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Abstract

We study, in three parts, degree sequences of k-families (or k-uniform hyper-
graphs) and shifted k-families.

• The first part collects for the first time in one place, various implications such
as

Threshold ⇒ Uniquely Realizable ⇒ Degree-Maximal ⇒ Shifted

which are equivalent concepts for 2-families (= simple graphs), but strict im-
plications for k-families with k ≥ 3. The implication that uniquely realizable
implies degree-maximal seems to be new.

• The second part recalls Merris and Roby’s reformulation of the characteri-
zation due to Ruch and Gutman for graphical degree sequences and shifted
2-families. It then introduces two generalizations which are characterizations
of shifted k-families.

• The third part recalls the connection between degree sequences of k-families
of size m and the plethysm of elementary symmetric functions em[ek]. It then
uses highest weight theory to explain how shifted k-families provide the “top
part” of these plethysm expansions, along with offering a conjecture about a
further relation.
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†Partially supported by NSF grant DMS-0601010.
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1 Introduction

Vertex-degree sequences achievable by simple graphs are well-understood and charac-
terized, e.g. [32] offers seven equivalent characterizations. By contrast, vertex-degree
sequences achievable by simple hypergraphs are poorly understood, even for k-uniform
hypergraphs (k-families), even for k = 3.

The current paper has three goals/parts. The first part is about various equivalent con-
cepts for graphs such as positive threshold, threshold, uniquely realizable, degree-maximal,
and shifted which arise in the literature as the extreme cases in characterizations of de-
gree sequences. Here our goal (Theorem 3.1) is to explain how these turn into a strict
hierarchy of concepts for k-families when k > 2. Most of the implications in the hierarchy
have occurred in scattered places in the literature, although one of them (uniquely realiz-
able implies degree-maximal) appears to be new. After defining the relevant concepts in
Section 2, Theorem 3.1 is proven in Section 3.

The second part (Section 4) addresses characterizing degree sequences for k-families
more explicitly and makes a promising start on this problem. Proposition 4.1 offers a re-
duction to shifted families stating that an integer sequence is a degree sequence if and only
if it is majorized by a shifted degree sequence. Such shifted sequences are unfortunately
also poorly understood. This section then re-examines Merris and Roby’s reformulation
of Ruch and Gutman’s characterization of graphical (k = 2) degree sequences, as well as
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their characterization of the extreme case of shifted graphs. Given an integer partition,
Merris and Roby’s conditions are stated in terms of the associated Ferrers diagram. The
goal in this part is to prove the more general Proposition 4.18, giving a k-dimensional
extension for shifted k-families via associated stacks of cubes.

The third part (Section 5) recalls a related and well-known connection between graph
degree sequences and the k = 2 case of the problem of expanding plethysms em[ek] of
elementary symmetric functions in terms of Schur functions sλ. This problem was solved
by a famous identity due to Littlewood:

∑

all simple
graphs K

xd(K)

(

=
∏

i<j

(1 + xixj) =
∑

m≥0

em[e2]

)

=
∑

shifted
graphs K

sd(K).

The goal in the third part is to prove that the generalizations for k > 2 of the left and
right sides in this identity,

∑

all k−uniform
hypergraphs K

xd(K)







=
∏

k−subsets
{i1,i2,··· ,ik}

(1 + xi1xi2 · · ·xik) =
∑

m≥0

em[ek]







and ∑

shifted k−uniform
hypergraphs K

sd(K),

while not being equal, do have many properties in common. In particular, they

• have the same monomial support (Proposition 5.4),

• both enjoy two extra symmetries (Propositions 5.7 and 5.8),

• have the Schur expansion for the former coefficientwise larger than for the latter
(Theorem 5.9).

2 Definitions and Preliminaries

2.1 The basic definitions

After defining k-families and degree sequences, we recall some of the basic definitions.

Definition 2.1. (k-families) Let P := {1, 2, . . .} and [n] := {1, 2, . . . , n}. A k-family K
on [n] is a collection K = {S1, . . . , Sm} of distinct k-subsets Si ⊂ [n]. In other words
Si ∈

(
[n]
k

)
. These are sometimes called (simple) k-uniform hypergraphs, and the Si are

called the hyperedges. Say that K has size m if |K| = m.
Two k-families K, K ′ are isomorphic if there exists a permutation σ of [n] which

relabels one as the other: σ(K) = K ′.
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Definition 2.2. (Degree sequence) For a simple graph G = (V, E) with |V | = n, the
vertex-degree sequence of G is the sequence d(G) = (d1, d2, . . . , dn) where di = |{j :
{i, j} ∈ E}|. More generally, the (vertex-) degree sequence for a k-family K on [n] is

d(K) = (d1(K), d2(K), . . . , dn(K))

where di(K) = |{S ∈ K : i ∈ S}|.
For any integer sequence d = (d1, . . . , dn), let |d| :=

∑n

i=1 di denote its sum or weight.

With these definitions in hand, we define the main conditions on k-families to be
studied here.

Definition 2.3. (Threshold families) Given a k-subset S of [n], its characteristic vector
χS ∈ {0, 1}n is the sum of standard basis vectors

∑

i∈S ei. In other words, χS is the vector
of length n with ones in the coordinates indexed by S and zeroes in all other coordinates.
Note that d(K) =

∑

S∈K χS.
A k-family K of [n] is threshold if there exists a linear functional w ∈ (Rn)∗ such that

S ∈ K if and only if w(χS) > 0.
A variation on this was introduced by Golumbic [13, Property T1, page 233] and

studied by Reiterman, Rödl, Šiňajová, and Tu̇ma [29]. Say that K is positive threshold if
there is a linear functional w(x) =

∑n

i=1 cixi having positive coefficients ci and a positive
real threshold value t so that S ∈ K if and only if w(χS) > t.

Example 2.4. Consider a k-family of [n] that consists of all possible k-sets. Such
“complete” families are threshold: simply take any strictly positive linear functional. The
empty family is similarly threshold, as can be seen by taking any strictly negative linear
functional.

The 3-family {123, 124, 125} is threshold with w = (1, 1,−1,−1,−1). This example
may be extended to general k by taking a family of k-sets which have a common (k−1)-set
in their intersection. For this family take the linear functional that weights the vertices
in the common (k − 1)-set with 1 and all other vertices with −(k − 2).

Definition 2.5. (Uniquely realizable families) A k-family K is uniquely realizable if
there does not exist a k-family K ′ 6= K with d(K) = d(K ′).

Example 2.6. It is possible to have two non-isomorphic families with the same degree
sequence. Let K be a disjoint union of two cycles of length 3 and K ′ be a cycle of length 6.
Both families have degree sequence (2, 2, 2, 2, 2, 2) and hence are not uniquely realizable.

It is not necessary, however, to consider non-isomorphic families. The 2-family K =
{12, 23, 34}, a path of length 3, with degree sequence (1, 2, 2, 1) is not uniquely realizable.
The 2-family K ′ = {13, 23, 24}, also a path of length three, has the same degree sequence.

The family K = {12, 23, 13}, a single cycle of length 3, which has degree sequence
(2, 2, 2) is uniquely realizable.

Note that two k-families K and K ′ of the same size m = |K| = |K ′| will have the
same sum for their degree sequences: |d(K)| = |d(K ′)| = km. This leads naturally to
considering the majorization order for comparing degree sequences. Majorization is also
known as the dominance order.
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Definition 2.7. (Degree-maximal families) Given two sequences of real numbers

a = (a1, . . . , an),

b = (b1, . . . , bm)

with the same sum |a| = |b|, one says that a majorizes b (a D b) if the following system of
inequalities hold:

a1 ≥ b1

a1 + a2 ≥ b1 + b2

...

a1 + a2 + . . . + an−1 ≥ b1 + b2 + . . . + bn−1.

Write a B b when a D b but a 6= b.
If one weakens the equality |a| = |b| of the total sums to an inequality (|a| ≥ |b|) then

one says that a weakly majorizes b (written a � b).
A k-family K is degree-maximal if there does not exist K ′ 6= K such that d(K ′)Bd(K),

i.e. d(K) is maximal with respect to majorization.

Example 2.8. Let K and K ′ be the 3-families {124, 125, 135} and {123, 124, 125}, with
degree sequences (3, 2, 2, 1, 1) and (3, 3, 1, 1, 1). Clearly d(K ′) B d(K), hence K is not
degree-maximal. It is not hard to check that K ′ is degree-maximal.

An important property of the majorization order is that the weakly decreasing re-
arrangement of any sequence always majorizes the original sequence. A consequence is
that a degree-maximal family K must always have its degree sequence d(K) weakly de-
creasing, otherwise the isomorphic family K ′ obtained by relabeling the vertices in weakly
decreasing order of degree would have d(K ′) B d(K).

Definition 2.9. (Shifted families) The componentwise partial order (or Gale order) on
the set

(
P

k

)
of all k-subsets of positive integers is defined as follows: say x ≤ y if

x = {x1 < x2 < · · · < xk}, and

y = {y1 < y2 < · · · < yk}

satisfy xi ≤ yi for all i.
A k-family is shifted if its k-sets, when written as increasing strings, form an order

ideal in the componentwise partial order.
When exhibiting a shifted family K, if {S1, S2, . . . , Sp} is the unique antichain of

componentwise maximal k-sets in K, we will say that K is the shifted family generated
by {S1, S2, . . . , Sp}, and write K = 〈S1, S2, . . . , Sp〉.

Example 2.10. The shifted family K = 〈235, 146〉 consists of triples

{123, 124, 125, 126, 134, 135, 136, 145, 146, 234, 235}

and has degree sequence d(K) = (9, 6, 6, 5, 4, 3).
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The family K = {124, 125, 134, 135, 234, 235}, consisting of the triples indexing max-
imal faces in the boundary of a triangular bipyramid, is not shifted. The triple 123 is
“missing” from the family. Furthermore, it is not possible to relabel this family and
achieve a shifted family.

It is an easy exercise to check that a shifted family K will always have its degree
sequence d(K) weakly decreasing.

2.2 Cancellation conditions

Here we introduce two cancellation conditions on k-families, which arise in the theory of
simple games and weighted games [37]. Both will turn out to be equivalent to some of the
previous definitions; see Theorem 3.1 below.

Definition 2.11. (Cancellation conditions)
Consider two t-tuples of k-sets (A1, A2, . . . , At), (B1, B2, . . . , Bt), allowing repetitions

in either t-tuple, such that
∑t

i=1 χAi
=
∑t

i=1 χBi
. A k-family K of [n] satisfies the

cancellation condition CCt if for any two such t-tuples, whenever each Aj is in K then at
least one Bj must also be in K.

A k-family K satisfies the cancellation condition DCCt if for any two collections of t
distinct k-sets {A1, . . . , At}, {B1, . . . , Bt} with

∑t

i=1 χAi
=
∑t

i=1 χBi
, whenever each Aj is

in K then at least one Bj must also be in K. In the simple games literature this is known
as Chow trade-robustness.

Note that every k-family satisfies DCC1(= CC1). We recall here the “simplest” fail-
ures for DCC2, which appear under the name of forbidden configurations in the study of
Reiterman, et al.[29, Definition 2.3].

Definition 2.12. Say that a k-family K satisfies the RRST -condition if there does not
exist two (k − 1)-sets A, B and a pair i, j satisfying

i, j 6∈ A

i, j 6∈ B

A t {j}, B t {i} ∈ K, but

A t {i}, B t {j} 6∈ K.

Note that such a tuple (A, B, i, j) would lead to a violation of DCC2 since

χAt{j} + χBt{i} = χAt{i} + χBt{j}.

Example 2.13. It is not hard to check that the 3-family K = {123, 134, 145} satisfies
CC3 and DCC3. K does not however satisfy DCC2 as seen by taking the collections
{123, 145} and {135, 124}.
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2.3 Vicinal preorder

In [18] it was shown how shiftedness relates to a certain preorder on [n] naturally associated
to any k-family on [n]; see Theorem 3.1 below.

Definition 2.14. (Vicinal preorder) Given a k-family K on [n] and i ∈ [n], define the
open and closed neighborhoods of i in K to be the following two subcollections NK(i), NK [i]
of
(

[n]
k−1

)
:

NK(i) :=

{

A ∈

(
[n]

k − 1

)

: A t {i} ∈ K

}

NK [i] := NK(i) t

{

A ∈

(
[n]

k − 1

)

: i ∈ A and A t {j} ∈ K for some j

}

.

Define a binary relation ≺K on [n] × [n] by i ≺K j if NK [i] ⊇ NK(j).

Proposition 2.15. ([18, §4]) The relation ≺K defines a preorder on [n], that is, it is
reflexive and transitive.

Proof. Since NK [i] ⊇ NK(i), the relation ≺K is clearly reflexive. To show transitivity,
assume NK [i] ⊇ NK(j) and NK[j] ⊇ NK(k), then we must show NK[i] ⊇ NK(k). Equiv-
alently, we must show that

NK(k) ∩ (NK [j] \ NK(j)) ⊂ NK[i].

The typical set in NK(k)∩ (NK[j] \ NK(j)) is of the form At{j} where A is a (k−2)-set
for which A t {j, k} ∈ K. We must show such a set A t {j} lies in NK[i].
Case 1. i ∈ A.

Then the fact that (A t {j}) t {k} ∈ K tells us A t {j} ∈ NK[i], and we’re done.
Case 2. i 6∈ A.

Then A t {k} ∈ NK(j) ⊆ NK[i]. But i 6∈ A, so this forces A t {k} ∈ NK(i). This
then implies A t {i} ∈ NK(k) ⊆ NK[j]. Since j 6∈ A, this forces A t {i} ∈ NK(j). Hence
A t {j} ∈ NK(i) ⊆ NK[i], as desired.

Example 2.16. The shifted family from Example 2.10

K = 〈235, 146〉 = {123, 124, 125, 126, 134, 135, 136, 145, 146, 234, 235}

has its vicinal preorder on {1, 2, 3, 4, 5} given by

6 ≺K 5 ≺K 4 ≺K 3 ∼K 2 ≺K 1

where we write i ∼K j if i ≺K j and j ≺K i. Note that in this case, the vicinal preorder
is a linear preorder, that is, every pair of elements i, j are related, either by i ≺K j or by
j ≺K i or by both.
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2.4 The zonotope of degree sequences

Here we recall a zonotope often associated with degree sequences. For basic facts about
zonotopes, see [23].

Definition 2.17. (Polytope of degree sequences) The polytope of degree sequences Dn(k)
is the convex hull in Rn of all degree sequences of k-families of [n]. Equivalently, Dn(k)
is the zonotope given by the Minkowski sum of line segments {[0, χS] |S ∈

(
[n]
k

)
}, where

recall that χS was the sum of the standard basis vectors, χS =
∑

i∈S ei.
The case k = 2 was first considered in [19] and further developed in [28] and [33]. The

case k > 2 was studied more recently in [27].

2.5 Swinging and shifting

Certain “shifting” operations produce a shifted family from an arbitrary family. There
are two main variants of shifting: combinatorial shifting introduced by Erdős, Ko, and
Rado [9] and Kleitman [17] and algebraic shifting introduced by Kalai [16]. Here we
consider the related operation of swinging.

Definition 2.18. (Swinging)
Given a k-family K on [n], suppose that there is a pair of indices i < j and a (k − 1)-set
A containing neither of i, j, such that At {j} ∈ K and At {i} /∈ K. Then form the new
k-family

K ′ = (K \ (A t j)) ∪ (A t i).

In this situation, say that K ′ was formed by a swing from K.

The difference between this operation and combinatorial shifting is the fixed (k−1)-set
A; combinatorial shifting instead chooses a pair of indices i < j and applies the swinging
construction successively to all applicable (k − 1)-sets A. Hence combinatorial shifting is
more restrictive: it is not hard to exhibit examples where a k-family K can be associated
with a shifted family K ′ via a sequence of swings, but not via combinatorial shifting.
Neither swinging nor combinatorial shifting is equivalent to algebraic shifting. Recently,
Hibi and Murai [14] have exhibited an example of a family where the algebraic shift cannot
be achieved by combinatorial shifting. We do not know if all outcomes of algebraic shifting
may be obtained via swinging.

Example 2.19. Let K be the non-shifted 3-family {123, 124, 145, 156}. First con-
sider combinatorially shifting K with respect to the pair (2, 5). The resulting family
is {123, 124, 125, 126} and is easily seen to be shifted.

The following swinging operations on K result in a different shifted family. First swing
145 with respect to (2, 4) which replaces 145 with 125. Next swing 156 with respect to
(3, 5) which replaces 156 with 136. Finally, swing the new face 136 with respect to (4, 6).
The result is the shifted family {123, 124, 134, 125}.

We note here a few easy properties of swinging.
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Proposition 2.20. Assume that the k-family K on [n] has been labelled so that d(K) is
weakly decreasing.

(i) One can swing from K if and only if K is not shifted.

(ii) If one can swing from K to K ′ then d(K ′) B d(K).

(iii) ([6, Proposition 9.1]) If d′ is a weakly decreasing sequence of positive integers with
d(K)Dd′, then there exists a family K ′ with d(K ′) = d′ such that K can be obtained
from K ′ by a (possibly empty) sequence of swings.

Proof. Assertions (i) and (ii) are straightforward. We repeat here the proof of (iii) from
[6, Proposition 9.1] for completeness. Without loss of generality d′ covers d(K) in the
majorization (or dominance order) on partitions, which is well-known to imply [26] that
there exist indices i < j for which

di(K) = d′
i + 1,

dj(K) = d′
j − 1,

dl(K) = d′
l for l 6= i, j.

This implies di(K) > dj(K), so there must exist at least one (k − 1)-subset A for which
A t {i} ∈ K but A t {j} 6∈ K. Then perform the reverse swing to produce K ′ :=
K \ {A t {i}} ∪ {A t {j}} achieving d(K ′) = d′.

3 Some relations between the concepts

Theorem 3.1. For a k-family K, the following equivalences and implications hold:

K is positive threshold (1)

⇒ K is threshold (2)

⇔ d(K) is a vertex of Dn(k) (3)

⇔ K satisfies CCt for all t (4)

⇒ d(K) is uniquely realizable (5)

⇔ K satisfies DCCt for all t (6)

⇒ K is isomorphic to a degree-maximal family (7)

⇒ K has its vicinal preorder ≺K a total preorder (8)

⇔ K satisfies RRST (9)

⇔ K is isomorphic to a shifted family (10)

For k ≥ 3, the four implications shown are strict, while for k = 2 these concepts are all
equivalent.
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Remark 3.2. Before proving the theorem, we give references for most of its assertions.
Only the implication (5) (or equivalently, (6)) implies (7) is new, as far as we are aware.
Our intent is to collect the above properties and implications, arising in various contexts
in the literature, together for the first time.

For k = 2 these concepts describe the class of graphs usually known as threshold
graphs. The equivalence of the threshold and shifted properties for graphs seems to have
been first noted in [5]. Properties (2), (3), (5), (7), and (8) for graphs may be found in [21].
Properties (2), (4), (5), (6), and (10) may be found in [37]. We refer the reader to these
texts for original references and the history of these results. Specifically, the properties
threshold and a total vicinal preorder are two of eight equivalent conditions presented
in [21, Theorem 1.2.4]. The equivalence of threshold graphs with unique realizability and
degree-maximality appears in [21, §3.2] along with six other conditions determining degree
sequences of threshold graphs. The polytope of graphical degree sequences is discussed
in [21, §3.3]. The results of [37] are not limited to the k = 2 case as outlined below.

For k ≥ 3, the equivalence of

• threshold families and vertices of Dn(k) appears as [27, Theorem 2.5],

• threshold families and CCt appears as [37, Theorem 2.4.2],

• unique realizability and DCCt appears as [37, Theorem 5.2.5],

• shiftedness and the RRST condition appears as [29, Theorem 2.5], and

• shiftedness and having a total vicinal preorder appears as [18, Theorem 1],

while the implications

• threshold implies uniquely realizable appears as [27, Corollary 2.6],

• threshold implies shifted is an old observation, e.g. [37, §3.3,3.4] or [13, §10], and

• degree-maximal implies shifted appears as [6, Proposition 9.3].

Proof. (of Theorem 3.1)

Equivalences:
For the proof of equivalence of (2), (3), (4), consider the vector configuration V :=

{χS}S∈([n]
k
). Note that all of the vectors in V lie on the affine hyperplane h(x) = k, where

h is the functional in (Rn)∗ defined by h(x) :=
∑n

i=1 xi, that is, they form an acyclic
vector configuration, corresponding to an affine point configuration in the above affine
hyperplane. The theory of zonotopes [7, §9] tells us that for a subset K ⊂ V of an acyclic
configuration of vectors, the following three conditions are equivalent:

(1) There exists a linear functional w with w(v) > 0 for v ∈ K and w(v) < 0 for
v ∈ V \ K.

the electronic journal of combinatorics 15 (2008), #R14 10



(2) The sum
∑

v∈K v is a vertex of the zonotope generated by {[0, v]}v∈V .

(3) The decomposition V = K t (V \ K) is a non-Radon partition in the sense that the
two cones positively generated by K and by V \K intersect only in the zero vector.

It should be clear that the first two of these three conditions correspond to a k-family
K being threshold or being a vertex of Dn(k). The cancellation condition CCt for all t
corresponds to the non-Radon partition condition as follows. The partition is non-Radon
if one cannot have a dependence

∑

v∈K avv =
∑

v∈V\K bvv with positive reals av, bv. Since

V = {χS}S∈([n]
k
) contains only integer vectors, without loss of generality the coefficients

av, bv in such a dependence can be assumed rational, and then by clearing denominators,
they may be assumed to be (positive) integers. Furthermore, since h(v) = k for each
v ∈ V, one may assume it is a homogeneous dependence, that is,

∑

v∈K

av =
∑

v∈V\K

bv (=: t) .

This homogeneous dependence corresponds to a pair of t-tuples (A1, . . . , At), (B1, . . . , Bt)
in which av, bv are the multiplicities of the sets, contradicting condition CCt.

For the proof of equivalence of (5) and (6), note that if two k-families K 6= K ′ had
d(K) = d(K ′) then the sets {A1, . . . , At} := K\(K∩K ′) and {B1, . . . , Bt} := K ′\(K∩K ′)
would contradict CCt. Conversely, if one had two collections of t sets {A1, . . . , At} ⊂ K
and {B1, . . . , Bt} ⊂ V \ K with a a dependence

∑t

i=1 χAi
=
∑t

i=1 χBi
, then

K ′ := (K \ {A1, . . . , At}) ∪ {B1, . . . , Bt}

would have d(K ′) = d(K) but K ′ 6= K.
For the equivalence of (8), (9), and (10), one can easily check that for a shifted family

K on [n] one has NK[i] ⊇ NK(j) whenever i < j, so that the vicinal preorder ≺K is
total. Conversely, if ≺K is total, relabel the set [n] so that the integer order <Z on [n]
is consistent with ≺K (that is, i <Z j implies i ≺K j), and one can then check that this
labelling makes K a shifted family. Lack of totality for the vicinal preorder means one
has a pair i, j with i 6≺K j (witnessed by some (k− 1)-set A in NK(j) \NK[i]) and j 6≺K i
(witnessed by some (k − 1)-set B in NK(i) \ NK[j]). One can check that this is exactly
the same as a tuple (A, B, i, j) which witnesses failure of the RRST condition.

Forward implications:
To see (1) implies (2), note that for any k-set S, the vector x = χS satisfies the inho-

mogeneous inequality
∑n

i=1 cixi > t if and only if it satisfies the homogeneous inequality
w(x) :=

∑n
i=1

(
ci −

t
k

)
xi > 0.

It should also be clear that (4) implies (6), that is, CCt implies DCCt. However, we
emphasize the geometric statement1 underlying the implication (2) implies (5): when a
subset K of an acyclic vector configuration V sums to a vertex of the zonotope generated by

1and see also [27, Corollary 2.6] for a similar argument via linear programming.
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{[0, v]}v∈V , no other subset K ′ ⊂ V can sum to the same vertex, otherwise the dependence
∑

v∈K\(K∩K′) v =
∑

v∈K′\(K∩K′) v would contradict the fact that V = K t (V \ K) is a

non-Radon partition (or it would contradict the existence of the functional w which is
positive on K and negative on V \ K).

To show (7) implies (10), we show the contrapositive. Assume that K is not isomorphic
to any shifted family, and without loss of generality, relabel [n] so that d(K) is weakly
decreasing. Since K is still not shifted, by Proposition 2.20(ii) it has applicable some
swing that produces a family K ′, for which d(K ′) strictly majorizes d(K).

To show (5) implies (7), note that (5) is equivalent to (6) which implies DCC2 and
hence (9), which is equivalent to (10). Hence if K is uniquely realizable, it is isomorphic to
a shifted family. Relabel so that K is itself shifted, and hence d(K) is weakly decreasing.
Choose a degree-maximal family K ′ with d(K ′)Dd(K). Then Proposition 2.20(iii) implies
there exists a k-family K ′′ with degree sequence d(K ′′) = d(K) such that K ′ can be
obtained from K ′′ by a (possibly empty) sequence of swings. Unique realizability forces
K ′′ = K. Since K is shifted, there are no swings applicable to it (Proposition 2.20(i)),
so the aforementioned sequence of swings must be empty, i.e. K = K ′. Hence K is
degree-maximal.

Completing the circle of equivalences for k = 2. To show (10) implies (1) when
k = 2, it suffices to exhibit for any shifted 2-family (graph) K on vertex set [n], some
positive coefficients a1, . . . , an and threshold value t such that {i, j} ∈ K if and only if
ai + aj > t. Chvátal and Hammer [5, Fact 3] prove this by induction on n, as follows.

It is easy to see that in a shifted graph K, there always exists a vertex v whose deletion
K\v is a shifted graph, and for which either v is isolated in the sense that {i, v} 6∈ K for
all i, or v is a cone vertex in the sense that {i, v} ∈ K for all i 6= v. Assume by induction
that there are coefficients âi and a threshold value t̂ exhibiting K\v as a positive threshold
graph. If v is a cone vertex, then taking av = t = t̂ and ai = âi for i 6= v exhibits K as
a positive threshold graph. If v is an isolated vertex, then without loss of generality one
can first perturb the âi and t̂ to be rationals, and then clear denominators to make them
positive integers. After this, taking t = 2t̂ + 1, av = 1 and ai = 2âi for i 6= v exhibits K
as a positive threshold graph.

Strictness of the implications for k ≥ 3.
To show (10) ; (7), Example 9.4 of [6] gave a family of examples starting at k = 3

and n = 10. We give here an example with n = 9. Let K be the shifted 3-family
of [9] generated by 〈178, 239, 456〉. This shifted family has degree sequence d(K) =
(23, 16, 16, 12, 12, 12, 7, 7, 3), and is not degree-maximal: the family K ′ generated by
〈149, 168, 238, 257, 356〉 has degree sequence (23, 17, 15, 13, 12, 11, 8, 6, 3)B d(K).

To show (7) ; (5), check the two shifted families

〈457, 168, 149, 248, 239〉

〈456, 357, 348, 267, 159〉

both achieve the degree-maximal degree sequence d = (23, 19, 18, 17, 15, 12, 11, 7, 4).
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To show (5) ; (2), in terms of cancellation conditions, this amounts to showing that
satisfying DCCt for all t is not equivalent to satisfying CCt for all t, which is illustrated
by an example in Theorem 5.3.1 of [37].

To show (2) ; (1), in [29, Example 2.1] the authors observe that the k-family Hk
m of

k-subsets of V := {−m,−m + 1, . . . − 1, 0, 1, . . . , m − 1, m} given by

Hk
m :=

{

S ∈

(
V

k

)

:
∑

s∈S

s > 0

}

is threshold for every m, k: the functional w(x) =
∑m

i=−m ixi in (R|V |)∗ has w(χS) > 0

for some subset S ∈
(

V

k

)
if and only if S ∈ Hk

m, by definition. They then show that Hk
m

is not positive threshold for k ≥ 3 and m larger than some bound mk (with m3 = 7). A
direct example to show (10) ; (2) is also given in [29, Example 2.2].

Remark 3.3. We have seen that shifted families do not always have uniquely realizable
degree sequences. However, one might wonder whether it is possible for a shifted family
K and a non-shifted family K ′ to have the same degree sequence. This can happen, and
follows from the method used to prove (5) implies (7), as we explain here.

Begin with a shifted family K which is not degree-maximal, and choose a degree-
maximal family K ′′ with d(K ′′) D d(K). Then use Proposition 2.20(iii) to find a family
K ′ with d(K ′) = d(K) which has applicable a sequence of swings bringing it to K ′′. Since
K is shifted and therefore has no applicable swings, one knows K ′ 6= K.

Remark 3.4. Other concepts for k-families have been considered, which may lie between
threshold and shifted, such as the k-families occurring in initial segments of linear qual-
itative probabilities studied by Edelman and Fishburn [8], or the k-families inside weakly
or strongly acyclic games [37, Chapter 4].

4 How to characterize degree sequences?

4.1 The problem, and an unsatisfactory answer

Given a vector d ∈ Pn with

|d| :=

n∑

i=1

d ≡ 0 mod k,

when is d the degree sequence of some k-family K on [n]?
For k = 2, there are many intrinsic characterizations of such graphic sequences; for

example, see [32] for 7 such characterizations. The situation for k-families with k > 2 is
much less clear, although at least one has the following.

Proposition 4.1. The following are equivalent for a sequence d = (d1, . . . , dn) ∈ Pn:
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(i) d = d(K) for some k-family.

(ii) There exists a degree-maximal k-family K with d(K) D d.

(iii) There exists a shifted k-family K with d(K) D d.

Proof. As noted earlier, d is majorized by its weakly decreasing rearrangement, and so
one may assume (by relabelling) that d is weakly decreasing.

Then (i) implies (ii) trivially, (ii) implies (iii) because degree-maximality implies shift-
edness, and (iii) implies (i) via Proposition 2.20(iii).

Unfortunately, the above proposition is an unsatisfactory answer, partly due to the
lack of an intrinsic characterization of degree sequences for shifted families, or for degree-
maximal families.

Open Problem 4.2. For k ≥ 3, find simple intrinsic characterizations of degree se-
quences of

(i) k-families.

(ii) degree-maximal k-families.

(iii) shifted k-families.

Remark 4.3. (“Holes” in the polytope of degree sequences?)
Fixing k and n, there is an obvious inclusion

{degrees d(K) of k-families on [n]} ⊆

{

d ∈ Nn ∩ Dn(k) :
n∑

i=1

di ≡ 0 mod k

}

(11)

where one should view the set on the right as the relevant lattice points inside the polytope
Dn(k) which is the convex hull of degree sequences of k-families.

For k = 2, Koren [19] showed that this inclusion is an equality. He showed that the
Erdős-Gallai non-linear inequalities,

k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di} for k = 1, 2, . . . , n,

which give one characterization of degree sequences among all sequences d of positive
integers with even sum, are equivalent to the following system of linear inequalities:

∑

i∈S

di −
∑

j∈T

dj ≤ |S|(n − 1 − |T |)

as S, T range over all pairs of disjoint subsets S, T ⊆ [n] which are not both empty.
Bhanu Murthy and Srinivasan [27] study several properties of the polytope Dn(k) for

k ≥ 2, including a description of some of its facets, its 1-skeleton, and its diameter.
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There has been some speculation that for k ≥ 3 the inclusion (11) is proper, that is,
there are non-degree sequence “holes” among the dNn lattice points that lie within the
convex hull Dn(k) of degree sequences. However, we know of no such example, and have
been able to check2 that no such holes are present for k = 3 and n ≤ 8.

Open Problem 4.4. Are there “holes” in the polytope Dn(k) of k-family vertex-degree se-
quences?

4.2 Some data on degree sequences

Table 12 lists some known data on the number of vertex-degree sequences d(K) for k-
families K on [n], compiled via three sources:

• The trivial values where n ≤ k + 1, along with the equality of values for (k, n) and
(n − k, n) that follows from the second symmetry in Section 5.1 below.

• The values for k = 2, which can be computed for large n explicitly using Stanley’s
results [33] on graphical degree sequences.

• Brute force computation for k = 3 by finding all shifted 3-families on [n], computing
all partitions majorized by their degree sequences, and then summing the number
of rearrangements of these degree partitions.

n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8
k = 1 1 2 4 8 16 32 64 128 256
k = 2 1 1 2 8 54 533 6944 111850 2135740
k = 3 1 1 1 2 16 533 42175 5554128 1030941214
k = 4 1 1 1 1 2 32 6944 5554128 ?
k = 5 1 1 1 1 1 2 64 111850 1030941214
k = 6 1 1 1 1 1 1 2 128 2135740
k = 7 1 1 1 1 1 1 1 2 256
k = 8 1 1 1 1 1 1 1 1 2

(12)

4.3 Reconstructing families

In preparation for what follows, we note some easy facts about reconstructing k-families
and shifted k-families from other data.

Definition 4.5. Extend the open neighborhood notation NK(i) from Definition 2.14 as
follows. Given a k-family K on [n] and any subset T of [n], the open neighborhood or link
of T in K is

NK(T ) := {S ⊂ [n] : S ∪ T ∈ K and S ∩ T = ∅}.

2by comparing the values in Table 12 with values from a computer implementation of Stanley’s method
of lattice point enumeration within a zonotope from [33, §3].
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Note that if |T | = i then for S ∈ NK(T ), |S| = k − i. Also note that when |T | = k, one
either has

NK(T ) =

{

{∅} if T ∈ K

∅ if T 6∈ K.

Define the i-degree sequence/function d
(i)
K as follows:

d
(i)
K :

(
[n]

i

)

−→ N

T 7−→ |NK(T )|.

Thus the vertex-degree sequence d(K) = (d1(K), . . . , dn(K)) is essentially the same as

the function d
(1)
K : [n] → N.

Proposition 4.6. Let K be a k-family on [n].

(i) For any i in the range 0 ≤ i ≤ k, the restricted function NK(−) :
(
[n]
i

)
→
(

[n]
k−i

)

determines K uniquely.

(ii) If K is a shifted k-family, and T any i-subset of [n], then NK(T ) is a shifted (k− i)-
family on the set [n] \ T (linearly ordered in the usual way).

(iii) If K is a shifted k-family, then the subfacet-degree function d
(k−1)
K :

(
[n]

k−1

)
→ N

determines K uniquely.

Proof. Only assertion (iii) requires comment. By assertion (i), one only needs to check
that, when K is a shifted k-family, the (set-valued) function NK(−) restricted to (k− 1)-

sets is determined uniquely by the (integer-valued) function d
(k−1)
K . But assertion (ii)

implies that for any (k−1)-subset T , the collection NK(T ) is a shifted 1-family on [n]\T ,
which implies that NK(T ) is completely determined by its cardinality, namely the integer

d
(k−1)
K (T )

Remark 4.7. This proposition perhaps suggests that results about the vertex-degree se-
quence d(K) = d

(1)
k for k = 2 could generalize in different directions: in the direction of

vertex-degree sequences d
(1)
K , or in the direction of subfacet (=(k−1)-set) degree sequences

d
(k−1)
K .

Remark 4.8. We wish to underscore a difference between vertex-degrees and subfacet-
degrees.

It is natural to identify vertex-degree functions d
(1)
K : [n] → N with the vertex-sequences

d(K) = (d1(K), . . . , dn(K)). Furthermore, it suffices to characterize those which are
weakly decreasing; this just means characterizing the degree functions up to the natural
action of the symmetric group Sn on the domain [n] of d

(1)
K .

For subfacet-degree functions d
(k−1)
K , however, it is not so natural to identify them

with some sequence of degree values, as this involves the choice of a linear ordering on
the domain

(
[n]

k−1

)
to write down such a sequence. But it is still true that it suffices to

characterize subfacet-degree functions d
(k−1)
K up to the action of Sn on their domain

(
[n]

k−1

)
.
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4.4 Some promising geometry

The goal of this subsection is to shed light on Open Problem 4.2(iii), motivated by a
characterization of graphical degree sequences (i.e. k = 2) due to Ruch and Gutman [30],
and reformulated by Merris and Roby [24].

Given a weakly decreasing sequence d ∈ Pn, identify d with its Ferrers diagram as a
partition, that is the subset of boxes {(i, j) ∈ P2 : 1 ≤ j ≤ di, 1 ≤ i ≤ n} in the plane
P2. The conjugate or transpose partition dT is the one whose Ferrers diagram is obtained
by swapping (i, j) for (j, i), and the trace or Durfee rank of d is the number of diagonal
boxes of the form (i, i) in its Ferrers diagram, that is, trace(d) = |{j : dj ≥ j}|. Ruch and
Gutman’s characterization says the following.

Theorem 4.9 ([30]). An integer sequence d ` 2m is the degree sequence of some 2-family
if and only if

k∑

i=1

(di + 1) ≤
k∑

i=1

di
T , 1 ≤ k ≤ trace(d).

Merris and Roby’s reformulation of this result uses some geometry of diagrams for strict
partitions placed in the shifted plane, which is the set of boxes lying weakly above the
diagonal in the usual positive integer plane P2. Given a Ferrers diagram d embedded
in the usual plane, cut it into two pieces along the “subdiagonal staircase” as shown in
Figure 1. Let α(d) (resp. β(d)) denote the subshape formed by the boxes with i ≤ j (resp.
i > j). If the trace of d is t then the sequence of row sizes of α(d) form a strict partition
α1 > · · · > αt with t parts, that we will also denote by α(d). Similarly the column sizes
of β(d) form a strict partition with t parts that we will denote β(d).

d1β( ) dβ( )2 dβ( )3

d1 2 3dd

d1) d )2 d )3α( α( α(

Figure 1: Cutting partitions into shifted shapes.

Here is the Merris and Roby formulation. Recall that β � α means that β weakly
majorizes α.

Theorem 4.10. (Theorem 3.1 [24]) An integer sequence d ` 2m is graphical, that is,
d(K) for some 2-family K, if and only if β(d) � α(d).

Moreover, d = d(K) for a shifted family K if and only if the strict partitions α(d), β(d)
are the same.
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Example 4.11. In Figure 1, β(d1) � α(d1), β(d2) . α(d2), and β(d3) = α(d3). Therefore
d1 is not graphical, d2 is graphical but not shifted, and d3 is shifted.

We codify here some of the geometry relating the plane P2 and the shifted plane
(

P

2

)
that makes this work, and which will generalize in two directions to k-families for

arbitrary k. Given integers i < j, let [i, j] := {i, i+1, . . . , j−1, j}. Consider the following
decomposition of the finite rectangle [1, n − 1] × [1, n] inside P2:

[1, n − 1] × [1, n] :=

(
[n]

2

)

t f

(
[n]

2

)

where we are identifying
(
[n]
2

)
with {(i1, i2) ∈ N2 : 1 ≤ i1 < i2 ≤ n} and where f : R2 → R2

is the affine isomorphism f(i1, i2) := (i2, i1) + (−1, 0).
Given a 2-family/graph K on [n], think of K as a subset of

(
[n]
2

)
, and let

π(K) := K t f(K) ⊂ [1, n − 1] × [1, n].

We further rephrase the notation of Theorem 4.10. Relabel so that d(K) is weakly de-
creasing, and consider the (French-style) Ferrers diagram π ⊂ [1, n − 1] × [1, n] which
is left-justified and has di(K) cells with x2-coordinate i. Let α(K) := π ∩

(
[n]
2

)
and

β(K) := π ∩ f
(
[n]
2

)
.

Proposition 4.12. For any 2-family K on [n] one has the following.

(i) The degree sequence d(K) = (d1(K), . . . , dn(K)) has di(K) given by the number of
boxes in π(K) with x2-coordinate equal to i, and this sequence completely determines
K if K is a shifted 2-family.

(ii) The following are equivalent

(a) K is shifted, that is, it forms a componentwise order ideal in
(
[n]
2

)
.

(b) π(K) is a componentwise order ideal of [1, n − 1] × [1, n].

(c) α(K) = f−1(β(K)), and both coincide with the family K, thought of as a subset
of
(
[n]
2

)
inside P2.

To generalize some of this for arbitrary k, we recall a well-known triangulation of the
prism over the (k − 1)-simplex {x ∈ Rk−1 : 0 ≤ x1 ≤ · · · ≤ xk−1 ≤ 1}:

{x ∈ Rk : 0 ≤ x1 ≤ · · · ≤ xk−1 ≤ 1 and 0 ≤ xk ≤ 1} = σ1 ∪ · · · ∪ σk

where
σk = σ := {x ∈ Rk : 0 ≤ x1 ≤ · · · ≤ xk ≤ 1}

is a k-simplex, and for j = 1, 2, . . . , k − 1,

σj := {x ∈ Rk : 0 ≤ x1 ≤ · · · ≤ xj−1 ≤ xk ≤ xj ≤ xj+1 ≤ · · · ≤ xk−1 ≤ 1}

= fj(σ)

the electronic journal of combinatorics 15 (2008), #R14 18



x

x1

2

x

x

x2

1

3

n=2 n=3

Figure 2: A well-known triangulation of a prism over a simplex.

where fj : Rk → Rk is the linear isomorphism

fj(i1, . . . , ik) := (i1, i2, . . . , ij−1, ij+1, ij+2, . . . , ik−1, ik, ij).

This triangulation is depicted for n = 2, 3 in Figure 2. It arises, for example,

• as a convenience in proving facts about homotopies in simplicial sets [22],

• as the special case of the staircase triangulation of a product of simplices [36, Ex-
ample 8.12], where one of the simplices is 1-dimensional, or

• as the special case of the P -partition triangulation of the order polytope [35], where
the poset P is the disjoint union of two chains having sizes k − 1 and 1.

We wish to apply this triangulation toward understanding vertex-degree functions
d

(1)
K = d(K) and subfacet-degree functions d

(k−1)
K of k-families and shifted k-families on [n].

For this, we dilate the triangulation by n, and consider two different ways to decompose
the lattice points within these (dilated) objects.

Definition 4.13. Fix n and k, and identify
(

[n]

k

)

= {(i1, . . . , ik) ∈ Pk : 1 ≤ i1 < · · · < ik ≤ n}.

The vertex-degree decomposition of
(

[n − 1]

k − 1

)

× [1, n] := {x ∈ Pk : 1 ≤ x1 < · · · < xk−1 ≤ n − 1, and 1 ≤ xk ≤ n}

is
(
[n−1]
k−1

)
× [1, n] = σvert

1 t · · · t σvert
n , in which

σvert
k :=

(
[n]

k

)

σvert
j := {1 ≤ x1 < · · · < xj−1 < xk ≤ xj < xj+1 < · · · < xk−1 ≤ n − 1}

= f vert
j

(
[n]

k

)

for j = 1, 2, . . . , k − 1
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where f vert
j (x) := fj(x) + ( 0, . . . , 0

︸ ︷︷ ︸

j−1 positions

,−1, . . . ,−1
︸ ︷︷ ︸

k−j positions

, 0).

The subfacet-degree decomposition of
(

[n]

k − 1

)

× [k, n] := {x ∈ Pk : 1 ≤ x1 < · · · < xk−1 ≤ n, and k ≤ xk ≤ n}

is
(

[n]
k−1

)
× [k, n] = σsubf

1 t · · · t σsubf
n , in which

σsubf
k :=

(
[n]

k

)

σsubf
j := {1 ≤ x1 < · · · < xj−1 < xk − (k − j) < xj < xj+1 < · · · < xk−1 ≤ n}

= f subf
j

(
[n]

k

)

for j = 1, 2, . . . , k − 1

where f subf
j (x) := fj(x) + (0, . . . , 0, k − j).

Note that fk is the identity map, and the formulae for f vert
j , f subf

j are consistent with
defining both f vert

k , f subf
k also as the identity map.

We omit the straightforward verification of the following:

Proposition 4.14. The vertex-degree and subfacet-degree decompositions really are dis-
joint decompositions of the claimed sets,

(
[n−1]
k−1

)
× [1, n] and

(
[n]

k−1

)
× [k, n].

Definition 4.15. For a k-family K on [n], thinking of K as a subset of
(
[n]
k

)
= σvert

k =
σsubf

k , define

πvert(K) := tk
j=1f

vert
j (K) ⊂

(
[n − 1]

k − 1

)

× [1, n]

πsubf(K) := tk
j=1f

subf
j (K) ⊂

(
[n]

k − 1

)

× [k, n].

Example 4.16. Let K be the shifted 3-family, K = {123, 124, 134, 234, 125}. Figure 3
shows πvert(K) and πsubf(K). f vert

1 (K) and f subf
1 (K) are the collections of lightest shaded

cubes and f vert
3 (K) and f subf

3 (K) are the collections of darkest shaded cubes.

The key point of these constructions is their analogy to the α, β appearing in Theo-
rem 4.10 and Proposition 4.12. Proposition 4.18 below generalizes some of their assertions,
but requires a little more notation.

Definition 4.17. Let
ρk−1 : Rk →Rk−1

ρ1 : Rk →R1

denote the usual orthogonal projections from Rk onto its first k − 1 coordinates and its
last coordinate.

Given a subset π of
(

[n]
k−1

)
×[k, n], let λ(π) be the unique subset of

(
[n]

k−1

)
×[k, n] obtained

by “pushing the cells of π down in the xk coordinate”, that is, for each (k − 1)-set T , the
fiber intersection ρ−1

k−1(T ) ∩ λ(π) should have

the electronic journal of combinatorics 15 (2008), #R14 20



0
1

2

x

1
2 3 4

y

0

2

4

z

0

2

4

z

0

1

2
3

x

1
2

3
4

5y

2

3

4

5

z

2

3

4

5

z

Figure 3: πvert(K) and πsubf(K) from Example 4.16

• the same cardinality as the intersection ρ−1
k−1(T ) ∩ π, but

• its xk-coordinates forming an initial segment of [k, n].

Proposition 4.18. Let K be any k-family on [n].

(i) The subfacet-degree function d
(k−1)
K :

(
[n]

k−1

)
→ N is given by

d
(k−1)
K (T ) = |ρ−1

k−1(T ) ∩ πsubf(K)|.

(i′) The vertex-degree function d
(1)
K : [n] → N is given by

d
(1)
K (i) = |ρ−1

1 (i) ∩ πvert(K)|.

(ii) Letting π := πsubf(K) and λ := λ(π), the following are equivalent

(a) K is shifted, that is, a componentwise order ideal of
(
[n]
k

)
.

(b) πsubf(K)(= π) is a componentwise order ideal of
(

[n]
k−1

)
× [k, n].

(b′) πvert(K) is a componentwise order ideal of
(
[n−1]
k−1

)
× [1, n].

(c) The sets (f subf
j )−1(λ ∩ σsubf

j ) are all equal to K for j = 1, 2, . . . , k.

Proof.
Proof of (i) and (i′).

Note that a set S = {i1 < · · · < ik} in K has

• the last coordinate of its image f vert
j (S) equal to ij, while

• the first k − 1 coordinates of its f subf
j (S) equal to (i1, · · · , îj, · · · , ik).
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Thus the various images of S under the maps f vert
j , f subf

j contribute to the correct com-
ponents of the appropriate degree sequences.
Proof of (ii). First note that either of (b) or (b′) implies (a): since K is the intersection of
πsubf(K) (resp. πvert(K)) with

(
P

2

)
, this means K will form an order ideal of

(
P

2

)
if πsubf(K)

(resp. πvert(K)) is a componentwise order ideal of
(

[n]
k−1

)
× [k, n] (resp.

(
[n−1]
k−1

)
× [1, n]).

To show (a) implies (b), assume K is a shifted k-family on [n], and that we are given
a vector x = (x1, . . . , xk) ∈ πsubf(K). We must show that if one lowers some coordinate of
x by one and the result x′ remains in

(
[n]

k−1

)
× [k, n], then one still has x′ ∈ πsubf(K). Let

j := j(x) be the unique index in 1, 2, . . . , k such that x ∈ σsubf
j , and say x = f subf

j (i1, . . . , ik)
for S = {i1, . . . , ik} ∈ K.
Case 1. j(x′) = j.

Then x′ = f subf
j (S ′) for some k-set S ′ ∈

(
P

k

)
, and we wish to show that S ′ ∈ K, so

that x′ ∈ πsubf(K). Since x′ is componentwise below x, and the inverse map (f subf
j )−1 is

easily checked to be componentwise order-preserving, S ′ lies componentwise below S in
(

P

k

)
. Hence S ′ is also in the shifted family K, as desired.

Case 2. j(x′) 6= j.
By the definition of j = j(x), one knows that

1 ≤ x1 < · · · < xj−1 < xk − (k − j) < xj < · · · < xk−1 ≤ n.

There are two possibilities for how x′ might fail to satisfy the same inequalities.
Case 2a. xk − (k − j) = xj − 1 = x′

j.
In this case, one checks that x′ = f subf

j+1 (S) ∈ πsubf(K).
Case 2b. xj−1 = xk − (k − j) − 1 = x′

k − (k − j) (so x′
k = xk − 1).

In this case x′ = f subf
j−1 (S ′) where S ′ = {i1, . . . , ij−2, ij−1−1, ij−1, ij+1, . . . , ik}. Because

K is shifted, S ′ is also in K, so x′ ∈ πsubf(K).
The proof that (a) implies (b′) is extremely similar. Case 1 is the same, and Case 2

breaks up into these two possibilities depending upon how x′ fails to satisfy the inequalities
satisfied by x

1 ≤ x1 < · · · < xj−1 < xk ≤ xj < xj+1 · · · < xk−1

that come from j(x) = j:
Case 2a′. xj−1 = xk − 1 = x′

k.
In this case, x′ = f vert

j−1 (S) ∈ πvert(K).
Case 2b′. xk = xj − 1 = x′

j − 2 (so x′
j = xj − 1).

In this case x′ = f vert
j+1 (S ′) where S ′ = {i1, . . . , ij−1, ij −1, ij+1−1, ij+2, . . . , ik}. Because

K is shifted, S ′ is also in K, so x′ ∈ πvert(K).

To show (b) implies (c), note that if πsubf(K) is a componentwise order ideal of
(

[n]
k−1

)
×

[k, n], then λ = πsubf(K), that is, πsubf(K) has already been “pushed down” in the xk

direction. Thus for every j one has

λ ∩ σsubf
j = πsubf(K) ∩ σsubf

j = f subf
j (K),

and hence
(
f subf

j

)−1
(λ ∩ σsubf

j ) = K.
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To show (c) implies (a), assume
(
f subf

j

)−1
(λ ∩ σsubf

j ) = K for each j = 1, 2, . . . , n. We
wish to deduce K is shifted, so given S = {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ n, it
suffices to show that if S ′ = {i1, . . . , ij−1, ij − 1, ij+1, . . . , ik} still has ij−1 < ij − 1 then

S ′ ∈ K. Since
(
f subf

j

)−1
(λ ∩ σsubf

j ) = K, one knows

f subf
j (S) = (i1, . . . , îj, . . . , ik−1, ij + (k − j)) ∈ λ.

Hence
(i1, . . . , îj, . . . , ik−1, ij + (k − j) − 1) ∈ λ

since λ is closed under lowering the xk-coordinate, within the range [k, n], and ij+(k−j)−1
is still in this range:

ij − 1 > ij−1 ≥ j − 1 ⇒ ij + (k − j) − 1 ≥ k.

But (i1, . . . , îj, . . . , ik−1, ij +(k− j)−1) = f subf
j (S ′), so S ′ ∈

(
f subf

j

)−1
(λ∩σsubf

j ) = K.

Example 4.19. The three non-shifted 3-families

K1 = {124}

K2 = {123, 134}

K3 = {123, 124, 234}

illustrate the necessity of comparing all k of the sets (f subf
j )−1(λ∩σsubf

j ) in condition (ii)(c)
above. For K1, the sets for j = 1, 2 coincide with K, but j = 3 does not. For K2, the sets
for j = 1, 3 coincide with K, but j = 2 does not. For K3, the sets for j = 2, 3 coincide
with K, but j = 1 does not.

Note however, that all 3 of these families K1, K2, K3 are isomorphic to shifted families,
by reindexing the set [n] = [4].

Remark 4.20. One might hope to characterize d
(k−1)
K for k-families K by saying that the

sets α1, . . . , αk with
αj := (f subf

j )−1(λ ∩ σsubf
j )

obey some inequalities with respect to some partial order generalizing the weak majoriza-
tion α(d) ≺ β(d) in Theorem 4.10. Presumably, any such partial order would be stronger
than the ordering by weight (=number of cells), so we consider some examples to see how
the α can be ordered by weight.

The example K4 = {123, 145} has

α1 = {123, 145}

α2 = {123, 124, 125}

α3 = {123}

so that |α2| > |α1|, |α3|.
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On the other hand, K5 = {123, 456} has

α1 = {123, 145, 146, 156}

α2 = {123}

α3 = {123}

so that |α1| > |α2|, |α3|.
These would seem to preclude an assertion that the αj are totally ordered by something

like a weak majorization. One might be tempted to conjecture the following:
For any k-family, one has αk ≺ α1, α2, . . . , αk−1, where we generalize α ≺ β to mean

that for every order ideal I of
(

[n]
k−1

)
one has an inequality

∑

S∈I

d(k−1)(α)(S) ≤
∑

S∈I

d(k−1)(β)(S). (13)

However, the family K6 = {123, 124, 135} has

α1 = {123, 124, 135}

α2 = {123, 125, 124}

α3 = {123, 124, 134}

and one can check α3 ⊀ α2 because the order ideal I generated by {34} fails to satisfy
the inequality (13).

Remark 4.21. For k = 3, the associations between a shifted 3-family K ⊂
(
[n]
3

)
and the

componentwise order ideals πvert(K), πsubf(K) in N3 are reminiscent of the correspondence
used in [18] relating shifted families and totally symmetric plane partitions. In [18] this
was used for the purposes of enumerating shifted 3-families.

5 Shifted families and plethysm of elementary sym-

metric functions

The goal of this section is to review the well-known equivalence between the study of
degree sequences for k-families and the problem of computing plethysms of the elementary
symmetric functions, as well as to push this a bit further. We refer to the books by
Macdonald [20], Sagan [31], or Stanley [34, Chap. 7] for symmetric function facts and
terminology not defined here.

Definition 5.1. Define a symmetric function Ψk(x) in variables x = (x1, x2, . . .) by any
of the first four equations below:
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Ψk(x) :=
∑

k-families K

xd(K) (14)

:=
∏

S∈(P

k
)

(1 + xS) (15)

:=
∑

partitions µ

cµ,kmµ (16)

:=
∑

m≥0

em[ek] (17)

=
∑

λ:|λ|≡0 mod k

aλ,ksλ (18)

where here

xd := xd1
1 xd2

2 · · ·

xS :=
∏

i∈S

xi

cµ,k := |{k-families K realizing d(K) = µ}|

mµ := mµ(x) = monomial symmetric function corresponding to µ

sλ := sλ(x) = Schur function corresponding to µ

em :=
∑

S∈( P

m
)

xS = mth elementary symmetric function

em[ek] := plethysm of ek into em

and aλ,k are plethysm coefficients: the unique coefficients in the Schur function expansions
of the plethysms em[ek].

Computing plethysm coefficients aλ,k is a well-known open problem; see [2, 3, 4, 15].
One of the well-known special cases is when k = 2, and is given by the following identity
of Littlewood; see e.g. Macdonald [20, Exer. I.5.9(a) and I.8.6(c)], and also Burge [1] and
Gasharov [12] for connections with graphical degree sequences.

Theorem 5.2.

Ψ2(x) =
∏

i<j

(1 + xixj) =
∑

m≥0

em[e2] =
∑

shifted 2-families K

sd(K).

In other words, for k = 2, one has

aλ,2 =

{

1 if λ = d(K) for some shifted 2-family K

0 otherwise.
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Recall that the Kostka coefficient Kλ,µ is the number of column-strict tableaux of
shape λ and content µ, and gives the expansion

sλ =
∑

µ

Kλ,µmµ. (19)

It is easily seen and well-known that the Kλ,µ are unitriangular: Kλ,λ = 1 and Kλ,µ 6= 0
if and only if λ majorizes µ. Thus knowledge of the plethysm coefficients aλ,k determines
the numbers cµ,k via

cµ,k =
∑

λ

aλ,kKλ,µ. (20)

In particular, cµ,k 6= 0 if and only if there exists some λ which has aµ,k 6= 0 and majorizes
µ.

Definition 5.3. Motivated by the form of Theorem 5.2, we define for each k ≥ 0 another
symmetric function Φk(x), and give names to its coefficients a′

λ,k, c
′
µ,k when expanded in

the monomial and Schur function bases:

Φk(x) :=
∑

shifted k-families K

sd(K)

=
∑

λ:|λ|≡0 mod k

a′
λ,ksλ

=
∑

µ:|µ|≡0 mod k

c′µ,kmµ.

Note that, by the above definition, a′
λ,k is the number of shifted k-families with d(K) = λ.

Proposition 5.4. The symmetric functions Ψk, Φk have the same monomial support, that
is,

cµ,k = 0 if and only if c′µ,k = 0.

Also, one has for k = 0, 1, 2 the following three (equivalent) equalities

Ψk(x) = Φk(x)

aλ,k = a′
λ,k for all λ

cµ,k = c′µ,k for all µ .

(21)

Proof. The assertion about monomial supports is a rephrasing of Proposition 4.1, us-
ing the above-stated facts about Kostka numbers. The assertion about the equalities is
somewhat trivial for k = 0, 1, and is Littlewood’s identity (Theorem 5.2) for k = 2.

The goal of this section is to explore further the link between Ψk(x) and Φk(x), that
is, between the plethysm problem and degree sequences of shifted families, when k ≥ 3.
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5.1 Symmetries

There are two obvious symmetries of k-families on vertex set [n]. These lead to symmetries
of the Schur expansion coefficients cλ,k, c

′
λ,k for the symmetric functions Ψk(x), Φk(x) when

one works in a finite variable set x1, . . . , xn, that is, by setting xn+1 = xn+2 = · · · = 0.
Note that when working in this finite variable set, one has these interpretations:

Ψk(x) :=
∑

k-families K on [n]

xd(K) :=
∏

S∈([n]
k
)

(1 + xS) :=
∑

m≥0

em[ek(x1, . . . , xn)]

and
Φk(x) :=

∑

shifted k-families
K on [n]

sd(K)(x1, . . . , xn).

We will use freely two basic facts about symmetric functions and Schur functions in
finite variable sets. Recall that `(λ) denotes the length or number of parts in a partition
λ.

Proposition 5.5. The symmetric functions in n variables have as a (Z−)basis the Schur
functions

{sλ(x1, . . . , xn)}`(λ)≤n,

while sλ(x1, . . . , xn) = 0 if `(λ) > n.
In particular, one has the following consequence: if f(x1, x2, . . .) is a symmetric func-

tion in the infinite variable set x1, x2, . . . with (unique) expansion

f =
∑

λ

aλsλ,

then the coefficients aλ for `(λ) ≤ n are determined by the unique expansion of the spe-
cialization to x1, . . . , xn:

fλ(x1, . . . , xn, 0, 0, . . .) =
∑

λ:`(λ)≤n

aλsλ(x1, . . . , xn).

Proposition 5.6. [34, Exercise 7.41] Assume `(λ) ≤ n and λ1 ≤ N , so that the Ferrers
diagram for λ fits inside an n × N rectangle R = (N, . . . , N)

︸ ︷︷ ︸

n times

. Then

(x1 · · ·xn)Nsλ(x
−1
1 , . . . , x−1

n ) = sR\λ(x1, . . . , xn)

where R\λ denotes the Ferrers diagram obtained by removing λ from the northwest corner
of R and then rotating 180 degrees.

We come now to the first symmetry. There is an involution on the collection of all
k-families on [n], which maps K 7→

(
[n]
k

)
\ K.
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Proposition 5.7. Fix n and k, and let R be an n ×
(

n−1
k−1

)
rectangle. Then whenever

`(λ) ≤ n, one has

(i) aλ,k = 0 unless λ1 ≤
(

n−1
k−1

)
, in which case aR\λ,k = aλ,k.

(ii) a′
λ,k = 0 unless λ1 ≤

(
n−1
k−1

)
, in which case a′

R\λ,k = a′
λ,k.

In particular, the plethysm coefficients

{

aλ,k : `(λ) ≤ n and |λ| ≤
n

2

(
n − 1

k − 1

)}

already determine the rest of the {aλ,k : `(λ) ≤ n} (and similarly for a′
λ,k).

Proof. The fact that aλ,k = a′
λ,k = 0 unless λ1 ≤

(
n−1
k−1

)
follows because the degree sequence

K of any k-family on vertex set [n] (whether shifted or not) is bounded above by

R :=

((
n − 1

k − 1

)

, . . . ,

(
n − 1

k − 1

))

︸ ︷︷ ︸

n times

.

Hence if a Schur function sλ with λ1 >
(

n−1
k−1

)
were in the Schur expansion of Ψk(x1, . . . , xn),

the leading term xλ which occurs in the monomial expansion of sλ would lead to a con-
tradiction.

Note that the involution K 7→
(
[n]
k

)
\ K has the property that

d

((
[n]

k

)

\ K

)

= R − d(K) =

((
n − 1

k − 1

)

, . . . ,

(
n − 1

k − 1

))

− d(K)

where one should be careful to note that R − d(K) is an ordered degree sequence, in
weakly increasing order, not decreasing order, so that it is the reverse of the partition
R \ d(K). This implies

(x1 · · ·xn)(
n−1
k−1)Ψk(x

−1
1 , . . . , x−1

n ) = Ψk(x1, . . . , xn)

and using Proposition 5.6 then gives the remaining assertion in (i).
For (ii), note that if one follows this symmetry K 7→

(
[n]
k

)
\K by the map which reverses

the vertex labels i 7→ n + 1 − i in [n], the composite is an involution K 7→ Kc on the
collection of all shifted k-families. This composite involution satisfies d(K c) = R \ d(K),
which shows the remaining assertion in (ii).

There is a second involution that sends k-families on [n] to (n− k)-families on [n], by
mapping K 7→ {[n] \ S : S ∈ K}.

Proposition 5.8. Fix k and n. Assume that `(λ) ≤ n and |λ| ≡ 0 mod k, with m := |λ|
k
.

Let M be an n × m rectangle. Then
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(i) aλ,k = 0 unless λ1 ≤ m, in which case aM\λ,k = aλ,n−k.

(ii) a′
λ,k = 0 unless λ1 ≤ m, in which case a′

M\λ,k = a′
λ,n−k.

Thus the plethysm coefficients {aλ,k : `(λ) ≤ n} for a fixed k determine the plethysm
coefficients {aλ,n−k : `(λ) ≤ n}. In particular, Proposition 5.4 determines all the aλ,k both
for k ≤ 2, and for `(λ) ≤ k + 2.

Proof. The fact that aλ,k = a′
λ,k = 0 unless λ1 ≤ m follows because a k-family K on

vertex set [n] of cardinality |K| = m (meaning there are m sets in K) will have degree
sequence d(K) bounded above by

M := (m, . . . , m)
︸ ︷︷ ︸

n times

.

Hence if one had a Schur function sλ with λ1 > m in the Schur expansion of Ψk(x1, . . . , xn),
the term leading xλ which occurs in the monomial expansion of sλ would lead to a con-
tradiction.

For (i), it is not hard to check (e.g. using the involution K 7→ {[n] \ S : S ∈ K}) that

(x1 · · ·xn)(
n

k
)Ψk(x

−1
1 , . . . , x−1

n ) = Ψn−k(x1, . . . , xn),

and the assertion then follows from Proposition 5.6.
For (ii), note that if one follows this symmetry K 7→ {[n] \ S : S ∈ K} by the map

which reverses the vertex labels i 7→ n+1− i in [n], one obtains an involution K 7→ K∗ on
the collection of all shifted families. This composite involution satisfies d(K∗) = M \d(K),
which shows the remaining assertion in (ii)

5.2 Highest weight vectors

The goal of this section is the following result relating the Schur expansion coefficients
aλ,k, a

′
λ,k for Ψk(x), Φk(x).

Theorem 5.9. For all k and λ, one has

aλ,k ≥ a′
λ,k.

Furthermore, equality holds when either k = 2 or `(λ) ≤ k + 2.

Since the statement about equality follows from Proposition 5.4 and Proposition 5.8,
we must only show the stated inequality.

For this, we review a standard GLn-representation interpretation for the plethysm
em[ek]; see [20, Appendix A.7, Example] and [34, Chapter 7, Appendix 2]. Let V = Cn

with a chosen C-basis e1, . . . , en. Then G = GLn(C) acts on V , and if one chooses as a
maximal torus T the diagonal matrices in G, the typical element x := diag(x1, . . . , xn)
in T has ei as an eigenvector with eigenvalue xi. In other words, the {ei} form a basis
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of weight vectors for T . The character of any (polynomial) G-representation U is defined
to be the symmetric function char(U) in the variables x1, . . . , xn which is the trace of x
acting on U , or the sum of the eights/eigenvalues of x in any basis of T -weight vectors
for U . Thus for V = Cn one has char(V ) = x1 + . . . + xn.

The kth exterior power
∧k V inherits a C-basis of monomial decomposable wedges,

indexed by k-sets S = {i1 < · · · < ik}, and defined by

eS := ei1 ∧ · · · ∧ eik .

Furthermore, each eS is a T -weight vector with weight xS := xi1 · · ·xik , and hence

char

(
k∧

V

)

=
∑

S∈([n]
k
)

xS = ek(x1, . . . , xn).

The mth exterior power
∧m

(
∧k V

)

similarly inherits a C-basis of monomial decom-

posable wedges, indexed by k-families K = {S1, . . . , Sm} of cardinality |K| = m, and
defined by

EK := eS1

∧

· · ·
∧

eSm
.

We will assume that the k-sets S1, . . . , Sm in K are always listed in some fixed linear
ordering (such as lexicographic order), for the sake of definiteness in writing down EK ;
the chosen order will only affect EK up to scaling by ±1. Furthermore, each EK is a
T -weight vector with weight

∏

S∈K xS = xd(K), and hence

char

(
m∧
(

k∧

V

))

=
∑

k-families K on [n]
of cardinality m

xd(K) = em[ek].

As this GLn(C)-representation
∧m

(
∧k V

)

is polynomial, it can be written as a di-

rect sum of the irreducible polynomial representations W λ, which are parametrized by
partitions λ with `(λ) ≤ n. The irreducible W λ has char(W λ) = sλ(x1, . . . , xn). The
plethysm coefficient aλ,k is then the multiplicity of the irreducible W λ in the decomposi-

tion of
∧m

(
∧k V

)

. Because
∧m

(
∧k V

)

is homogeneous of degree km, the W λ which

appear in the decomposition will have |λ| = km.
To bring in the shifted families, it is convenient to use highest weight theory for the

associated lie algebra g = g`n(C) of all n × n matrices over C. An n × n matrix A in g

acts on V = Cn in the usual way. Once one knows the action of an element A ∈ g on a
space U , then it acts on

∧k U by a Leibniz rule:

A (u1 ∧ · · · ∧ uk) =
k∑

i=1

u1 ∧ · · · ∧ ui−1 ∧ (Aui) ∧ ui+1 ∧ · · · ∧ uk.

the electronic journal of combinatorics 15 (2008), #R14 30



The decomposition for a polynomial G-representation U into irreducibles is determined
by the subspace of highest weight vectors in U . Specifically, if one chooses as a nilpotent
subalgebra n+ the set of all strictly upper triangular matrices in g, then the subspace U+

of U annihilated by all of n+ is called the space of highest weight vectors. It turns out
that U+ will always have a basis {u1, . . . , up} of T -weight vectors ui, each having a weight

which is dominant, that is, of the form xλ(i)
for some partition λ(i). The theory tells us

that then the irreducible decomposition of U is

U ∼=

p
⊕

i=1

W λ(i)

.

Consequently, char(U) =
∑p

i=1 sλ(i) .
Based on the previous discussion, Theorem 5.9 follows immediately from the next

proposition3.

Proposition 5.10. Among the basis of monomial weight vectors EK for
∧m

(
∧k V

)

indexed by the k-families K on [n], those which are highest weight vectors are exactly the
ones indexed by shifted k-families K.

Proof. The subalgebra n+ has a C-basis of elementary matrices {Ai,j : 1 ≤ i < j ≤ n},
where Ai,j has one non-zero entry, equal to 1, in column j, row i. In other words, Ai,j

acts on V by killing all basis vectors er except for ej, which it sends to ei. By the Leibniz

rule, one checks that Ai,j acts on the monomial basis vectors eS for
∧k V as follows: Ai,j

kills eS unless j ∈ S and i 6∈ S, in which case Ai,j(eS) = ±eS′ where S ′ := S \ {j} ∪ {i}.
Note that S ′ is a set strictly lower in the componentwise ordering than S.

Given a k-family K = {S1, . . . , Sm}, by the Leibniz rule one has

Ai,j(EK) =

m∑

`=1

eS1

∧

· · ·
∧

Ai,j(eS`
)
∧

· · ·
∧

eSm
.

If K is a shifted k-family, we claim this sum vanishes term-by-term: either Ai,j(eS`
) = 0,

or Ai,j(eS`
) = ±eS′ for some S ′ lower in the componentwise order than S, so that eS′

coincides with another element in the wedge and the term still vanishes.
Conversely, if K is not a shifted k-family, there must exists at least one set S in K

and some pair of indices i < j for which

• j ∈ S,

• i 6∈ S, and

• S ′ := S \ {j} ∪ {i} is not in K.

3Since one can alternately define the highest weight vectors in a GLn(C)-representation as those fixed
by the elements of the Borel subgroup of upper triangular invertible matrices, Proposition 5.10 can be
viewed as an exterior algebra analogue to the combinatorial description of Borel-fixed monomial ideals
in the symmetric algebra of V ; see e.g. [25, Proposition 2.3]
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In this case, assume by re-indexing that S1, . . . , Sr are the sets which have this property
(so S ′

1, . . . , S
′
r are well-defined), and Sr+1, . . . , Sm−1, Sm are the ones that do not. Then

the above calculation shows

Ai,j(EK) =
r∑

`=1

±eS1

∧

· · ·
∧

eS′

`

∧

· · ·
∧

eSm

and one can check that each term in this sum is (up to ±1) a different one of the monomial
basis vectors EK′: if two such terms indexed by `, `′ were to coincide, their corresponding
sets S ′

`, S
′
`′ would need to coincide, forcing the sets S`, S`′ to coincide, i.e. ` = `′. So

Ai,j(EK) does not vanish.

Open Problem 5.11. What more can one say about the (Schur-positive) difference
Ψk(x) − Φk(x)?

We offer a conjecture in this direction, which considers the various homogeneous com-
ponents of this difference. If true, it suggests that when computing a plethysm em[ek], not
only are the shifted k-families of size m relevant for the top of the expansion, but those
of size i < m seem relevant for the rest of the expansion.

Definition 5.12. Let Φk,m(x) be the homogeneous component of Φk having degree km
in the variables xi, that is

Φk,m(x) :=
∑

shifted k-families
K s.t. |K|=m

sd(K).

The analogous homogeneous component of Ψk(x) is the plethysm em[ek].
Define a system Υk,m(x) as follows:

Υk,1(x) := e1[ek] − Φk,1(x) = 0.

Υk,2(x) := e2[ek] − Φk,2(x)

Υk,3(x) := e3[ek] − Φk,3(x) − Υk,2(x)Φk,1(x)

Υk,4(x) := e4[ek] − Φk,4(x) − Υk,3(x)Φk,1(x) − Υk,2(x)Φk,2(x)
...

Υk,m(x) := em[ek] − Φk,m(x) −
m−2∑

i=1

(Υk,m−i(x)Φk,i(x)).

Conjecture 5.13. (−1)mΥk,m(x) is Schur-positive.

For m = 1, this conjecture is trivial.
For m = 2, it is nearly trivial, and is implied by Theorem 5.9.
For m = 3, it has been checked using explicit expansions of e3[ek], such as the one

given by Chen, Garsia and Remmel [4].
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For m = 4, although in principle one might be able to check it using the explicit
expansions of e4[ek] given by Foulkes [10] and Howe [15], in practice the calculations are
unpleasant enough that we have not done them.

We have also checked (using Stembridge’s Maple package for symmetric functions SF)
that the conjecture holds for these values:

m = 4, and k ≤ 7

m = 5, and k ≤ 6

m = 6, and k ≤ 4

m = 7, and k ≤ 4

m = 8, and k ≤ 3.

Acknowledgments

The authors thank Andrew Crites, Pedro Felzenszwalb and two anonymous referees for
helpful edits, comments and suggestions.

References

[1] W.H. Burge, Four correspondences between graphs and generalized Young tableaux.
J. Combin. Theory Ser. A 17 (1974), 12–30.

[2] J.O. Carbonara, J.B. Remmel, and M. Yang, A combinatorial rule for the Schur
function expansion of the plethysm s(1a,b)[pk], Lin. Multilin. Algebra 39 (1995), 341–
373.
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[9] P. Erdős, C. Ko, and R. Rado. Intersection theorems for systems of finite sets. Quart.
J. Math. Oxford Ser. 2 12 (1961), 313-320.

[10] H.O. Foulkes, Plethysm of S-functions. Philos. Trans. Roy. Soc. London, Ser. A 246
(1954), 555–591.

the electronic journal of combinatorics 15 (2008), #R14 33



[11] P. Frankl. The shifting technique in extremal set theory. Surveys in Combinatorics,
London Mathematical Society Lecture Notes Series 123, Cambridge University Press,
Cambridge, 1987, 81–110.
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