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Abstract

We classify the pairs of conjugate partitions whose regularisations are images
of each other under the Mullineux map. This classification proves a conjecture of
Lyle, answering a question of Bessenrodt, Olsson and Xu.

1 Introduction
Suppose n > 0 and F is a field of characteristic p; we adopt the convention that

the characteristic of a field is the order of its prime subfield. It is well known that the
representation theory of the symmetric groupSn is closely related to the combinatorics
of partitions. In particular, for each partition λ of n, there is an important FSn-module
Sλ called the Specht module. If p = ∞, then the Specht modules are irreducible and afford
all irreducible representations of FSn. If p is a prime, then for each p-regular partition
λ the Specht module Sλ has an irreducible cosocle Dλ, and the modules Dλ afford all
irreducible representations of FSn as λ ranges over the set of p-regular partitions of n.

Given this set-up, it is natural to express representation-theoretic statements in terms
of the combinatorics of partitions. An example of this which is of central interest in this
paper is the Mullineux map. Let sgn denote the one-dimensional sign representation of
FSn. Then there is an involutory functor − ⊗ sgn from the category of FSn-modules
to itself. This functor sends simple modules to simple modules, and therefore for each
p-regular partition λ there is some p-regular partition M(λ) such that Dλ ⊗ sgn � DM(λ).

∗This research was undertaken while the author was visiting Massachusetts Institute.of Technology
as a Postdoctoral Fellow, with the support of a Research Fellowship from the Royal Commission for the
Exhibition of 1851; the author is very grateful to M.I.T. for its hospitality, and to the 1851 Commission
for its generous support.
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The map M thus defined is now called the Mullineux map, since it coincides with a
map defined combinatorially by Mullineux [8]; this was proved by Ford and Kleshchev
[3], using an alternative combinatorial description of M due to Kleshchev [5].

Another important aspect of the combinatorics of partitions from the point of view
of representation theory is p-regularisation. This combinatorial procedure was defined
by James in order to describe, for each partition λ, a p-regular partition (which is
denoted Gλ in this paper) such that the simple module DGλ occurs exactly once as a
composition factor of Sλ. In this paper we study the relationship between the Mullineux
map and regularisation. Our motivation is the observation that if p = 2 or p is large
relative to the size of λ, then MGλ = GTλ, where Tλ denotes the conjugate partition to
λ. However, this is not true for arbitrary p, and it natural to ask for which pairs (p, λ)
we have MGλ = GTλ. The purpose of this paper is to answer this question, which was
first posed by Bessenrodt, Olsson and Xu; the answer confirms a conjecture of Lyle.

If we replace the group algebra FSn with the Iwahori–Hecke algebra of the sym-
metric group at a primitive eth root of unity in F (for some e > 2), then all of the above
background holds true, with the prime p replaced by the integer e (and with an appro-
priate analogue of the sign representation). Therefore, in this paper, we work with an
arbitrary integer e > 2 rather than a prime p.

In the remainder of this section we give all the definitions we shall need concerning
partitions, and state our main result. Section 2 is devoted to proving one half of the
conjecture, and Section 3 to the other half. While the first half of the proof consists
of elementary combinatorics, the latter half of the proof is algebraic, being an easy
consequence of two theorems about v-decomposition numbers in the Fock space. We
introduce the background material for this as we need it.

1.1 Partitions
A partition is a sequence λ = (λ1, λ2, . . . ) of non-negative integers such that λ1 >

λ2 > . . . and the sum |λ| = λ1+λ2+ . . . is finite. We say that λ is a partition of |λ|. When
writing partitions, we usually group together equal parts and omit zeroes. We write ∅
for the unique partition of 0.
λ is often identified with its Young diagram, which is the subset

[λ] = {(i, j) | j 6 λi
}

of N2. We refer to elements of N2 as nodes, and to elements of [λ] as nodes of λ. We
draw the Young diagram as an array of boxes using the English convention, so that i
increases down the page and j increases from left to right.

If e > 2 is an integer, we say that λ is e-regular if there is no i > 1 such that
λi = λi+e−1 > 0, and otherwise we say that λ is e-singular. We say that λ is e-restricted if
λi − λi+1 < e for all i > 1.
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1.2 Operators on partitions
Here we introduce a variety of operators on partitions. These include regularisation

and the Mullineux map, as well as other more familiar operators which will be useful.

1.2.1 Conjugation

Suppose λ is a partition. The conjugate partition to λ is the partition Tλ obtained by
reflecting the Young diagram along the main diagonal. That is,

(Tλ)i =
∣∣∣∣
{
j > 1

∣∣∣ λ j > i
}∣∣∣∣ .

We remark that Tλ is conventionally denoted λ′; we choose our notation in this paper
so that all operators on partitions are denoted with capital letters written on the left.
The letter T is taken from [1], and stands for ‘transpose’.

In this paper we write l(λ) for (Tλ)1, i.e. the number of non-zero parts of λ.

1.2.2 Row and column removal

Suppose λ is a partition. Let Rλ denote the partition obtained by removing the
first row of the Young diagram; that is, (Rλ)i = λi+1 for i > 1. Similarly, let Cλ denote
the partition obtained by removing the first column from the Young diagram of λ, i.e.
(Cλ)i = max{λi − 1, 0} for i > 1.

In this paper we shall use without comment the obvious relation TR = CT.

1.2.3 Regularisation

Now we introduce one of the most important concepts of this paper. Suppose λ is a
partition and e > 2. The e-regularisation of λ is an e-regular partition associated to λ in a
natural way. The notion of regularisation was introduced by James [4] in the case where
e is a prime, where it plays a rôle in the computation of the e-modular decomposition
matrices of the symmetric groups.

For l > 1, we define the lth ladder in N2 to be the set of nodes (i, j) such that
i + (e − 1)( j − 1) = l. The regularisation of λ is defined by moving all the nodes of
λ in each ladder as high as they will go within that ladder. It is a straightforward
exercise to show that this procedure gives the Young diagram of a partition, and the
e-regularisation of λ is defined to be this partition.

Example. Suppose e = 3 andλ = (4, 33, 15). Then the e-regularisation ofλ is (5, 4, 32, 2, 1),
as we can see from the following Young diagrams, in which we label each node with
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the number of the ladder in which it lies.

1 3 5 7
2 4 6
3 5 7
4 6 8
5
6
7
8
9

1 3 5 7 9
2 4 6 8
3 5 7
4 6 8
5 7
6

We write Gλ for the e-regularisation of λ. Clearly Gλ is e-regular, and equals λ if λ
is e-regular. We record here three results we shall need later; the proofs of the first two
are easy exercises.

Lemma 1.1. Suppose λ is a partition. If (Gλ)1 = λ1, then RGλ = GRλ.

Lemma 1.2. Suppose λ and µ are partitions. If l(λ) = l(µ) and GCλ = Cµ, then Gλ = Gµ.

Lemma 1.3. Suppose ζ is an e-regular partition, and x > l(ζ) + e − 1. Let ξ be the partition
obtained by adding a column of length x to ζ, and let η be the partition obtained by adding a
column of length x − e + 1 to Cζ. Then Gη = CGξ.

Proof. For any n > 1 and any partition λ, let ladn(λ) denote the number of nodes of λ
in ladder n. Since Gη and CGξ are both e-regular, it suffices to show that ladn(Gη) =
ladn(CGξ) for all n.
η is obtained from ζ by adding the nodes (l(ζ) + 1, 1), . . . , (x − e + 1, 1), so we have

ladn(Gη) = ladn(η) =


ladn(ζ) + 1 (l(ζ) < n < x + e)
ladn(ζ) (otherwise).

It is also easy to compute

ladn(ξ) =



1 (1 6 n < e)
ladn−e+1(ζ) + 1 (e 6 n 6 x)
ladn−e+1(ζ) (x < n).

Claim. l(Gξ) = l(ζ) + e − 1.

Proof. Since ζ is e-regular and (l(ζ), 1) ∈ [ζ], every node of ladder l(ζ) is a node of
ζ. Hence every node of ladder l(ζ)+ e− 1 is a node of ξ; so when ξ is regularised,
none of these nodes moves, and we have (l(ζ)+e−1, 1) ∈ [Gξ], i.e. l(Gξ) > l(ζ)+e−1.
On the other hand, the node (l(ζ) + 1, 2) does not lie in [ξ], so the node (l(ζ) + e, 1)
cannot lie in [Gξ], i.e. l(Gξ) < l(ζ) + e.
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From the claim we deduce that

ladn(CGξ) =


ladn+e−1(ξ) − 1 (n 6 l(ζ))
ladn+e−1(ξ) (n > l(ζ)),

and combining this with the statements above gives the result. �

1.2.4 The Mullineux map

Now we introduce the Mullineux map, which is the most important concept of this
paper. We shall give two different recursive definitions of the Mullineux map: the
original definition due to Mullineux [8], and an alternative version due to Xu [9].

Suppose λ is a partition, and define the rim of λ to be the subset of [λ] consisting of
all nodes (i, j) such that (i + 1, j+ 1) < λ. Now fix e > 2, and suppose that λ is e-regular.
Define the e-rim of λ to be the subset {(i1, j1), . . . , (ir, jr)

} of the rim of λ obtained by the
following procedure.

• If λ = ∅, then set r = 0, so that the e-rim of λ is empty. Otherwise, let (i1, j1) be the
top-rightmost node of the rim, i.e. the node (1, λ1).

• For k > 1 with e - k − 1, let (ik, jk) be the next node along the rim from (ik−1, jk−1),
i.e. the node (ik−1 + 1, jk−1) if λik−1 = λik−1+1, or the node (ik−1, jk−1 − 1) otherwise.

• For k > 1 with e | k − 1, define (ik, jk) to be the node (ik−1 + 1, λik−1+1).

• Continue until a node (ik, jk) is reached in the bottom row of [λ] (i.e. with ik = l(λ)),
and either jk = 1 or e | k. Set r = k, and stop.

Less formally, we construct the e-rim of λ by working along the rim from top right
to bottom left, and moving down one row every time the number of nodes we’ve seen
is divisible by e.

The integer r defined in this way is called the e-rim length of λ. We define Iλ to be
the partition obtained by removing the e-rim of λ from [λ].

Examples.
1. Suppose e = 3, and λ = (10, 62, 4, 2). Then the e-rim of λ consists of the marked

nodes in the following diagram, and we see that r = 11 and Iλ = (7, 5, 4, 1).

× × ×
×

× ×
× × ×

× ×
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2. Suppose e = 2, and λ is any 2-regular partition. The 2-rim of λ consists of the last
two nodes in each row of [λ] (or the last node, if there is only one). Hence when
e = 2 the operator I is the same as C2.

Now we can define the Mullineux map recursively. Suppose λ is an e-regular
partition. If λ = ∅, then set Mλ = ∅. Otherwise, compute the partition Iλ as above.
Then |Iλ| < |λ|, and Iλ is e-regular, so we may assume that MIλ is defined. Let r be the
e-rim length of λ, and define

m =


r − l(λ) (e | r)
r − l(λ) + 1 (e - r).

It turns out that there is a unique e-regular partition µ which has e-rim length r and
l(µ) = m, and which satisfies Iµ =MIλ. We set Mλ = µ.

Examples.
1. Suppose e = 3, λ = (32, 22, 1) and µ = (6, 4, 1). Then we have Iλ = (2, 12) and

Iµ = (3, 1), as we see from the following diagrams.

×
× ×
×

× ×
×

× × ×
× × ×

×

Computing e-rims again, we find that I2λ = I2µ = ∅. Now comparing the
numbers of non-zero parts of these partitions with their e-rim lengths we find
that MIλ = Iµ, and hence that Mλ = µ.

2. Suppose e = 2, and λ is a 2-regular partition. From above, we see that the 2-
rim length of λ is 2l(λ), if λl(λ) > 2, or 2l(λ) − 1 if λl(λ) = 1. Either way, we get
m = l(λ), and this implies inductively that in the case e = 2 the Mullineux map is
the identity.

3. Suppose e is large relative to λ; in particular, suppose e is greater than the number
of nodes in the rim of λ. Then the e-rim of λ coincides with the rim, so that the
e-rim length is λ1 + l(λ) − 1. Hence m = λ1, and from this it is easy to prove by
induction that Mλ = Tλ.

Now we give Xu’s alternative definition of the Mullineux map. Suppose λ is a
partition with e-rim length r, and define

l′ =


l(λ) (e | r)
l(λ) − 1 (e - r).
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Define Jλ to be the partition obtained by removing the e-rim from λ, and then adding a
column of length l′. Another way to think of this is to define the truncated e-rim of λ to
be the set of nodes (i, j) in the e-rim of λ such that (i, j− 1) also lies in the e-rim, together
with the node (l(λ), 1) if e - r, and to define Jλ to be the partition obtained by removing
the truncated e-rim.

Example. Returning to an earlier example, take e = 3 and λ = (10, 62, 4, 2). Then the
truncated e-rim of λ consists of the marked nodes in the following diagram, and we see
that Iλ = (8, 6, 5, 2).

× ×

×
× ×

× ×

If λ is e-regular, then it is a simple exercise to show that Jλ is e-regular and |Jλ| < |λ|.
So we assume that MJλ is defined recursively, and we define Mλ to be the partition
obtained by adding a column of length |λ| − |Jλ| to MJλ. Xu [9, Theorem 1] shows that
this map coincides with Mullineux’s map M. In other words, we have the following.

Proposition 1.4. Suppose λ and µ are e-regular partitions, with |λ| = |µ|. Then Mλ = µ if
and only if MJλ = Cµ.

1.3 Hooks
Now we set up some basic notation concerning hooks in Young diagrams. Suppose

λ is a partition, and (i, j) is a node of λ. The (i, j)-hook of λ is defined to be the set Hi j(λ)
of nodes in [λ] directly to the right of or directly below (i, j), including the node (i, j)
itself. The arm length ai j(λ) is the number of nodes directly to the right of (i, j), i.e. λi − j,
and the leg length li j(λ) is the number of nodes directly below (i, j), i.e. (Tλ) j − i. The
(i, j)-hook length hi j(λ) is the total number of nodes in Hi j(λ), i.e. ai j(λ) + li j(λ) + 1.

Now fix e > 2. The e-weight of λ is defined to be the number of nodes (i, j) of λ such
that e | hi j(λ). If (i, j) ∈ [λ] with e | hi j(λ), we say that Hi j(λ) is

• shallow if ai j(λ) > (e − 1)li j(λ), or

• steep if li j(λ) > (e − 1)ai j(λ).

Example. Suppose e = 3 and λ = (5, 2, 14). Then we have (2, 1) ∈ [λ], with a2,1(λ) = 1,
l2,1(λ) = 4, and hence h2,1(λ) = 6. H2,1(λ) is steep if e = 3, but not if e = 6.

1.4 Lyle’s Conjecture
Suppose e > 2 and λ is an e-regular partition. As noted above, if e is large relative to

|λ|, then Mλ = Tλ. Of course, there is no hope that this is true in general, since Tλ will
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not in general be an e-regular partition. But e-regularisation provides a natural way to
obtain an e-regular partition from an arbitrary partition, and it is therefore natural to
ask: for which e-regular partitions λ do we have Mλ = GTλ? When e is large relative to
λ we have Gλ = λ and (from the example above) Mλ = Tλ, so certainly Mλ = GTλ in
this case. We also have Mλ = GTλ for all partitions λwhen e = 2: we have seen that for
e = 2 the Mullineux map is the identity, and it is a simple exercise to show that λ and
Tλ have the same 2-regularisation for any λ. But it is not generally true that Mλ = GTλ
for an e-regular partition λ. Bessenrodt, Olsson and Xu [1] have given a classification
of the partitions for which this does hold, as follows.

Theorem 1.5. [1, Theorem 4.8] Suppose λ is an e-regular partition. Then Mλ = GTλ if and
only if for every (i, j) ∈ [λ] with e | hi j(λ), the hook Hi j(λ) is shallow.

Example. Suppose e = 4 and λ = (14, 10, 22). The Young diagram is as follows; we have
marked those nodes (i, j) for which 4 | hi j(λ).

× × × ×
× × ×

We see that all the hooks of length divisible by 4 are shallow, so λ satisfies the second
hypothesis of Theorem 1.5. And it may be verified that GTλ =Mλ = (52, 42, 32, 22).

Bessenrodt, Olsson and Xu have also posed the following more general question
[1, p. 454], which is essentially the same problem without the assumption that λ is
e-regular.

For which partitions λ is it true that MGλ = GTλ?

Motivated by the (now solved) problem of the classification of irreducible Specht mod-
ules for symmetric groups, Lyle conjectured the following solution in her thesis.

Conjecture 1.6. [7, Conjecture 5.1.18] Suppose λ is a partition. Then MGλ = GTλ if and
only if for every (i, j) ∈ [λ] with e | hi j(λ), the hook Hi j(λ) is either shallow or steep.

The purpose of this paper is to prove this conjecture. It is a simple exercise to show
that a partition possessing a steep hook must be e-singular; so in the case where λ is
e-regular, Conjecture 1.6 reduces to Theorem 1.5.

Let us define an L-partition to be a partition satisfying the second condition of
Conjecture 1.6, i.e. a partition for which every Hi j(λ) of length divisible by e is either
shallow or steep.
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Example. Suppose e = 4 and λ = (11, 22, 15). The Young diagram of λ is as follows.

� � �

�

�

The nodes (i, j) with 4 | hi j(λ) are marked; we see that those marked � correspond to
shallow hooks, and those marked � correspond to steep hooks. So λ is an L-partition
when e = 4. We have Gλ = (11, 3, 22, 12), GTλ = (8, 4, 32, 2), and it can be checked that
MGλ = GTλ.

2 The ‘if’ part of Conjecture 1.6
In this section we prove the ‘if’ half of Conjecture 1.6, i.e. that MGλ = GTλwhenever

λ is an L-partition. We begin by noting some properties of L-partitions, and making
some more definitions. Note that when e = 2, every partition is an L-partition; by the
above remarks we have MGλ = GTλ for every partition when e = 2, so Conjecture 1.6
holds when e = 2. Therefore, we assume throughout this section that e > 3. The following
simple observations will be used without comment.

Lemma 2.1. Suppose λ is a partition. Then λ is an L-partition if and only if Tλ is. If λ is an
L-partition, then so are Rλ and Cλ.

Now we examine the structure of L-partitions in more detail. Suppose λ is an L-
partition, and let s(λ) be maximal such that λs(λ) − λs(λ)+1 > e, setting s(λ) = 0 if λ is
e-restricted. Similarly, set t(λ) = 0 if λ is e-regular, and otherwise let t(λ) be maximal
such that (Tλ)t(λ) − (Tλ)t(λ)+1 > e. Clearly, we have s(λ) = t(Tλ).

Lemma 2.2. If λ is an L-partition, then for 1 6 i 6 s(λ) we have λi − λi+1 > e − 1, while for
1 6 j 6 t(λ) we have (Tλ) j − (Tλ) j+1 > e − 1.

Proof. We prove the first statement. Suppose this statement is false, and let i < s(λ) be
maximal such that λi − λi+1 < e − 1. Put j = λi − e + 2. Then we have (i, j) ∈ [λ], with
ai j(λ) = e − 2 and li j(λ) = 1, which (given our assumption that e > 3) contradicts the
assumption that λ is an L-partition. �

Lemma 2.3. Suppose λ is an L-partition and (i, j) ∈ [λ] with e | hi j(λ).

1. If i > s(λ), then Hi j(λ) is steep.
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2. If j > t(λ), then Hi j(λ) is shallow.

Proof. We prove (1). Let a = ai j(λ) and l = li j(λ). λ is an L-partition, so if Hi j(λ) is not
steep then it must be shallow, i.e. a > (e − 1)l. In fact, since e | hi j(λ) = a + l + 1, we find
that a > (e − 1)l + e − 1. The definition of l implies that λi+l+1 < j = λi − a, so

λi − λi+l+1 > a > (e − 1)(l + 1),

which implies that for some k ∈ {i, . . . , i + l} we have λk − λk+1 > e. But this contradicts
the assumption that i > s(λ). �

Now we define an operator S on L-partitions. Suppose λ is an L-partition, and let
s = s(λ). Define

Sλ = (λ1 − e + 1, λ2 − e + 1, . . . , λs − e + 1, λs+2, λs+3, . . . ).

Note that if λ is an e-restricted L-partition, then Sλ = Rλ. In general, we need to
know that S maps L-partitions to L-partitions, in order to allow an inductive proof of
Conjecture 1.6.

Lemma 2.4. If λ is an L-partition, then so is Sλ.

Proof. Suppose λ is an L-partition, and that (i, j) ∈ [Sλ].
If i > s(λ), then (i + 1, j) ∈ [λ], and we have

ai j(Sλ) = a(i+1) j(λ), li j(Sλ) = l(i+1) j(λ).

So if e | hi j(Sλ), then e | h(i+1) j(λ); so by Lemma 2.3(1) H(i+1) j(λ) is steep, and therefore
Hi j(Sλ) is steep.

Next suppose i 6 s(λ) and j > λs+1. Then (i, j + e − 1) ∈ [λ] and ai j(Sλ) = ai( j+e−1)(λ),
li j(Sλ) = li( j+e−1)(λ). So if e | hi j(Sλ), then e | hi( j+e−1)(λ), and so Hi( j+e−1)(λ) is shallow, and
hence Hi j(Sλ) is shallow.

Finally, suppose that i 6 s(λ) and j 6 λs+1. Then (i, j) ∈ [λ], and we have

ai j(Sλ) = ai j(λ) − e + 1, li j(Sλ) = li j(λ) − 1.

So if e | hi j(Sλ), then e | hi j(λ), and hence Hi j(λ) is either shallow or steep. If it is shallow,
then we have

ai j(Sλ) = ai j(λ) − e + 1 > (e − 1)li j(λ) − e + 1 = (e − 1)li j(Sλ),

so that Hi j(Sλ) is shallow. On the other hand, if Hi j(λ) is steep, then

li j(Sλ) = li j(λ) − 1 > (e − 1)ai j(λ) − 1 > (e − 1)ai j(Sλ)

so Hi j(Sλ) is steep. �
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Example. Suppose e = 3, and let λ = (9, 5, 2, 15). Then we have s(λ) = 2, so that
Sλ = (7, 3, 15). We see that both λ and Sλ are L-partitions from the following diagrams.

� �

�

�

� �

�

Now we examine the relationship between the operator S and e-regularisation.

Lemma 2.5. Suppose λ is an L-partition. Then

GTSλ = CGTλ.

Proof. We use induction on s(λ). In the case s(λ) = 0 both λ and Sλ = Rλ are e-restricted,
i.e. Tλ and TSλ are e-regular, and so GTSλ = TSλ = TRλ = CTλ = CGTλ.

Now suppose s(λ) > 0. Then s(Rλ) = s(λ) − 1, so we may assume that the result
holds with λ replaced by Rλ. Put ζ = GCTλ; then by the inductive hypothesis GTSRλ =
CGTRλ = Cζ. Let ξ and η be as defined in Lemma 1.3, with x = λ1. Note that

x = λ1 > λ2 + e − 1 = l(CTλ) + e − 1 > l(GCTλ) + e − 1 = l(ζ) + e − 1,

as required by Lemma 1.3.

Claim. GTλ = Gξ.

Proof. We have l(Tλ) = λ1 = l(ξ) and GCTλ = ζ = Cξ, and Lemma 1.2 gives the
result.

Claim. GTSλ = Gη.

Proof. Since s(λ) > 0, Sλ may be obtained from SRλ by adding a row of length
λ1 − e + 1; hence TSλmay be obtained from TSRλ by adding a column of length
λ1 − e + 1. So we have l(TSλ) = λ1 − e + 1 = l(η), and

GCTSλ = GTSRλ = Cζ = Cη,

and again we may appeal to Lemma 1.2.

Now Lemma 1.3 combined with these two claims gives the result. �

Next we prove a simple lemma which gives an equivalent statement to the condition
MGλ = GTλ in the presence of a suitable inductive hypothesis.
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Lemma 2.6. Suppose λ is an L-partition, and that MGµ = GTµ for all L-partitions µ with
|µ| < |λ|. Then MGλ = GTλ if and only if GSλ = JGλ.

Proof. Since |Gλ| = |GTλ|, we have

MGλ = GTλ ⇐⇒ MJGλ = CGTλ by Proposition 1.4
⇐⇒ MJGλ = GTSλ by Lemma 2.5
⇐⇒ MJGλ =MGSλ by the inductive hypothesis and Lemma 2.4
⇐⇒ JGλ = GSλ. �

We now require one more lemma concerning the regularisations of L-partitions.

Lemma 2.7. Suppose λ is an L-partition with s(λ) > 0 and λ1 > l(λ). Then:

1. (Gλ)1 = λ1;

2. (Gλ)1 − (Gλ)2 > e − 1;

3. (GSλ)1 = (Sλ)1.

Proof.
1. Obviously (Gλ)1 > λ1, so it suffices to show that [λ] does not contain a node

in ladder (e − 1)λ1 + 1. If it does, let (i, j) be the rightmost such node. Since
(i, j) , (1, λ1 + 1), we have i > e and we know that the node (i − e + 1, j + 1) does
not lie in λ; in other words, (Tλ) j − (Tλ) j+1 > e. This means that j 6 t(λ), and so
by Lemma 2.2 we have i 6 l(λ) − (e − 1)( j − 1), so that

l(λ) > i + (e − 1)( j − 1) = (e − 1)λ1 + 1 > λ1,

contrary to hypothesis.

2. By part (1), we must show that (Gλ)2 6 λ1 − e + 1, i.e. that [λ] does not contain
a node in ladder 2 + (e − 1)(λ1 − e + 1). Supposing otherwise, we let (i, j) be the
rightmost such node. Arguing as above, we find that

λ1 > l(λ) > i + (e − 1)( j − 1) = 2 + (e − 1)(λ1 − e + 1),

and this rearranges to yield λ1 < e, which is absurd given that s(λ) > 0.

3. Obviously (GSλ)1 > (Sλ)1 = λ1 − e + 1, so it suffices to show that [Sλ] does not
contain a node in ladder 1+(e−1)(λ1−e+1). Arguing as above, such a node would
have to be of the form (i, j) with j 6 t(Sλ) 6 t(λ). But then (TSλ) j = (Tλ) j − 1, so
[λ] contains the node (i + 1, j), which lies in ladder 2 + (e − 1)(λ1 − e + 1). But it
was shown in (2) that this is not possible.

�
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Proof of Conjecture 1.6 (‘if’ part). We proceed by induction on |λ|. It is clear that λ is
an L-partition if and only if Tλ is, so Conjecture 1.6 holds for λ if and only if it holds
for Tλ. If either λ or Tλ is e-regular, then the result follows from Theorem 1.5, so we
assume that λ is neither e-regular nor e-restricted; in particular, s(λ) > 0. By replacing
λ with Tλ if necessary, we assume also that λ1 > l(λ).

Claim. (JGλ)1 = λ1 − e + 1, and RJGλ = JGRλ.

Proof. This follows from Lemma 2.7(1–2), given the definition of the operator J.

Claim. (GSλ)1 = λ1 − e + 1, and RGSλ = GRSλ.

Proof. We have (Sλ)1 = λ1 − e + 1 by definition, and (GSλ)1 = (Sλ)1 by Lemma
2.7(3). The second statement follows from Lemma 1.1.

By induction (replacingλwith Rλ) we have MGRλ = GTRλ, and by Lemma 2.6 (and
the inductive hypothesis) this gives JGRλ = GSRλ. Since obviously GSRλ = GRSλ, the
two claims yield JGλ = GSλ. Now applying Lemma 2.6 again gives the result. �

3 The Fock space and v-decomposition numbers
In this section, we complete the proof of Conjecture 1.6 using v-decomposition

numbers. We give only a very brief sketch of the background material needed, since
this is discussed at length elsewhere; in particular, the article of Lascoux, Leclerc and
Thibon [6] is an invaluable source.

Fix e > 2, let v be an indeterminate over Q, and let U be the quantum algebra
Uv(ŝle) over Q(v). There is a module F for this algebra called the Fock space, which
has a standard basis indexed by (and often identified with) the set of all partitions. The
submodule generated by the empty partition is isomorphic to the basic representation of
U. This submodule has a canonical Q(v)-basis

{
G(µ)

∣∣∣ µ an e-regular partition
}
.

The v-decomposition numbers are the coefficients obtained when the elements of the
canonical basis are expanded in terms of the standard basis, i.e. the coefficients dλµ(v)
in the expression

G(µ) =
∑

λ

dλµ(v)λ.

We shall need to quote two results concerning v-decomposition numbers; one con-
cerning the Mullineux map, and the other concerning e-regularisation. The first of these
involves the e-weight of a partition, defined in §1.3.
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Theorem 3.1. [6, Theorem 7.2] Suppose λ and µ are partitions with e-weight w, and that µ
is e-regular. Then

d(Tλ)(Mµ)(v) = vwdλµ(v−1).

The second result we need requires a definition. Given a partition λ, let z(λ) be the
number of nodes (i, j) ∈ [λ] such that e | hi j(λ) and Hi j(λ) is steep. Now we have the
following result.

Theorem 3.2. [2, Theorem 2.2] For any partition λ,

dλ(Gλ)(v) = vz(λ).

Remark. Note that in [2] an alternative convention for the Fock space is used: our dλµ(v)
is written in [2] as d(Tλ)(Tµ)(v). Accordingly, the statement of [2, Theorem 2.2] involves
shallow hooks rather than steep hooks. We hope that no confusion will result.

Now we combine these theorems. First we note the following obvious result about
e-weight and the function z.

Lemma 3.3. Suppose λ is a partition with e-weight w. Then Tλ also has e-weight w, and z(Tλ)
equals the number of nodes (i, j) ∈ [λ] such that e | hi j(λ) and Hi j(λ) is shallow. Hence λ is an
L-partition if and only if w = z(λ) + z(Tλ).

Now we can complete the proof of Conjecture 1.6.

Proof of Conjecture 1.6 (‘only if’ part). Suppose MGλ = GTλ, and that λ has e-weight
w. Then we have

vz(Tλ)
= d(Tλ)(GTλ)(v) by Theorem 3.2
= d(Tλ)(MGλ)(v) by hypothesis
= vwdλ(Gλ)(v−1) by Theorem 3.1
= vw.v−z(λ) by Theorem 3.2

so that w = z(λ) + z(Tλ). Now Lemma 3.3 gives the result. �
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