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Abstract

A flat of a matroid is cyclic if it is a union of circuits; such flats form a lattice

under inclusion and, up to isomorphism, all lattices can be obtained this way. A

lattice is a Tr-lattice if all matroids whose lattices of cyclic flats are isomorphic

to it are transversal. We investigate some sufficient conditions for a lattice to be

a Tr-lattice; a corollary is that distributive lattices of dimension at most two are

Tr-lattices. We give a necessary condition: each element in a Tr-lattice has at most

two covers. We also give constructions that produce new Tr-lattices from known

Tr-lattices.

1 Introduction

A flat X of a matroid M is cyclic if the restriction M |X has no isthmuses. Ordered
by inclusion, the cyclic flats form a lattice, which we denote by Z(M). Every lattice
is isomorphic to the lattice of cyclic flats of some (bi-transversal) matroid [4, 8]. (All
lattices considered in this paper are finite.) Although M is determined by its cyclic flats
and their ranks, in most cases Z(M), viewed as an abstract lattice, reveals little about
M . However, for certain lattices L, it is shown in [1, 2] that if Z(M) is isomorphic to L,
then M is transversal; lattices with this property are transversal lattices or Tr-lattices.
In [4], lattices of width at most two are shown to be Tr-lattices. In this paper we treat
more general sufficient conditions for a lattice to be a Tr-lattice and we prove a necessary
condition. More specifically, Section 3 introduces MI-orderable lattices (which include
distributive lattices of dimension at most two) and shows they are Tr-lattices; Section 4
shows that each element of a Tr-lattice has at most two covers. Lastly, Section 5 gives
ways to construct new MI-orderable lattices (resp., Tr-lattices) from known MI-orderable
lattices (resp., Tr-lattices).
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2 Background

We assume familiarity with basic matroid theory. Our notation and terminology for
matroid theory follow [7]; for ordered sets we mostly follow [10]. For a collection F of
sets, we write

⋂

(F) for the intersection
⋂

X∈F X and
⋃

(F) for
⋃

X∈F X.
Recall that any ordered set P can be embedded in a product of chains; the dimension

of P is the least number of chains for which there is such an embedding. An antichain in
P is a collection of mutually incomparable elements of P . The width of P is the maximal
cardinality among the antichains of P . We say y is a cover of x in P if x < y and there is
no z in P with x < z < y. An ideal in P is a subset I of P such that if x ∈ I and y ≤ x,
then y ∈ I; dually, F ⊆ P is a filter if whenever x ∈ F and y ≥ x, then y ∈ F . The
least and greatest elements in a lattice are denoted 0̂ and 1̂, respectively. The atoms of a
lattice are the elements that cover 0̂; dually, the coatoms are the elements that 1̂ covers.

The lattice Z(M) of cyclic flats of M has the same join operation as the lattice of
flats: A ∨ B = cl(A ∪ B). In contrast to the lattice of flats, the meet operation of Z(M)
might not be intersection: X ∧Y is the union of the circuits that are contained in X ∩Y .

A matroid on a given set is determined by its collection of cyclic flats and their ranks.
In some cases we will ignore the cyclic flats and instead focus on the ranks assigned to
the elements of an abstract lattice; this is justified by the following special case of [8,
Theorem 1].

Proposition 2.1 Let L be a lattice. Given ρ : L → Z with

(a) ρ(0̂) = 0,

(b) ρ(x) < ρ(y) whenever x < y, and

(c) ρ(x ∨ y) + ρ(x ∧ y) ≤ ρ(x) + ρ(y) whenever x and y are incomparable,

there is a matroid M and an isomorphism φ : L → Z(M) with ρ(x) = r
(

φ(x)
)

.

A key result we use to prove that certain lattices are (or are not) Tr-lattices is the
following characterization of transversal matroids, which was first formulated by Mason
using cyclic sets and later refined to cyclic flats by Ingleton [5]. (The statement in [5] uses
all nonempty collections of cyclic flats, but an elementary argument shows that it suffices
to consider nonempty antichains of cyclic flats.)

Proposition 2.2 A matroid M is transversal if and only if for every nonempty antichain
A in Z(M),

r
(

⋂

(A)
)

≤
∑

F⊆A

(−1)|F|+1r
(

⋃

(F)
)

. (MI)

It follows from the description of joins in Z(M) that the right side in this inequality
can be replaced by the corresponding alternating sum of ranks of joins of cyclic flats.
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Since the complements of the flats of a matroid are the unions of its cocircuits, X is
a cyclic flat of M if and only if E(M) − X is a cyclic flat of the dual, M ∗. Thus, Z(M∗)
is isomorphic to the order dual of Z(M).

Let S and E be the least and greatest cyclic flats of M . Note that for X ∈ Z(M),
the lattice Z(M |X) is the interval [S, X] in Z(M); dually, Z(M/X) is isomorphic to the
interval [X, E] in Z(M) via the isomorphism Y 7→ Y ∪ X. (The lattices of cyclic flats of
other minors are not as simple to describe.)

3 Sufficient conditions for a lattice to be a Tr-lattice

The main result of this section, Theorem 3.2, implies that if the ordering property in the
following definition holds for all antichains of a lattice L, then L is a Tr-lattice.

Definition 3.1 For an antichain A in a lattice L, an MI-ordering of A is a permutation
a1, a2, . . . , at of A so that

(i) ai ∨ ai+1 ∨ · · · ∨ ak = ai ∨ ak for 1 ≤ i < k ≤ t and

(ii) (a1 ∧ a2 ∧ · · · ∧ ak) ∨ ak+1 = ak ∨ ak+1 for 1 < k < t.

An antichain is MI-orderable if it has an MI-ordering. A lattice is MI-orderable if each
of its antichains is MI-orderable.

Theorem 3.2 Let M be a matroid.

(i) Each MI-orderable antichain in Z(M) satisfies inequality (MI).

(ii) If Z(M) is MI-orderable, then M and all of its minors are transversal.

We prove Theorem 3.2 via a sequence of lemmas. (The meet and join operations in
the next lemma and other results are in Z(M).)

Lemma 3.3 Let A1, A2, . . . , At be an antichain of cyclic flats in a matroid M such that
(A1 ∧ A2 ∧ · · · ∧ Ak) ∨ Ak+1 = Ak ∨ Ak+1 whenever 1 ≤ k < t. Then for k with k ≤ t,

r(A1 ∩ A2 ∩ · · · ∩ Ak) ≤
k

∑

i=1

r(Ai) −
k−1
∑

i=1

r(Ai ∪ Ai+1). (1)

Proof. Induct on k. Equality holds for k = 1. For the inductive step, inequality (1) and
the semimodular inequality applied to A1 ∩ A2 ∩ · · · ∩ Ak and Ak+1 give

r(A1 ∩ A2 ∩ · · · ∩ Ak+1) + r
(

(A1 ∩ A2 ∩ · · · ∩ Ak) ∪ Ak+1

)

≤
k+1
∑

i=1

r(Ai) −
k−1
∑

i=1

r(Ai ∪ Ai+1),

so if we show r
(

(A1 ∩A2 ∩ · · · ∩Ak)∪Ak+1

)

= r(Ak ∪Ak+1), then the inequality we want
follows. This equality holds since A1 ∧ A2 ∧ · · · ∧ Ak ⊆ A1 ∩ A2 ∩ · · · ∩ Ak ⊆ Ak and
(A1 ∧ A2 ∧ · · · ∧ Ak) ∨ Ak+1 = Ak ∨ Ak+1. 2
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Lemma 3.4 An antichain A in Z(M) satisfies inequality (MI) if it can be ordered as
A1, A2, . . . , At with

(i) Ai ∨ Ai+1 ∨ · · · ∨ Ak = Ai ∨ Ak whenever 1 ≤ i < k ≤ t and

(ii) r(A1 ∩ A2 ∩ · · · ∩ At) ≤
∑t

i=1
r(Ai) −

∑t−1

i=1
r(Ai ∪ Ai+1).

Proof. Assume properties (i) and (ii) hold. For 1 ≤ i ≤ j ≤ t, set

Ai,j = {F : F ⊆ A, i = min(k : Ak ∈ F), and j = max(k : Ak ∈ F)}.

Thus, if F ∈ Ai,j, then cl
(
⋃

(F)
)

= Ai ∨Aj. If j > i + 1, then the terms on the right side
of inequality (MI) that arise from the sets in Ai,j cancel since there is a parity-switching
involution φ of Ai,j: fix k with i < k < j and let

φ(F) =

{

F ∪ {Ak}, if Ak 6∈ F ;
F − {Ak}, if Ak ∈ F .

Thus, inequality (MI) reduces to the inequality that is assumed in property (ii). 2

The lemmas above show that MI-orderable lattices are Tr-lattices. To prove the
stronger assertion in part (ii) of Theorem 3.2, we show in Lemma 3.6 that if the an-
tichains in Z(M) satisfy the hypotheses of Lemma 3.4, then the same is true for any
single-element deletion M\x or contraction M/x. (Unlike the hypotheses of Theorem 3.2,
condition (ii) in Lemma 3.4 is not a lattice-theoretic property.) We will use the following
lemma about the cyclic flats of M\x and M/x; the statement is evident for M\x and
follows for M/x by an elementary duality argument.

Lemma 3.5 For an element x of M and a cyclic flat A of either M\x or M/x, the flat
Ā = clM(A) of M is cyclic; furthermore, Ā is either A or A ∪ x.

Lemma 3.6 If each antichain in Z(M) can be ordered so that properties (i) and (ii) of
Lemma 3.4 hold, then the same is true for each antichain in Z(M\x) and each antichain
in Z(M/x).

Proof. We use the notation Ā of Lemma 3.5. Let A be an antichain in Z(M/x). Note that
{Ā : A ∈ A} is an antichain in Z(M). By hypothesis, there is an ordering A1, A2, . . . , At

of A so that the following properties hold:

Āi ∨ Āi+1 ∨ · · · ∨ Āk = Āi ∨ Āk, for 1 ≤ i < k ≤ t, (2)

rM(Ā1 ∩ Ā2 ∩ · · · ∩ Āt) +
t−1
∑

i=1

rM(Āi ∪ Āi+1) ≤
t

∑

i=1

rM(Āi). (3)

Since Āj = clM(Aj) and since the join A ∨ B in Z(M) is clM(A ∪ B), by equation (2)
Ai ∪ Ai+1 ∪ · · · ∪ Ak and Ai ∪ Ak have the same closure in M , and so in M/x; thus,
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as needed, Ai ∨ Ai+1 ∨ · · · ∨ Ak = Ai ∨ Ak in Z(M/x). The rank inequality in M/x is
immediate if x is a loop of M , so assume this is not the case. Assume x is in exactly h of
the cyclic flats Ā1, Ā2, . . . , Āt of M . Thus,

h +
t

∑

i=1

rM/x(Ai) =
t

∑

i=1

rM(Āi).

That x must be in at least h of the sets Ā1 ∩ Ā2 ∩ · · · ∩ Āt and Āi ∪ Āi+1 gives

h + rM/x(A1 ∩ A2∩ · · · ∩ At) +

t−1
∑

i=1

rM/x(Ai ∪ Ai+1)

≤ rM(Ā1 ∩ Ā2 ∩ · · · ∩ Āt) +

t−1
∑

i=1

rM(Āi ∪ Āi+1).

The last two conclusions and inequality (3) give the counterpart of inequality (3) in M/x
for A1, A2, . . . , At, as needed.

We omit the (similar) proof for Z(M\x). (Deletions of transversal matroids are
transversal, so only the result about Z(M/x) is needed to prove Theorem 3.2.) 2

The lemmas above complete the proof of Theorem 3.2.

Corollary 3.7 If each sublattice of Z(M) that is generated by an antichain of Z(M) is
distributive and has dimension at most two, then M and all of its minors, as well as their
duals, are transversal.

Proof. Recall that Z(M ∗) is isomorphic to the order dual of Z(M), so M ∗ satisfies the
hypotheses if and only if M does. Thus, it suffices to show that for a lattice L, if each
sublattice that is generated by an antichain is distributive and has dimension at most
two, then L is MI-orderable. Let A be an antichain of L. View the sublattice A generates
as a suborder of N

2 and list the elements of A as a1, a2, . . . , at where ai = (xi, yi) with
x1 > x2 > · · · > xt; thus, y1 < y2 < · · · < yt. Clearly ai ∨ ai+1 ∨ · · · ∨ ak ≥ ai ∨ ak.
Let ai ∨ ak be (p, q). Thus, p ≥ xi and q ≥ yk, so (p, q) ≥ (xj, yj) for i ≤ j ≤ k, and
so ai ∨ ai+1 ∨ · · · ∨ ak = ai ∨ ak, as needed. By the distributive law, property (ii) of
Definition 3.1 can be written as (a1 ∨ ak+1) ∧ (a2 ∨ ak+1) ∧ · · · ∧ (ak ∨ ak+1) = ak ∨ ak+1;
this holds since ai ∨ ak+1 = ai ∨ ai+1 ∨ · · · ∨ ak ∨ ak+1 ≥ ak ∨ ak+1 for 1 ≤ i ≤ k. 2

We close this section by noting that if N is a minor of M and Z(M) is MI-orderable,
Z(N) need not be MI-orderable; indeed, Z(N) might not even be a Tr-lattice. Consider
the matroid M in Figure 1. The isomorphic lattices Z(M) and Z(M ∗) are MI-orderable.
A direct check (or Theorem 5.1) shows that Z(M/x) (also shown in Figure 1) is MI-
orderable. However, by Theorem 4.1, its order dual, Z(M ∗\x), is not a Tr-lattice. This
example also shows that the minor-closed classes of matroids described in Theorems 3.2
and Corollary 3.7 are not determined by lattice-theoretic properties that apply to the
lattices of cyclic flats of all matroids in these classes.
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Figure 1: The lattice of cyclic flats of a matroid M and that of M/x.

4 A necessary condition for a lattice to be a Tr-lattice

Property (ii) in Definition 3.1 forces each element of an MI-orderable lattice to have no
more than two covers. We now show that the same is true of any Tr-lattice.

Theorem 4.1 Each element of a Tr-lattice has at most two covers.

Proof. Let the element x of a lattice L have at least three covers. We prove that L is not
a Tr-lattice by defining a function ρ : L → Z so that properties (a)–(c) in Proposition 2.1
hold and inequality (MI) fails. For y ∈ L, let Fy be the principal filter {u : u ≥ y} in L.
Thus, the sublattice Fx of L has at least three atoms.

Define ρ′ : L → Z by ρ′(y) =
∣

∣L − Fy

∣

∣. It follows easily that ρ′ satisfies properties
(a)–(c) in Proposition 2.1. For u, v, w ∈ Fx − {x}, let

m(u, v, w) = ρ′(u)+ ρ′(v)+ ρ′(w)− ρ′(u∨ v)− ρ′(u∨w)− ρ′(v∨w)+ ρ′(u∨ v∨w)− ρ′(x).

By inclusion-exclusion, m(u, v, w) = |Fx − (Fu ∪ Fv ∪ Fw)|. Set

k = min{m(u, v, w) : u, v, w > x} = |Fx| − max{
∣

∣Fu ∪ Fv ∪ Fw

∣

∣ : u, v, w > x}.

Thus, k is the minimal size of the complement, in Fx, of the union of three proper principal
filters in Fx. Note that if k = m(u, v, w), then u, v, w are distinct covers of x. Define
ρ : L → Z by

ρ(y) =

{

ρ′(y), if y ≤ x,
ρ′(y) − k − 1, otherwise.

Clearly ρ satisfies property (a) of Proposition 2.1. Properties (b) and (c) for ρ follow from
these properties for ρ′ except in two cases:

(i) ρ(y) < ρ(z) if y < z, y ≤ x, and z 6≤ x, and

(ii) ρ(y) + ρ(z) ≥ ρ(y ∨ z) + ρ(y ∧ z) if y 6≤ x, z 6≤ x, and y ∧ z ≤ x.
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Figure 2: (a) The lattice L8. (b) An example of the generalization of L8. (c) A lattice LI

obtained from an ideal in a product of two three-element chains.

Similar arguments apply in these cases, so we address just the second. Thus, assume
y 6≤ x, z 6≤ x, and y ∧ z ≤ x. The inequality in statement (ii), when simplified, is
|Fy∧z − (Fy ∪ Fz)| ≥ k + 1. That (Fy ∪ Fz) ∩ Fx is the union of two principal filters, Fy∨x

and Fz∨x, both properly contained in Fx, gives |Fx − (Fy ∪ Fz)| ≥ k + 1; the required
inequality follows since Fx ⊆ Fy∧z.

Let M be a matroid arising from L and ρ as in Proposition 2.1. Fix u, v, w with
k = m(u, v, w) and let U , V , and W be the corresponding cyclic flats of M . The definitions
of m and ρ give

r(U) + r(V ) + r(W ) − r(U ∪ V ) − r(U ∪ W ) − r(V ∪ W ) + r(U ∪ V ∪ W ) = r(X) − 1.

Since r(X) ≤ r(U ∩ V ∩ W ), it follows that the antichain {U, V, W} of Z(M) does not
satisfy inequality (MI). Thus, M is not transversal, so L is not a Tr-lattice. 2

A matroid M is nested if Z(M) is a chain. These matroids have arisen many times
in a variety of contexts (see [3, Section 4] for more information). That Z(M ⊕ N) is
isomorphic to the product Z(M) ×Z(N) gives the following corollary.

Corollary 4.2 If Z(M) is a Tr-lattice, then the matroid obtained from M by deleting
all loops and isthmuses is either a direct sum of at most two nested matroids or it is
connected.

5 Examples and constructions

Acketa [2] proved that the lattice L8 in Figure 2(a) is a Tr-lattice but its order dual is
not. (This and the other results and conjectures in [1, 2] are easily addressed by the
results above.) Note that L8 and the lattice in Figure 2(b) are in an infinite family of
MI-orderable lattices, the defining properties of which are that the interval between 0̂ and
any coatom is a chain, and for one of these chains (e.g., the left-most chain in Figure 2(b)),
all other such chains intersect it in different initial segments.

Sublattices of MI-orderable lattices are clearly MI-orderable. The next result gives
another simple construction for MI-orderable lattices. (See Figure 2(c).)
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Figure 3: Three nonplanar Tr-lattices; only Dd is MI-orderable.

Theorem 5.1 For any ideal I in an MI-orderable lattice L, the lattice LI induced on the
set I ∪ {1̂} by the same order is MI-orderable.

Proof. Each antichain A of LI is an antichain of L; order A so that properties (i) and (ii)
of Definition 3.1 hold in L. Let z be the join of {ai, ai+1, . . . , ak} and of {ai, ak} in L. If
z ∈ I, then z is the join of each of these sets in LI , otherwise both sets have join 1̂ in LI .
Thus, property (i) holds in LI . The same ideas show that property (ii) holds in LI since
the meet operations are identical in L and LI . 2

Recall that the linear (or ordinal) sum of partial orders P and Q, where P and Q are
disjoint, is the order on P ∪ Q in which the restriction to P (resp., Q) is the order on P
(resp., Q) and all elements of P are less than all elements of Q. Note that the class of
MI-orderable lattices is closed under linear sums and under the closely-related operation
that, given lattices L and L′, forms the Hasse diagram of the new lattice from those of
L and L′ by identifying the greatest element of L with the least element of L′. It follows
from Theorem 5.4 below that the same results hold for Tr-lattices. By Theorem 4.1, the
class of MI-orderable lattices and that of Tr-lattices are not closed under direct products.

We next treat three particular Tr-lattices of dimension 3, only one of which is MI-
orderable. These lattices, which are shown in Figure 3, are among the forbidden sublat-
tices for planar lattices (see [6]). (No other forbidden sublattices for planar lattices satisfy
the necessary condition for Tr-lattices given in Theorem 4.1.)

Theorem 5.2 The lattice Dd is MI-orderable. The lattices F0 and C are Tr-lattices but
are not MI-orderable.

Proof. Note that each antichain with one or two elements is MI-orderable. From this
remark, the MI-orderable lattice in Figure 2(c), and the MI-ordering b, a, c of the antichain
{a, b, c} of Dd, it follows that Dd is MI-orderable.

In the lattice F0, the only antichains with more than two elements are {A, S, X},
{X, T, D}, and {X, A, D}. The first two are MI-orderable (ordered as written), so we
need only show that in any matroid M for which Z(M) is isomorphic to F0, the flats that
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correspond to X, A, D (for which we use the same notation) satisfy inequality (MI), that
is, r(X) + r(A) + r(D) − r(R) − r(E) ≥ r(X ∩ A ∩ D). By semimodularity,

r(A) + r(S) ≥ r(E) + r(A ∩ S).

The inclusions T ⊆ A ∩ S ⊆ S give cl
(

(A ∩ S) ∪ X
)

= R, so

r(A ∩ S) + r(X) ≥ r(R) + r(A ∩ S ∩ X).

The inclusions U ⊆ A ∩ S ∩ X ⊆ S give cl
(

(A ∩ S ∩ X) ∪ D
)

= S, so

r(A ∩ S ∩ X) + r(D) ≥ r(S) + r(A ∩ S ∩ X ∩ D).

Note that A ∩ S ∩ X ∩ D is A ∩ X ∩ D. Adding the three inequalities and simplifying
yields the desired inequality.

A similar argument applies to the lattice C, for which it suffices to consider the an-
tichains {A, B, Y }, {A, W, Y }, {B, V, Y }, and {V, W, Y }. The last three are listed in
MI-orderings. For {A, B, Y }, apply semimodularity to the pairs {A, S}, {A ∩ S, B},
and {A ∩ S ∩ B, Y }; the inclusions V ⊆ A ∩ S ⊆ S and T ⊆ A ∩ S ∩ B ⊆ S give
cl

(

(A ∩ S) ∪ B
)

= E and cl
(

(A ∩ S ∩ B) ∪ Y
)

= S; add the resulting inequalities and
cancel the common terms to get inequality (MI) for {A, B, Y }. 2

We now consider two operations for producing new Tr-lattices. Given lattices L1 and
L2, let L1 ∗ L2 be the lattice on (L1 ∪ L2 ∪ {0̂, 1̂}) − {1̂L1

, 1̂L2
} with x ≤ y if and only if

(i) y = 1̂, or (ii) x = 0̂, or (iii) for some i ∈ {1, 2}, both x and y are in Li and x ≤ y in
Li. Figure 4(a) illustrates this operation; note that the unique four-element antichain in
this lattice is not MI-orderable.

Theorem 5.3 If L1 and L2 are Tr-lattices, then so is L1 ∗ L2.

The proofs of Theorems 5.3 and 5.4 are similar, so we prove only the latter, which
concerns lexicographic sums [10, Section 1.10]. Let L be a lattice and let L = (Lx : x ∈ L)
be a family of lattices that is indexed by the elements of L. The lexicographic sum L⊕L
is defined on the set {(x, a) : x ∈ L, a ∈ Lx}; the order is given by (x, a) ≤ (y, b) if and
only if either (i) x < y in L or (ii) x = y and a ≤ b in Lx. Figure 4(b) illustrates this
operation. It is easy to see that L ⊕ L is not necessarily MI-orderable even if all of the
constituent lattices are.

Theorem 5.4 If L has width at most two and if L = (Lx : x ∈ L) is a family of
Tr-lattices, then L ⊕ L is a Tr-lattice.

Proof. Let φ : Z(M) → L ⊕ L be an isomorphism. We must show that any antichain A
in Z(M) satisfies inequality (MI).

For F ∈ Z(M), let φ1(F ) be the first component of φ(F ); thus, φ1(F ) ∈ L. For
x ∈ φ1(A), set Ax = {F : F ∈ A, φ1(F ) = x}. Since L has width at most two and A is
an antichain in Z(M), there are at most two such sets; these sets partition A.

the electronic journal of combinatorics 15 (2008), #R15 9



Figure 4: (a) The lattice L1 ∗ L2 where L1 and L2 are Boolean lattices on two elements.
(b) A lexicographic sum; the indexing lattice is a Boolean lattice on two elements.

For u ∈ L, let Zu and Eu be the least and greatest flats F ∈ Z(M) with φ1(F ) = u.
Thus, if φ1(A) = u and φ1(B) = v with u 6= v, then A ∨ B = Zu∨v and A ∧ B = Eu∧v by
the definition of L ⊕ L.

Let x be in φ1(A). Note that Z(M |Ex/Zx) is isomorphic to Lx, so M |Ex/Zx is transver-
sal. Applying Proposition 2.2 to the antichain {A−Zx : A ∈ Ax} of Z(M |Ex/Zx), writing
the resulting inequality in terms of the rank function of M , and simplifying gives

r
(

⋂

(Ax)
)

≤
∑

F⊆Ax

(−1)|F|+1r
(

⋃

(F)
)

. (4)

This is inequality (MI) for A if |φ1(A)| = 1. Assume, instead, φ1(A) = {x, y}. The
counterpart of inequality (4) holds with Ay in place of Ax. Since r(X ∪ Y ) = r(Zx∨y) for
any X ∈ Lx and Y ∈ Ly,

∑

F⊆A

(−1)|F|+1r
(

⋃

(F)
)

=
∑

F⊆Ax

(−1)|F|+1r
(

⋃

(F)
)

+
∑

F⊆Ay

(−1)|F|+1r
(

⋃

(F)
)

+
∑

Fx⊆Ax,Fx 6=∅
Fy⊆Ay ,Fy 6=∅

(−1)|Fx|+|Fy|+1r
(

⋃

(Fx) ∪
⋃

(Fy)
)

=
∑

F⊆Ax

(−1)|F|+1r
(

⋃

(F)
)

+
∑

F⊆Ay

(−1)|F|+1r
(

⋃

(F)
)

− r(Zx∨y)
∑

Fx⊆Ax,Fx 6=∅

(−1)|Fx|
∑

Fy⊆Ay,Fy 6=∅

(−1)|Fy|,

so inequality (4) and semimodularity give

∑

F⊆A

(−1)|F|+1r
(

⋃

(F)
)

≥ r
(

⋂

(Ax)
)

+ r
(

⋂

(Ay)
)

− r(Zx∨y) ≥ r
(

⋂

(A)
)

.
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Thus, inequality (MI) holds, as needed. 2

We close by noting that, by duality, if L has width at most two and if L = (Lx : x ∈ L)
is a family of bi-transversal lattices (i.e., all lattices in L and their order duals are Tr-
lattices), then L ⊕ L is bi-transversal.
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