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Abstract

For each skew shape we define a nonhomogeneous symmetric function, general-
izing a construction of Pak and Postnikov [9]. In two special cases, we show that
the coefficients of this function when expanded in the complete homogeneous basis
are given in terms of the (reduced) type of k-divisible noncrossing partitions. Our
work extends Haiman’s notion of a parking function symmetric function [5, 10].

1 Introduction

Let µ = (µ1, µ2, . . .) and ν = (ν1, ν2, . . .) be integer partitions; that is, weakly decreasing
sequences of integers with only finitely many nonzero entries. We identify a partition µ
with its Young diagram, an array of boxes with µi boxes in the ith row from the top, and
each row aligned to the left.

Suppose that µ ⊆ ν — this means that µi ≤ νi for all i, or that the Young diagram
for µ is contained in that for ν. The skew shape µ/ν is the setwise difference of Young
diagrams. A partial horizontal strip in the shape µ/ν is a set of boxes, at most one in
each column, such that the height of the boxes is weakly increasing to the right. We say
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Figure 1: r-strips in the skew shape (3, 2)/(1).

a partial horizontal strip is right-aligned, and call it an r-strip, if by adding a box to the
right of any given box, we no longer have a horizontal strip. If we think of the Young
diagram as a grid of line segments, note that an r-strip is equivalent to a lattice path in
the diagram from the bottom left corner to the top right (that is, the blocks of the r-strip
indicate the horizontal steps of the path, see Figure 1). An ordinary horizontal strip is a
partial horizontal strip with exactly one box in each column.

A block in an r-strip is a maximal sequence of adjacent boxes. The collection of sizes
of blocks in an r-strip σ form a partition, called the type of σ. By an abuse of notation,
we will also denote this type by σ when there is no confusion.

Let x = {x1, x2, . . . , } be an infinite set of commuting variables. Given a skew shape
µ/ν we define a nonhomogeneous symmetric function

fµ/ν = fµ/ν(x) :=
∑

σ

hσ, (1)

where the sum is over all r-strips σ ⊆ µ/ν and hσ is the complete homogeneous symmetric
function. For further definitions we refer to [11, Chapter 7].

For example, the symmetric function corresponding to the skew shape (3, 2)/(1) is
given by

f(3,2)/(1) = 2h(2,1) + 2h(2) + h(1,1) + 2h(1) + h∅.

This is clear from Figure 1, which displays the eight possible r-strips in this shape. We
have also indicated the corresponding lattice paths by bold lines.

In this paper we will focus on two special skew shapes, namely µ/ν = (nkn)/((n −
1)k, . . . , 2k, 1k) — which we call the “stretched staircase” — and µ/ν = (nkn). We call
f(nkn)/((n−1)k ,...,2k,1k) the Fuss type An−1 nonhomogeneous symmetric function and f(nkn)

the Fuss type Bn nonhomogeneous symmetric function. Our main results are to give
formulas and a uniform explanation for the coefficients in these functions.

Our explanation will involve the noncrossing partitions. Given a partition of the set
[n] := {1, 2, . . . , n}, we say that the quadruple (a, b, c, d), 1 ≤ a < b < c < d ≤ n, is a
“crossing” if a, c are in one block and b, d are in a different block of the partition. Let NCA

n

denote the set of noncrossing partitions of [n] (that is, those without crossings). (Warning:
There is an algebraic theory in which the set NCA

n corresponds to the Cartan-Killing type
An−1 — see [1]. We hope no confusion of indices will result.) A noncrossing partition
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can be represented pictorially by labelling the vertices of a convex n-gon clockwise by
1, 2, . . . , n and associating to each block of a partition its convex hull. A partition is
noncrossing if and only if its blocks are pairwise disjoint. The type of a noncrossing
partition β ∈ NCA

n is the integer partition given by its block sizes, and the reduced type is
the type of the partition obtained from β by deleting the block containing the symbol 1.

There is a ‘Fuss generalization’ for noncrossing partitions. Given a positive integer k,
let NCA,(k)

n denote the collection of noncrossing partitions of the set [kn] in which each
block has cardinality divisible by k. These are the k-divisible noncrossing partitions. The
type of a k-divisible noncrossing partition β ∈ NCA,(k)

n is the integer partition obtained by
first taking the type of β as an element of NCA

kn and then dividing each entry by k. The
reduced type again ignores the block containing symbol 1. For example, the 2-divisible
noncrossing partition 1256/34/78 has type (2, 1, 1) and reduced type (1, 1).

Given a partition λ, let |λ| denote the sum of its parts, let `(λ) denote its number of
nonzero parts, and set mλ := m1(λ)!m2(λ)!m3(λ)! · · · , where mi(λ) is the number of parts
of λ equal to i. Our main result on Fuss type An−1 symmetric functions is the following.

Theorem 1.1. We have the expansion

f(nkn)/((n−1)k ,...,2k,1k) =
∑

λ`≤n

(k(n+ 1))! · (n+ 1 − |λ|)

(n+ 1) ·mλ · (k(n+ 1) − `(λ))
hλ. (2)

The sum is over all partitions λ `≤ n, which means λ ` n′, for some 0 ≤ n′ ≤ n.
Moreover, the coefficient of hλ is the number of noncrossing partitions in NCA,(k)

n+1 with
reduced type λ.

Note that the reduced type of a noncrossing partition of the set [n + 1] is an integer
partition λ of n′ for some n′ ≤ n. Thus the sum of the coefficients in (2) is the Catalan
number 1

n+2

(

2(n+1)
n+1

)

.

Type B noncrossing partitions were introduced by Reiner (see [1]), and they can be
represented in the following way. Consider a regular 2n-gon with vertices labeled by
1, 2, . . . , n,−1,−2, . . . ,−n clockwise. A type B noncrossing partition is a noncrossing
partition on these vertices that is invariant under the antipodal map. Let NCB

n denote
the collection of noncrossing partitions of the set [n]± := {−n, . . . ,−2,−1, 1, 2 . . . , n}.
The antipodal map decomposes the blocks into orbits of size two, together with possibly
one orbit of size one whose element we call the antipodal block. The type of a type B
noncrossing partition is calculated as in type A by discarding the antipodal block and
counting only one block from each orbit of size two. Note that this type is in some sense
already “reduced”.

The type B noncrossing partitions also have a Fuss generalization (see [1]). Given
a positive integer k, a k-divisible type B noncrossing partition is a type B noncrossing
partition in which each block has cardinality divisible by k. Let NCB,(k)

n denote the set of
k-divisible type B noncrossing partitions of the set [kn]±. The type of a k-divisible type
B noncrossing partition is calculated by first considering its type as an element of NCB

kn

and then dividing each entry by k.
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Our main result on Fuss type Bn symmetric functions is as follows.

Theorem 1.2. We have the expansion

f(nkn) =
∑

λ`≤n

(kn)!

mλ(kn− `(λ))!
hλ. (3)

The sum is over all partitions λ `≤ n, which means λ ` n′, for some 0 ≤ n′ ≤ n.
Moreover, the coefficient of hλ is the number of noncrossing partitions in NCB,(k)

n with
type λ.

The rest of this paper is organized as follows. The background is put in Section 2
and we will see that this work is a generalization of Haiman’s and Stanley’s results. In
Sections 3 and 4 we prove the Fuss type A and Fuss type B cases respectively.

2 Some Background

2.1 Parking functions

A sequence of positive integers α = (a1, . . . , an) is called a parking function of length n
if its nondecreasing rearrangement (b1, . . . , bn) satisfies bi ≤ i for all i. We denote by
Pn the set of parking functions of length n. If mi denotes the number of entries in α
equal to i, then the type of the parking function α is the integer partition given by the
weakly decreasing rearrangement of the mi’s. Parking functions were first introduced by
Konheim and Weiss [7].

A parking function is called primitive if the ai’s are weakly increasing. Hence a
parking function is a permutation of a primitive parking function. It is well known that
the number of parking functions of length n is (n + 1)n−1 and the number of primitive
parking functions of length n is the Catalan number 1

n+1

(

2n
n

)

, see [10].
A primitive parking function of length n can be seen as a choice of a set of boxes,

one from each column, of weakly increasing heights in the staircase shape (nn)/((n −
1), . . . , 2, 1). Hence it is equivalent to a horizontal strip.

From this viewpoint we may define the set of parking functions with respect to a
skew shape µ/ν. A primitive parking function with respect to µ/ν is the sequence of
(weakly increasing) heights of the boxes in a horizontal strip, and a parking function is a
permutation of a primitive one. The (nn)-parking functions are called “type B parking
functions” in [4]. The enumeration of µ/ν parking functions was done by Kung et al. [8].

2.2 The parking function symmetric function

Consider the set of parking functions of length n together with the action of the symmetric
group Sn by permuting entries. We denote by pfn(x) the Frobenius chracteristic of
the action, and call it the parking function symmetric function. It was first considered
by Haiman [5]. Explicit expansions of pfn(x) into the classical bases were given by
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Stanley. Among them was the following, together with a combinatorial interpretation of
the coefficients.

Theorem 2.1. [10, Proposition 2.4] We have the expansion

pfn(x) =
∑

λ`n

n!

mλ(n + 1 − `(λ))
hλ. (4)

The sum is over all partitions λ of n. Moreover, the coefficient of hλ is the number of
noncrossing partitions ∈ NCA

n of type λ.

If χ is the permutation character of Sn acting on the parking functions of length n,
then we have χ =

∑

χO, where the sum is over Sn-orbits, and χO is the character of Sn

acting on orbit O. Note that the parking functions in an orbit all have the same type.
If the parking functions in orbit O have type λ, Stanley observed ([10, Proposition 2.4])
that the Frobenius characteristic of χO is the complete homogeneous symmetric function
hλ.

Since there is a unique primitive parking function in each Sn-orbit, we conclude that
the coefficient of hλ in (4) counts the number of primitive parking functions of type λ.
Finally, there is a well known bijection from primitive parking functions of type λ to
noncrossing partitions of type λ (see Section 3 below).

If λ is a partition of n, note that the number of noncrossing partitions ∈ NCA
n of type

λ is equal to the number of noncrossing partitions ∈ NCA
n+1 of reduced type λ (to each of

the former, we add the singleton block {1}). Thus, comparing with our Theorem 1.1, we
conclude that Haiman’s function pfn(x) is the top homogeneous part of our fµ/ν when
µ/ν is the staircase shape (nn)/((n− 1), . . . , 2, 1). Stanley also discussed a generalization
which is the top homogeneous part of our fµ/ν when µ/ν is the stretched staircase [10,
Section 5].

3 Fuss type An−1

In this section we prove Theorem 1.1. Let H(k)
n denote the set of all r-strips in the stretched

staircase (nkn)/((n− 1)k, . . . , 2k, 1k).
The proof involves Fuss-Catalan paths. Given a positive integer k, we say that a

k-Fuss-Catalan path of length n is a lattice path from (0, 0) to (n, kn), using east steps
E = (0, 1) and north steps N = (1, 0), and staying in the region 0 ≤ y ≤ kx. We denote

by D(k)
n the set of k-Fuss-Catalan paths of length n. A maximal sequence of consecutive

east steps is called an ascent. The collection of lengths of all ascents defines the type of the
path. Note that the first step of the path must always be E. To compute the reduced type
of the path, we ignore the ascent containing this first E. (When we present a bijection
to the noncrossing partitions, this first east step will be labelled by the symbol 1). When
k = 1, a Fuss-Catalan paths is called a Dyck path.

The proof will consist of three steps. First we will biject the set of r-strips H(k)
n with

the set D(k)
n+1 of k-Fuss-Catalan paths of length n + 1. Second, we will give a bijection

the electronic journal of combinatorics 15 (2008), #R146 5



of D(k)
n+1 with the k-divisible noncrossing partitions NCA,(k)

n+1 , preserving both type and

reduced type. Third, we count the noncrossing partitions NCA,(k)
n+1 with respect to reduced

type. Note the transition of indices in the first bijection.

Lemma 3.1. There is a bijection φ
(k)
n : H(k)

n → D(k)
n+1, which sends the type of the r-strip

ν ∈ H(k)
n to the reduced type of of the path α := φ

(k)
n (ν) ∈ D(k)

n+1.

Proof. Let us fix the bottom left and upper right corners of the skew shape (nkn)/((n −
1)k, . . . , 2k, 1k) at (1, 0) and (n+1, kn) in Z

2, respectively, and add the two line segments
(0, 0) → (1, 0) and (n + 1, kn) → (n + 1, k(n + 1)). Any lattice path from (0, 0) to

(n + 1, k(n + 1)) on this configuration is a k-Fuss-Catalan path ∈ D(k)
n+1. Denote the

blocks of the given r-strip ν ∈ H(k)
n by B1, B2, . . . , Bs from left to right. Then there is a

unique lattice path α := φ
(k)
n (ν) from (0, 0) to (n + 1, k(n + 1)) traveling along the lines

y = 0, LW (B1), LN(B1), . . . , LW (Bk), LN (Bs), x = n + 1 in order, where LW (Bi) and
LN (Bi) are the lines passing the left and north boundary of Bi, 1 ≤ i ≤ k, respectively.
The map is clearly invertible.

Compare with the example in Figure 1.

Lemma 3.2 (Labeling Lemma). There is a bijection ψ
(k)
n : D(k)

n → NCA,(k)
n which

simultaneously preserves type and reduced type.

Proof. Given α ∈ D(s)
n . Note that the plane is divided into disjoint regions by the lines

y = kx + i, i ∈ Z and each east step is cut by these lines into k segments, each of which
is in a region and is of length 1

k
. We put a vertex centered in every segment and add

edges connecting these vertices to obtain a rooted tree, called the auxiliary tree, by the
following rules:

1. Each vertex is connected to adjacent vertices in the same ascent.

2. The leftmost vertex of each ascent connects with the first lower vertex (if exists) in
the same region.

The resulting tree, rooted at the vertex centered on the first segment (0, 0) → ( 1
k
, 0) is a

binary tree. We label the root by the symbol 1 and other vertices by {2, . . . , k(n + 1)}
in preorder, or depth-first search (i.e., always choose the upward branch if exists and

proceed recursively.) Now we define a partition β = ψ
(k)
n (α) whose blocks are the labels

on the ascents of α. The partition β is k-divisible because the cardinality of each block is
a multiple of k and is noncrossing because of preorder. Hence β ∈ NCA,(k)

n .

The inverse mapping (ψ
(k)
n )−1 can be constructed as follows. Given β ∈ NCA,(k)

, , one
can list the blocks B1, B2, . . . , Bs in a line such that minBi < minBi+1 for all i, and such
that the numbers within each block are listed in increasing order. We say that such a
listing is canonical.

Suppose β is in canonical order. Let ai and bi denote the smallest and the largest
entries, respectively, of the block Bi. For each integer 1 ≤ t ≤ kn we create a vertex
Pt := (xt, yt) in Z

2, and we connect these vertices as follows to obtain the auxiliary tree:
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1. Let P1 := (0, 0) be the root. Other numbers in B1 correspond to the vertices to the
right of P1 one by one on the line y = 0 in order, each connecting to the vertex to
its left by an edge of unit length.

2. For 2 ≤ i ≤ k, let Pai
:= (xai−1, s + 1 − i), other numbers in Bi correpond to the

vertices to the right of Pai
one by one on the line y = s + 1 − i in order, each

connecting to the vertex to its left by an edge of unit length.

3. For 2 ≤ i ≤ k, connect vertices ai and ai − 1 by an edge.

The binary tree obtained is the auxilary tree, rooted at 1 and labeled in preorder. Setting
xas+1

= 0, the desired path (ψ
(k)
n )−1(β) is constructed by drawing 1

k
|Bi| east steps followed

by xbi
− xai+1

+ 1 north steps, 1 ≤ i ≤ s, in order.
Since the first segment of the first step of α is always labeled 1 and corresponds to

the block containing 1 in β and vice versa, ψ
(k)
n preserves both type and reduced type

simultaneously.

For example, Figure 2 illustrates how the path

ENEENNNNENNNEENNNN ∈ D(2)
6

on the left bijects with the partition 1, 6/2, 3, 4, 5/7, 10, 11, 12/8, 9 ∈ NCA,(2)
6 on the right,

with the auxilary tree displayed in the middle. Note that the type is (2, 2, 1, 1) and the
reduced type is (2, 2, 1).

(6,12)

1

2 3 4 5

6

1211107

98

1

2

3

4

56

7

8

9

10

11 12

32 4 5

1

y

x
6

7

8 9

10 11 12

(0,0)

Figure 2: An example of the type A bijection.

In the following lemma we count the k-divisible noncrossing partitions by reduced
type. Recall that the reduced type is obtained by discarding the block containing the
symbol 1 (or any one arbitrary fixed symbol).
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Lemma 3.3. Let p(k)(λ) denote the number of k-divisible noncrossing partitions ∈ NCA,(k)
n

with reduced type λ. Then we have

p(k)(λ) =
(kn)! · (n− |λ|)

n ·mλ · (kn− `(λ))
,

where |λ| is the sum of the parts of λ, `(λ) is the number of nonzero parts of λ, and
mλ = m1(λ)!m2(λ)! · · · , where mi(λ) is the number of times that i occurs in λ.

Proof. If the k-divisible noncrossing partition π ∈ NCA,(k)
n has reduced type λ, let ζ ` n be

the type of π. This is the partition obtained from λ by adding one part of size k(n− |λ|).
Thus `(ζ) = `(λ) + 1 and mζ = mζ

n−|λ|mλ, where mζ
n−|λ| is the number of times that part

n− |λ| appears in ζ.
By [1, Theorem 4.4.4], which follows from [6, Theorem 4], the number of k-divisible

noncrossing paritions with type ζ is equal to

q(k)(ζ) =
(kn)!

mζ(kn + 1 − `(ζ))!
.

Thus it suffices to show that

kn · p(k)(λ) = q(k)(ζ) ·mζ
n−|λ| · k(n− |λ|).

We prove this by a double counting argument. On one hand, kn · p(k)(λ) is the number of
pointed noncrossing partitions of [kn] with reduced type λ (that is, the number of parti-
tions in which we have some distinguished symbol i ∈ [kn] and the blocks not containing
i have type λ). On the other hand we may create such a partition by starting with an
arbitrary partition of type ζ, of which there are q(k)(ζ). Then we select a block of size
k(n− |λ|) in mζ

n−|λ| ways. From within this block we may choose a distinguished symbol

in k(n− |λ|) ways. Thus the number of pointed noncrossing partitions with reduced type
λ is also equal to q(k)(ζ) ·mζ

n−|λ| · k(n− |λ|).

Proof. of Theorem 1.1: By Lemma 3.1 and Lemma 3.2, the map ψ
(s)
n+1 ◦ φ

(s)
n is a bijection

H(s)
n → NCA,(k)

n+1 , sending type into reduced type. Now apply Lemma 3.3.

4 Fuss type Bn

In this section we prove Theorem 1.2. The proof involves Fuss binomial paths. Given
positive integer k, a k-Fuss binomial path of length (k + 1)n is a lattice path from (0, 0)

to (n, kn), using east steps E = (1, 0) and north steps N = (0, 1). Denote by B(k)
n the set

of k-Fuss bimonial paths of length (k + 1)n.
A maximal sequence of consecutive east steps is called an ascent. The collection of

the lengths of all ascents except for the possible one on y = 0 is again a partition, which
we define to be the type of this path. Note that it is in fact the “reduced type” if one
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wants to be consistent with the type An−1 case. The reason for calling it ‘type’ rather
than ‘reduced type’ is to be in consistent with the definition of ‘type’ in NCB

n .
The structure of the proof is similar to that of the Fuss type An−1 case. The proof of

the following lemma is omitted.

Lemma 4.1. There is a type preserving bijection φ
(k)
n : H(k)

n → B(k)
n .

The following proposition is central to the proof.

Lemma 4.2. There is a bijection ψ
(k)
n : B(k)

n → NCB,(k)
n which preserves type.

Proof. Consider a path α ∈ B(k)
n . The plane is divided into disjoint regions by the lines

y = skx + i, i ∈ Z and each east step of α is cut by these lines into s segments, each in
a region. We call the intersection of the rectangle [0, n] × [0, kn] with 0 ≤ y ≤ kx the
positive triangle, and its intersection with kx ≤ y the negative triangle. Note that α is
decomposed into a concatenation of positive and negative paths, where now a segment of
length 1

k
serves as an east step. By a positive (negative) path we mean that all of its east

steps are in the postive (negative) triangle. Clearly the number of positive and negative
paths differs by at most 1, and we may write α = P1N1P2N2 . . . PkNs for some s, where
Pi (or Ni), 1 ≤ i ≤ k, are positive (negative). Note that both, one, or neither of P1 and
Ns might be empty.

Each Pi (or Ni) is a Dyck path (rotated by 180 degrees in the case of Ni), using an
east segment of length 1

k
as the unit of an east step and 1 as the unit of a north step .

Denote by pi (or ni) the number of east segments in Pi (or Ni) and set n0 := n1 + · · ·+ns.
For each Pi and Ni, seen as a Dyck path, we apply the Labeling Lemma 3.2 to label east
segments: we label the east segments of Ns by [1, ns]; of of Ns−i by [ns + ns−1 + · · · +
ns−i+1 + 1, ns + ns−1 + · · · + ns−i+1 + ns−i] for 1 ≤ i ≤ s − 1; of P1 by [n0 + 1, n0 + p1];
and of Pi by [n0 + p1 + · · · + pi−1 + 1, n0 + p1 + · · ·+ pi−1 + pi] for 2 ≤ i ≤ k.

Now we define a partition β = ψn(α) ∈ NCB,(k)
n by the following rules:

1. The ascent on y = 0 corresponds to the antipodal block (the unique block containing
both negative and positive integers), if it exists.

2. Each ascent not on y = 0 corresponds to a pair of symmetric blocks, one of which
consisits of those numbers labelling this ascent.

It is clear that type is preserved under ψ
(k)
n . And β is noncrossing because the subpartition

using positive (negative) numbers is noncrossing, and because of the fact that the positive
and negative paths are alternating.

Now we consider the inverse mapping (ψ
(k)
n )−1. Below we will use the ordering on

indices −1 < −2 < · · · < −kn < 1 < 2 < · · · < kn. Given β ∈ NCB,(k)
n , we list the

blocks B1, . . . , Bs of β such that minBi < minBi+1, and such that the numbers in each
block are listed in clockwise order with respect to their positions as vertices of the regular
2kn-gon. We call such a listing of β canonical. For example, −1, 6, 9, 10/ − 2,−3/ −

4,−5, 4, 5/6, 9,−10, 1/− 7,−8/2, 3/7, 8 ∈ NCB,(2)
5 is a canonical listing.
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Now suppose β is canonical. We will select one element from each antipodal pair
{i,−i}, 1 ≤ i ≤ kn, serving as the labels on the east segments of (ψ

(k)
n )−1(β). The idea is

to collect numbers block by block, starting from the block containing −1, until we have
half of them.

1. If there is an antipodal block, let a0 be the smallest positive number in the antipodal
block.

2. If there is no antipodal block, find the last block containing both positive and
negative numbers such that the absolute value of any negative number in this block
is smaller than any positive number in this block. Let a0 be the smallest positive
number in this block.

3. If there is no block containing both positive and negative numbers, set a0 = n + 1.

For a < b, let [a, b] denote the set of integers a ≤ x ≤ b. We define A := [−a0 + 1,−1] ∪
[a0, n] to be the set of selected numbers. Note that by definition the positive (negative)
numbers in A also form a noncrossing partition, and can be listed in canonical order. Now
we put kn numbers in A into a 2 × kn array, leaving half of the positions empty, subject
to the following rules:

1. The negative numbers, starting from the smallest one, are put in the row 1 from
right to left in the canonical order.

2. The positive numbers, starting from the smallest one, are put in the row 2 from left
to right in the canonical order.

3. Both positions (1, j) and (2, j+1) are occupied if and only if the following condition
holds: (1, j) is the smallest negative number of some block containing simultaneously
postive and negative numbers, and (2, j + 1) is the smallest positive number in this
block.

In this way the 2 × n array is a concatenation of sections of numbers, each is a maximal
sequence of numbers of the same sign, and the signs are alternating among sections. Let
us call the sections from left to right P1, N1, P2, N2, . . . , Ps, Nk, where Pi (or Ni) stands
for the i-th positive (negative) section. Note that both, one or neither of P1, Nk might
be empty.

For each section Pi (or Ni), using the Labelling Lemma 3.2 we can construct a Dyck
path with east segments labeled. Rotate the path constructed from Ni by 180 degrees.
By abuse of notation we also call the rotated path Ni. Our desired α = (ψ

(k)
n )−1(β) ∈ Bn

is defined to be the concatenation of the paths α := P1N1P2N2 . . . PsNs. It is easy to see
that this construction preserves type.

For example, let k = 2. Figure 3 illustrates how the path

ENNNNNNENNENNNEN ∈ B(3)
4
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bijects with the 3-divisible noncrossing partition

−1,−2, 12/− 3,−7, 11/− 4,−5,−6/− 8,−9,−10, 8, 9, 10/− 11, 3, 7/− 12, 1, 2/4, 5, 6,

which is ∈ NCB,(3)
4 , with the auxillary 2 × 12 array in the middle.

12

−4−5−6

11
−3−7

12
−1−2

98 10

1
2

3

4

5

7

6

8

9

10
11

12−1

−10
−11 −12

−6

−7

−8

−9

−5

−4

−3
−2

8 9 10
−6 −5 −4 −7 −3

11
−2 −1

Figure 3: An example of the type B bijection.

Now it suffices to count number of k-divisible type B noncrossing partitions with
respect to type. Luckily this follows from a result of Athanasiadis (see [1, Theorem
4.5.11])

Lemma 4.3. [2] The number of k-disible type B noncrossing partitions ∈ NCB,(s)
n with

type λ is
(kn)!

mλ(kn− `(λ))!
. (5)

Proof. of Theorem 1.2: By Lemma 4.1 and Lemma 4.2, the map ψ
(k)
n ◦ φ(k)

n is a bijection
from H(k)

n to NCB,(k)
n preserving type. Now apply Lemma 4.3 and we are done.

5 Concluding remarks

As we can see, the ‘Fuss type A’ shape (nkn)/((n − 1)k, . . . , 2k, 1k) is the dilation of the
‘type A’ shape (nn)/(n − 1, . . . , 2, 1), and the ‘Fuss type B’ shape (nkn) is the dilation
of the ‘type B’ shape (nn) by a factor of k along the y direction. It is interesting to
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discuss the effect on fζ/µ when applying various operations on the skew shape ζ/µ. Also
it is interesting to investigate f(ζ/µ)?(ζ′/µ′) where ? is some binary operation. Although a
general theory can be developed, in this work we only focus on two special shapes owing
to their direct connections to the noncrossing partitions.

Stanley [10, Theorem 2.3] also considered the relationship of Haiman’s parking function
symmetric function to the Ehrenborg quasisymmetric function of the lattice of noncrossing
partitions. There he noticed a curious discrepancy in the indices. We hope that our
nonhomogeneous version of the parking functions can help to explain this discrepancy.
Perhaps there is a nonhomogeneous version of the Ehrenborg function.
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