b) has the obstructive sequence
u, x, z1. In case (c) we have the obstructive sequence u, x. And case (d) is mutation
equivalent to case (c) via the mutation at w.

Case 5: Suppose that u is connected to 5 of the vertices of X6. Then u must be
connected to y1, z1, y2, z2, with arrows going from u to y1 and y2 and arrows going from
z1 and z2 to u. Now u must be connected to either x or w. There are 4 subcases:

(a) : u

��
x

(b) : u

��
w

(c) : u

x

OO (d) u

w

OO

Case (a) has the obstructive sequence u, x. Case (b) has the obstructive sequence u, x, w.
In case (c) we have the obstructive sequence u, x. Case (d) has the obstructive sequence
u, x, y1, y2.

Case 6: The vertex u is connected to all 6 vertices of X6. There must be arrows from
u to y1 and y2 and arrows from z1 and z2 to u. The only possibilities to connect u to x

and w that avoid a connected subgraph with 3 vertices not of type A3 or Â2 are:

(a) : u
!!C

CC

x

>>}}}
woo

(b) : u
~~}}

}
!!C

CC

x woo

(c) : u

x

>>}}}
woo

aaCCC
(d) : u

~~}}
}

x woo

aaCCC
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Case (a) has the obstructive sequence x, y1, y2. Case (b) has the obstructive sequence
x, z1, z2. Case 3 has the obstructive sequence x, y1, y2. Case 4 has the obstructive sequence
x, z1, z2.

Therefore the only connected mutation-finite quiver with 7 vertices containing X6 is
X7. •

Theorem 13 There is no connected mutation-finite quiver with ≥ 8 vertices containing
X7.

Proof. Suppose that Γ is a connected graph with ≥ 8 vertices containing X7. We will
show that this will lead to a contradiction. The graph Γ contains a connected subgraph
with exactly 8 vertices which contains X7. So without loss of generality we may assume
that Γ has exactly 8 vertices. Let us label the vertices of X7 as follows:

z1

��@
@@

@@
@@

@
y2

  A
AA

AA
AA

A

  A
AA

AA
AA

A

y1

>>}}}}}}}}

>>}}}}}}}}
xoo

??~~~~~~~~

��@
@@

@@
@@

@ z2oo

z3

??~~~~~~~~
y3oooo

Suppose that u is the 8-th vertex of Γ. Because of the symmetry, we may assume,
without loss of generality that u is connected to x, y1 or z1. The subgraph with vertices
{x, y1, z1, y2, z2, z3, u} is connected and contains X7. By Theorem 12 this graph must
be isomorphic to X7. This means that there must be 2 arrows from u to z3. Now the
subgraph with vertices y3, z3, u cannot be of finite mutation type because of Theorem 7.

•

Corollary 14 No graph of one of the 9 exceptional types contains X6 or X7 as a subgraph.

4 Conclusion

We have exhibited two graphs which are of finite mutation type, but which are not of
geometric type or isomorphic to the 9 known exceptional cases. It is natural to ask
whether there are any more exceptional graphs of finite mutation type.

Problem 15 Is it true that every finite mutation class of graphs with ≥ 3 vertices which
is not of geometric type is one of the following 11 mutation classes:

E6,E7,E8, Ê6, Ê7, Ê8,E
(1,1)
6 ,E

(1,1)
7 ,E

(1,1)
8 ,X6,X7.
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