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Abstract

A (di)graph G of order n is k-traceable (for some k, 1 ≤ k ≤ n) if every induced
sub(di)graph of G of order k is traceable. It follows from Dirac’s degree condition
for hamiltonicity that for k ≥ 2 every k-traceable graph of order at least 2k − 1 is
hamiltonian. The same is true for strong oriented graphs when k = 2, 3, 4, but not
when k ≥ 5. However, we conjecture that for k ≥ 2 every k-traceable oriented graph
of order at least 2k − 1 is traceable. The truth of this conjecture would imply the
truth of an important special case of the Path Partition Conjecture for Oriented
Graphs. In this paper we show the conjecture is true for k ≤ 5 and for certain
classes of graphs. In addition we show that every strong k-traceable oriented graph
of order at least 6k − 20 is traceable. We also characterize those graphs for which
all walkable orientations are k-traceable.
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1 Introduction

Let G be a finite, simple graph with vertex set V (G) and edge set E(G). The number of
vertices of G is called its order and the number of edges is called its size and are denoted
by n (G) and m(G), respectively. Where no confusion arises we will suppress the G. For
any nonempty set X ⊆ V (G), 〈X〉 denotes the subgraph of G induced by X.

A graph G containing a cycle (path) through every vertex is said to be hamiltonian
(traceable).

The detour order of G, denoted by λ(G) (as in [3], [20] and [21]), is the order of a
longest path in G. The detour deficiency of G is defined as p(G) = n(G)−λ(G). A graph
with detour deficiency p is called p-deficient. Thus a graph is traceable if and only if it is
0-deficient.

A graph G of order n is k-traceable (for some k, 1 ≤ k ≤ n) if every induced subgraph
of G of order k is traceable. Every graph is 1-traceable, but a graph is 2-traceable if and
only if it is complete, and a graph of order n is n-traceable if and only if it is traceable.

The above concepts are defined analogously for digraphs. Often, a directed path
(directed cycle, directed walk) will simply be called a path (cycle, walk).

We use A(D) to denote the arc set of a digraph D. If v is a vertex in a digraph D, we
denote the sets of out-neighbours and in-neighbours of v by N+(v) and N−(v) and the
cardinalities of these sets by d+(v) and d−(v), respectively.

The degree of v in D is defined as deg(v) = d+(v) + d−(v) and the minimum degree of
D is δ(D) = minv∈V (D) deg(v). If H is a subdigraph of D, then N+(H) =

⋃

v∈V (H) N+(v).
If S is a subdigraph of D or a set of vertices in D, we denote the out-neighbours of H

that lie in S by N+
S (H). Similar notation is used with respect to in-neighbours.

A digraph is traceable from (to) x ∈ V (D) if D has a hamiltonian path starting
(ending) at x. A digraph D is walkable if it contains a walk that visits every vertex.
A digraph D is (dis)connected if its underlying graph is (dis)connected and it is called
strong (or strongly connected) if every vertex of D is reachable from every other vertex.
Thus a nontrivial digraph D is strong if and only if it contains a closed walk that visits
every vertex. A maximal strong subdigraph of a digraph D is called a strong component
of D. The components of a digraph D are the components of its underlying graph G.
The strong components of a digraph have an acyclic ordering, i.e. they may be labelled
D1, . . . , Dt such that if there is an arc from Di to Dj, then i ≤ j (cf. [1], p. 17).

An oriented graph is a digraph that is obtained from a simple graph by assigning a
direction to each edge. In this paper we concentrate on oriented graphs, though some of
our results hold for digraphs in general. Section 3 gives a characterization of those graphs
for which all walkable orientations are k-traceable.

Thomassen [24] showed that for every k ≥ 42 there exists a k-traceable graph of order
k + 1 that is nontraceable. (Such graphs are called hypotraceable.) However, for k ≥ 2 all
k-traceable graphs of sufficiently large order are hamiltonian, as shown by the following
result.

Proposition 1.1 Let k ≥ 2 and suppose G is a is k-traceable graph of order at least
2k − 1. Then G is hamiltonian.
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Proof. If δ(G) ≥ n
2
, then G is hamiltonian, by Dirac’s degree condition for hamiltonicity

(see [8]). Now suppose G has a vertex x such that deg(x) ≤ n−1
2

. Then |V (G) \N (x)| ≥ k.
Now let H be an induced subgraph of G such that x ∈ V (H) ⊆ V (G) \N (x) and
n (H) = k Then x is an isolated vertex in H, so H is not traceable and hence G is not
k-traceable.

For digraphs, the situation is very different, even in the case of strong oriented graphs.
In Section 4 we show that the analogue of Proposition 1.1 for strong oriented graphs
is true when k = 2, 3, 4, but not when k ≥ 5. In fact, we construct, for every n ≥ 5,
a nonhamiltonian strong oriented graph of order n that is k-traceable for every k ∈
{5, . . . , n}.

For every k ≥ 6 Grötschel et al. [17] constructed a k-traceable oriented graph of order
k + 1 that is nontraceable. However, we show that, for k ≥ 2, every strong k-traceable
oriented graph of order at least 6k − 20 is traceable. It is therefore natural to ask: for
given k ≥ 2, what is the largest value of n such that there exists a k-traceable oriented
graph of order n that is nontraceable? We formulate the following conjecture.

Conjecture 1 (The Traceability Conjecture (TC)) For every integer k ≥ 2, every
k-traceable oriented graph D of order at least 2k − 1 is traceable.

This conjecture was motivated by the Path Partition Conjecture for 1-deficient oriented
graphs, which is discussed in Section 2.

The TC asserts that every nontraceable oriented graph of order n has a nontraceable
induced subdigraph of order k for each k ∈ {2, 3, . . . , dn

2
e}.

In Section 5 we prove that the Traceabilty Conjecture holds for certain classes of
oriented graphs and that it holds in general for k = 2, 3, 4, 5.

2 Background and motivation

Our interest in k-traceable graphs and digraphs arose from investigations into the Path
Partition Conjecture (PPC) and its directed versions. We briefly sketch the background
of these conjectures.

Throughout the paper a and b will denote positive integers. A vertex partition (A, B)
of a graph G is an (a, b)-partition if λ(〈A〉) ≤ a and λ(〈B〉) ≤ b. If G has an (a, b)-
partition for every pair (a, b) such that a+ b = λ(G), then G is λ-partitionable. The PPC
can be formulated as follows.

Conjecture 2 (Path Partition Conjecture (PPC)) Every graph G is λ-partitionable.

The PPC is a well-known, long-standing conjecture. It originated from a discussion
between L. Lovász and P. Mihók in 1981 and was subsequently treated in the theses [18]
and [25]. It first appeared in the literature in 1983, in a paper by Laborde, Payan and
Xuong [21]. In [4] it is stated in the language of the theory of hereditary properties of
graphs. It is also mentioned in [6].
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The analogous conjecture for digraphs is called the DPPC and its restriction to oriented
graphs is called the OPPC. In 1995 Bondy [3] stated a seemingly stronger version of the
DPPC, requiring λ(〈A〉) = a and λ(〈B〉) = b.

Results on the PPC and its relationship with other conjectures appear in [5], [9], [10],
[11], [13] and [15]. Results on the DPPC appear in Laborde et al. [21], Havet [19], Frick
et al. [14], and Bang-Jensen et al. [2].

Every graph may be regarded as a symmetric digraph with the same detour order,
by replacing every edge with two oppositely directed arcs, and so the truth of the DPPC
would imply the truth of the PPC and the OPPC. However, the relationship between the
PPC and the OPPC is not clear.

The PPC has been proved for all graphs with detour deficiency p ≤ 3. For p ≥ 4 it
has been proved for all p-deficient graphs of order at least 10p2 − 3p (see [5],[15]). We
present here an easy proof for the case p = 1, which relies on Proposition 1.1.

Proposition 2.1 Every 1-deficient graph is λ-partitionable.

Proof. Let G be a 1-deficient graph of order n and consider a pair of positive integers,
a, b such that a + b = λ (G) = n − 1. We assume a ≤ b. Then a + 1 = n − b ≤

⌈

n
2

⌉

.
Since G is nonhamiltonian, it follows from Proposition 1.1 that G has a nontraceable
induced subgraph H of order a + 1. But then λ (H) ≤ a and |V (G) \ V (H)| = b, so
(V (H) , V (G) \ V (H)) is an (a, b)-partition of G.

However, the restriction of the OPPC to 1-deficient oriented graphs has not yet been
settled and it seems difficult and interesting enough to be formulated as a separate con-
jecture. We call it the OPPC1.

Conjecture 3 (OPPC1) Every 1-deficient oriented graph is λ-partitionable.

The OPPC1 may be formulated in terms of traceability, as follows.

Conjecture 4 (Alternative form of OPPC1) If D is a 1-deficient oriented graph of
order n = a + b + 1, then D is not (a + 1)-traceable or D is not (b + 1)-traceable.

It is clear from the above formulation that the truth of the Traceabilty Conjecture will
imply the truth of the OPPC1.

3 Graphs for which all walkable orientations are k-

traceable

Grötschel and Harary [16] characterized those graphs for which all strong orientations
are hamiltonian. Fink and Lesniak-Foster [12] studied the structure of graphs having the
property that all walkable orientations are traceable. They showed that if G is obtained
from a complete graph of order at least 4 by deleting the edges of a vertex-disjoint union
of paths each of length 1 or 2, then every walkable orientation of D is traceable. Graphs
for which all strong orientations are eulerian were characterized in [23]. In view of the
next result we are mainly interested in walkable orientations of graphs.
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Proposition 3.1 Let D be an oriented graph of order n which is k-traceable for some
k ∈ {2, . . . , n}. Then D is walkable.

Proof. If D is a nonwalkable oriented graph, then D has two vertices x and y such that
no path in D contains both x and y. But then every subdigraph of D containing both x

and y is nontraceable.

We characterize here those graphs of order n for which all walkable orientations are
k-traceable for some k ∈ {2, 3, . . . , n}.

Proposition 3.2 The complete graph Kn is the only graph G of order n having the fol-
lowing properties:

(1) G has a walkable orientation and

(2) every walkable orientation of G is k-traceable for some k ∈ {2, 3, . . . , d n
2
e}.

Proof. Every orientation of Kn is a tournament, hence k-traceable for all k ∈ {2, 3, . . . , n},
so Kn certainly has the claimed properties.

Suppose G 6= Kn is a graph of order n satisfying (1) and (2). Note that n ≥ 4 and
therefore n − 2 ≥ dn

2
e. Let x and y be two independent vertices of G.

Since G has a k-traceable orientation for some k ∈ {2, 3, . . . , dn
2
e}, G itself is k-

traceable, hence hamiltonian by Proposition 1.1. Therefore, G has a hamiltonian cycle C,
and it is easy to construct an orientation D of G in which C is a (directed) hamiltonian
cycle of D and with d−(x) = d−(y) = 1. Let x− and y− be the in-neighbours of x and
y, respectively, in D. Then D − {x−, y−} is not walkable, and hence not k-traceable for
any k ∈ {2, 3, . . . , n − 2}. Hence, D is not k-traceable for any k. This contradicts the
assumption that G satisfies (2), so such a G cannot exist.

4 Hamiltonicity and traceability of strong, k-traceable

oriented graphs

It is well-known that every tournament is traceable and every strong local tournament is
hamiltonian [1]. (A digraph is a local tournament if, for every vertex v, each of 〈N−(v)〉
and 〈N+(v)〉 is a tournament.) Chen and Manalastas [7] also proved the following result
for strong digraphs.

Theorem 4.1 (Chen and Manalastas) If D is a strong digraph with α (D) ≤ 2, then D

is traceable.

Havet [19] strengthened this result to the following.

Theorem 4.2 (Havet) If D is a strong digraph with α (D) = 2 then D has two nonadja-
cent vertices that are end vertices of hamiltonian paths in D and two nonadjacent vertices
that are initial vertices of hamiltonian paths in D.
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We shall often use the following result on the minimum degree of k-traceable oriented
graphs.

Lemma 4.3 Let D be an oriented graph of order n which is k-traceable for some k ≤ n.
Then δ (D) ≥ n − k + 1.

Proof. Suppose, to the contrary, that D has a vertex x with deg(x) ≤ n − k. Then
|V (D) \ N(x)| ≥ k. Let H be an induced subdigraph of D such that V (H) consist of
x together with k − 1 other vertices in V (D) \ N(x). Then H has order k and H is
nontraceable. Hence D is not k-traceable.

We now prove that for strong oriented graphs the analogue of Proposition 1.1 holds
for k = 2, 3, 4.

Theorem 4.4 For k = 2, 3 or 4, every strong k-traceable oriented graph of order at least
k + 1 is hamiltonian.

Proof. If k = 2 or 3, then D is a strong local tournament and hence is hamiltonian.
Now let D be a strong 4-traceable oriented graph of order n ≥ 5. Since a strong

tournament is hamiltonian, we may assume δ(D) ≤ n − 2 and hence, by Lemma 4.3,
δ(D) = n − 3 or n − 2.

Suppose first that δ (D) = n − 3. Let x be a vertex of degree n − 3 and let {y, z} =
V (D)\N [x]. If v ∈ N+(x), then 〈{x, v, y, z}〉 is traceable, so we may assume, without loss
of generality, that yz ∈ A(D). Then every vertex in N+(x) is adjacent to y. Furthermore,
if v and w are two distinct vertices in N+(x), then 〈{x, v, w, y, }〉 is traceable, so v and
w are adjacent. Thus 〈N+(x)〉 is a tournament and hence has a hamiltonian path P .
Similarly, every vertex in N−(x) is adjacent from z and 〈N−(x)〉 has a hamiltonian path
Q. Thus xPyzQx is a hamiltonian cycle of D.

Now suppose δ(D) = n − 2. Let c be the circumference of D and let C = v1v2 . . . vcv1

be a longest cycle in D. Suppose c ≤ n− 1 and let x ∈ V (G) \C. Suppose that no vertex
of C is adjacent to x. Then all vertices of C (except possibly one) are adjacent from x.
Since D is strongly connected there is some shortest path P from C to x. Suppose P is a
vi − x path. Then x is adjacent to at least one of vi+1 and vi+2, where the subscripts are
modulo c. Let j ∈ {i + 1, i + 2} be such that xvj is an arc of D. Then, since P is a path
of order at least 3, Pvjvj+1 . . . vi is a cycle longer than C. So at least one vertex of C is
adjacent to x and, similarly, at least one vertex of C is adjacent from x.

We may also assume that at least one vertex of C is nonadjacent with x; otherwise,
there will be a vertex vj on C such that vj ∈ N−(x) and vj+1 ∈ N+(x), producing a
cycle longer than C. Hence, since deg(x) ≥ n − 2, exactly one vertex of C, say v1, is
nonadjacent with x and N+

C (x) = {v2, . . . , v`} for some index `, 2 ≤ ` < c; otherwise the
maximality of the order of C is contradicted. Further, since deg(v1) ≤ n−2, we note that
v1 is a universal vertex of 〈V (C)〉.

Next we note that v1 and x have a common out-neighbour, v2, and a common in-
neighbour, vc. If v1 and x have a common out-neighbour, vk 6= v2, then 〈{v1, x, v2, vk}〉 is
nontraceable. Consequently, v2 is the only common out-neighbour of x and v1. Similarly,
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vc is the only common in-neighbour of x and v1. Thus if 3 ≤ j ≤ c − 1, then vj ∈ N+(x)
if and only if vj ∈ N−(v1). Moreover, since 〈{x, v1, v2, vc}〉 is traceable, v2vc ∈ A(D).

Now, if 2 < ` < c − 1 then, since l is the largest integer such that v` ∈ N+(x), it
follows that v` ∈ N−(v1) and v`+1 ∈ N+(v1). But then the cycle xv2 . . . v`v1v`+1v`+2 . . . vcx

is longer than C.
If ` = 2, then v3 ∈ N+(v1) and xv2vcv1v3 . . . vc−1x is a cycle longer than C.
It is not difficult to show that c > 3 and so, if ` = c − 1, then vc−1 ∈ N−(v1) and

v1v2vcxv3 . . . vc−1v1 is a cycle longer than C.

A strong 5-traceable oriented graph need not be hamiltonian. Fig. 1 depicts a strong
5-traceable oriented graph of order 6 that is nonhamiltonian.

v

v

x

v

vv

5

1

2

34

Figure 1: A strong 5-traceable oriented graph of order 6 that is nonhamiltonian.

v1 v2 v3
v

n-2 vv
nn-1

Figure 2: A strong k-traceable oriented graph that is nonhamiltonian.

Other nonhamiltonian strong 5-traceable oriented graphs are obtained from the graph
in Fig. 1 by adding some or all of the arcs v5v2, v5v3 and v4v2. However, v1 and x remain
nonadjacent. Nielsen [22] generalized this construction to prove the following.

Theorem 4.5 For every n ≥ 5, there exists a strong nonhamiltonian oriented graph of
order n that is k-traceable for every k ∈ {5, 6, . . . , n}.

Proof. Let T be a transitive tournament of order n ≥ 5 with source vertex s and sink
vertex t. Obtain D from T by removing the arc st and by reversing the arcs of the
(unique) hamiltonian path of T . This strong oriented graph D is depicted in Fig. 2 with
s = vn and t = v1.

Suppose D has a hamiltonian cycle C. Then, since v2 is the only out-neighbour of
v1, the cycle C contains the arc v1v2, and hence also the arcs v2v3, v3v4, . . . , vn−2vn−1 and
vn−1vn. But vn is not adjacent to v1. Thus D is nonhamiltonian.
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Now let k ∈ {5, 6, . . . , n} and let H be a subdigraph of D of order k. If H does
not contain both v1 and vn, then H is a tournament and hence is traceable. Now as-
sume v1, vn ∈ V (H) and let P = u1 . . . uk−2 be a hamiltonian path of the tournament
H−{v1, vn}. Since vn has in-degree one in D and vn is a universal vertex in H−v1, either
vnu1 . . . uk−2 or u1vnu2 . . . uk−2 is a hamiltonian path of H − v1. Since k ≥ 5, every sub-
digraph H − v1 thus contains a hamiltonian path P ′ = w1 . . . wk−1 with vn 6= wk−2, wk−1.
Similarly, v1 has out-degree one, so either w1 . . . wk−1v1 or w1 . . . wk−2v1wk−1 is a hamil-
tonian path in H.

The graph D0 constructed by Whitehead in [26], Theorem 2.3, also has the properties
required to prove Theorem 4.5. Although that graph as well as the graphs constructed
in Theorem 4.5 are nonhamiltonian, they are traceable. We shall prove that all strong
k-traceable oriented graphs of sufficiently large order are traceable. The proof relies on
the following result.

Theorem 4.6 If D is a k-traceable oriented graph of order at least 6k − 20, then D has
independence number at most 2.

Proof. Suppose S = {x1, x2, x3} is a set of three independent vertices in D and let
W = V (D)\S. Let Ai = W\N−(xi) and Bi = W\N+(xi); i = 1, 2, 3. Then Ai ∪ Bi = W ;
i = 1, 2, 3. Now let i, j be any pair of distinct integers in {1, 2, 3}. If |Ai ∩ Aj| ≥ k − 3,
let H be an induced subdigraph of D, whose vertex set consists of x1, x2, x3 and k − 3
vertices of Ai ∩Aj. Then H has order k and is nontraceable, since both xi and xj have no
in-neighbours in H. Hence |Ai ∩ Aj| ≤ k − 4. Similarly, |Bi ∩ Bj| ≤ k − 4. Now suppose
|A1 ∩ B2| ≥ 2k − 7. Then, since |A1 ∩ A3| ≤ k − 4, at least k − 3 vertices of A1 ∩ B2 are
in B3, but then |B2 ∩ B3| ≥ k − 3. This contradiction proves that |A1 ∩ B2| ≤ 2k − 8.
But A1 = (A1 ∩ A2) ∪ (A1 ∩ B2). Hence |A1| ≤ (k − 4) + 2k − 8 = 3k − 12. Similarly,
|B1| ≤ 3k−12. But V (D) = A1∪B1∪{x1, x2, x3}, so n (D) ≤ (3k − 12)+(3k − 12)+3 =
6k − 21.

Theorems 4.1 and 4.6 imply the following:

Corollary 4.7 If k ≥ 2 and D is a strong k-traceable oriented graph of order at least
6k − 20, then D is traceable.

We now show that the case k ≤ 5 of the TC holds for strong oriented graphs.

Corollary 4.8 For each k ∈ {2, 3, 4, 5}, every strong k-traceable oriented graph of order
at least 2k − 1 is traceable.

Proof. Theorem 4.4 proves the cases k = 2, 3, 4. Corollary 4.7 proves that every strong
5-traceable oriented graph of order at least 10 is traceable. Now let D be a strong 5-
traceable oriented graph of order 9. Suppose D is not traceable. Then, by Theorem 4.1,
D has an independent set of vertices S = {x1, x2, x3} . Now define the sets Ai and Bi as in
Theorem 4.6. Then it follows from the proof of Theorem 4.6 that |A1| ≤ 3 and |B1| ≤ 3,
so |A1| = |B1| = 3 and A1 ∩ B1 = ∅. Hence, since D is 5-traceable, {x1, x2} ∪ A1 has a
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hamiltonian path starting at x1 and {x1, x3} ∪ B1 has a hamiltonian path ending at x1.
Thus D is traceable.

Corollary 4.8 implies that the case k ≤ 5 of the TC holds for strong oriented graphs.
In Section 5 we shall show that the case k ≤ 5 of the TC holds in general.

5 The Traceability Conjecture

In this section we deduce some properties of k-traceable oriented graphs and then use
these to prove that the TC holds for certain classes of oriented graphs and also that the
TC holds for k ≤ 5. From these results we deduce new results concerning the OPPC1.

The following useful result follows immediately from the fact that the strong compo-
nents of an oriented graph have an acyclic ordering.

Lemma 5.1 If P is a path in a digraph D, then the intersection of P with any strong
component of D is either empty or a path.

In view of Proposition 3.1 we restrict our attention to walkable oriented graphs when
investigating the TC. Suppose D is a walkable oriented graph with h strong components.
Then the strong components have a unique acyclic ordering D1, . . . , Dh such that if there
is an arc from Di to Dj then i ≤ j and there is at least one arc from Di to Di+1

for i = 1, . . . , h − 1. Throughout the paper we shall label the strong components of a
walkable oriented graph D in accordance with this unique acyclic ordering and denote the
subdigraph of D induced by all the vertices in the strong components Dr, Dr+1, . . . , Ds

by Ds
r, i.e.

Ds
r =

〈

s
⋃

i=r

V (Di)

〉

.

Our next result gives a lower bound on the order of a strong component that is not a
tournament in a k-traceable oriented graph.

Lemma 5.2 Let k ≥ 2 and let D be a k-traceable oriented graph of order n ≥ k with
strong components D1, . . . , Dh. If Di is not a tournament for some i ∈ {1, . . . , h}, then
n(Di) ≥ n − k + 3.

Proof. Suppose n(Di) ≤ n−k+2. Then n(D−V (Di)) ≥ n−(n−k+2) = k−2. Now let
H be an induced subdigraph of D such that H contains k − 2 vertices of D − V (Di) and
two nonadjacent vertices of Di. Then it follows from Lemma 5.1 that H is nontraceable,
contrary to our assumption that D is k-traceable.

Next we consider the structure of k-traceable oriented graphs of sufficiently large order.

Lemma 5.3 Let k ≥ 2 and let D be a k-traceable oriented graph of order n ≥ 2k−5 with
strong components D1, . . . , Dh. Then for every positive integer i ≤ h − 1 at least one of
the digraphs Di

1 and Dh
i+1 is a tournament.
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Proof. Suppose, to the contrary, that for some i ≤ h − 1 neither Di
1 nor Dh

i+1 is a
tournament. Since n ≥ 2k − 5, one of Di

1 and Dh
i+1, say Di

1, has at least k − 2 vertices.
Let H be an induced subdigraph of D such that H contains k − 2 vertices of Di

1 together
with any two nonadjacent vertices of Dh

i+1. Then it follows from Lemma 5.1 that H is
nontraceable, contrary to the hypothesis.

For oriented graphs whose nontrivial strong components are all hamiltonian a slightly
stronger result than the TC holds.

Theorem 5.4 If k ≥ 2 and D is a k-traceable oriented graph of order n ≥ 2k − 3 such
that every nontrivial strong component of D is hamiltonian, then D is traceable.

Proof. Let the strong components of D be D1, . . .Dh. Suppose D is nontraceable. Then,
since each Di is hamiltonian or a singleton, it is clear that h ≥ 3. If Dh−1

1 is a tournament,
then every vertex in Dh−1 is an end vertex of some hamiltonian path of Dh−1

1 . Since Dh

is hamiltonian or a singleton, this would imply that D is traceable. Thus Dh−1
1 is not a

tournament.
Let i be the smallest positive integer such that Di

1 is not a tournament. Then i ≤ h−1
and it follows from Lemma 5.3 that Dh

i+1 is a tournament. Hence i > 1 (otherwise D

would be traceable) and Di−1
1 is a tournament by the minimality of i.

Since D is walkable, there exist vertices y ∈ V (Di) and w ∈ V (Di+1) such that
yw ∈ A(D), and since Di is either hamiltonian or a singleton, y is the endvertex of a
hamiltonian path P = x . . . y in Di. Suppose x has an in-neighbour v ∈ V (Di−1). Since
Di−1

1 and Dh
i+1 are tournaments, v is the endvertex of a hamiltonian path P ′ in Di−1

1 and
w is the initial vertex of a hamiltonian path P ′′ in Dh

i+1 and so P ′PP ′′ is a hamiltonian
path of D, a contradiction. Therefore, some vertex of Di has no in-neighbour in Di−1,
i.e. N+

Di
(Di−1) 6= V (Di) and Di is not a singleton.

If |N+
Di

(Di−1)| ≤ n− k then n(D −N+
Di

(Di−1)) ≥ k. Let H be an induced subdigraph
of D − N+

Di
(Di−1) such that H has k vertices, of which at least one is in Di−1 and at

least one in Di. Since Di−1 has no out-neighbours in V (H) ∩ Di, it follows that H is
nontraceable.

Hence |N+
Di

(Di−1)| ≥ n − k + 1 ≥ (2k − 3) − k + 1 = k − 2. Now let C : v1v2 . . . vcv1

be a hamiltonian cycle of Di. Then, for every vj ∈ N+
C (Di−1), its predecessor, vj−1, on

C is not in N−

C (Di+1). Let H be a subdigraph of D induced by a set of k − 2 of these
predecessors, together with one vertex from Di−1 and one from Di+1. Then H has order
k but is nontraceable, since Di+1 has no in-neighbours in V (H) ∩ V (C).

We are now ready to prove the TC for k ≤ 5.

Corollary 5.5 If k ∈ {2, 3, 4, 5} and D is a k-traceable oriented graph of order at least
2k − 1, then D is traceable.

Proof. Suppose, to the contrary, that D is nontraceable. By Theorem 5.4, D has a
nontrivial strong component X that is nonhamiltonian. By Corollary 4.8 and Lemma 5.2,
n−k+3 ≤ n(X) ≤ n−1. Hence k ≥ 4 and n(X) ≥ n−k+3 ≥ (2k−1)−k+3 ≥ k+2 ≥ 6.
It therefore follows from Theorem 4.4 that X is not 4-traceable, so k = 5. Now choose
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any 4 vertices from X that induce a nontraceable subdigraph of X. Then these vertices
together with any vertex from V (D) − X induce a nontraceable subdigraph of D that is
of order 5.

It follows from Theorem 5.4 that the TC holds for all oriented graphs with the property
that every two cycles are vertex disjoint. In particular, it holds for unicyclic oriented
graphs.

Lemma 4.3 implies that the TC holds (vacuously) for every oriented graph D satisfying

δ(D) ≤ n(D)
2

. Our next result shows that it also holds for oriented graphs with sufficiently
large minimum degree.

Theorem 5.6 If k ≥ 2 and D is a k-traceable oriented graph of order n ≥ 2k − 3 such
that δ(D) ≥ n − 2, then D is traceable.
Proof. Suppose D is nontraceable. Then D is not a tournament and therefore we may
assume that δ(D) = n − 2 and hence α(D) = 2. Therefore, from Theorem 4.1, it follows
that D is not strong. Let D1, . . . , Dh be the strong components of D. By Theorem 5.4
there exists a nontrivial strong component Di, 1 ≤ i ≤ h, such that Di is nonhamiltonian
and by Theorem 4.2 there exist two nonadjacent vertices x and y in V (Di) such that both
are end vertices of hamiltonian paths in Di.

First we show that 2 ≤ i ≤ h − 1. Suppose i = 1. Then Lemma 5.3 implies that Dh
2

is a tournament. Hence, if v ∈ V (D2), then v is an initial vertex of a hamiltonian path of
Dh

2 . But then x and y are both nonadjacent with v, contradicting the fact that α(D) = 2.
Hence i 6= 1. Similarly we can show that i 6= h. It therefore follows from Lemma 5.3 that
both Di−1

1 and Dh
i+1 are tournaments. Hence every vertex in Di−1 is an end vertex of a

hamiltonian path of Di−1
1 and every vertex in Di+1 is an initial vertex of a hamiltonian

path of Dh
i+1.

Let n(Di) = ni and let P = v1v2 . . . vni−1vni
with x = vni

be a hamiltonian path in Di

that ends in x.
Since δ(D) = n − 2, x is adjacent to every vertex in Di+1, and hence Dh

i has a
hamiltonian path starting at v1. This implies that no vertex in Di−1 is adjacent to v1.
Our assumption on δ(D) therefore implies that n(Di−1) = 1 and any other hamiltonian
path in Di that ends in x also starts at v1. Since Di is strong, v1 has an in-neighbour in
Di and since Di is nonhamiltonian, vni

is an out-neighbour of v1. But v1 is adjacent to
every vertex in Di, so there exists an integer r ∈ {3, . . . , ni − 1} such that vr ∈ N−

Di
(v1)

and vr+1 ∈ N+
Di

(v1). But then v2 . . . vrv1vr+1 . . . vni
is a hamiltonian path of Di starting

at v2 and ending in x = vni
. This contradiction proves the theorem.

The results in this section provide four new results concerning the OPPC1.

Corollary 5.7 The OPPC1 holds for a ≤ 4.

Corollary 5.8 Let D be a 1-deficient oriented graph. If every nontrivial strong compo-
nent of D is hamiltonian, then D is λ-partitionable.

Corollary 5.9 Let D be a 1-deficient oriented graph of order n. If δ(D) ≤ bn
2
c or

δ(D) ≥ n − 2, then D is λ-partitionable.
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