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Abstract

We prove that if a subset of the d-dimensional vector space over a finite field is

large enough, then it contains many k-tuples of mutually orthogonal vectors.
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1 Introduction

A classical set of problems in combinatorial geometry deals with the question of whether
a sufficiently large subset of R

d, Z
d, or F

d
q contains a given geometric configuration. For

example, a classical result due to Furstenberg, Katznelson and Weiss ([5]; see also [2])
says that if E ⊂ R

2 has positive upper Lebesgue density, then for any δ > 0, the δ-
neighborhood of E contains a congruent copy of a sufficiently large dilate of every three
point configuration.

When the size of the point set is smaller than the dimension of ambient Euclidean
space, taking a δ-neighborhood is not necessary, as shown by Bourgain in [2]. He proves
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that if E ⊂ R
d has positive upper density and ∆ is a k-simplex with k < d, then E

contains a rotated and translated image of every large dilate of ∆. The case k = d and
k = d+1 remain open, however. See also, for example, [3], [4], [9], [14] and [16] on related
problems and their connections with discrete analogs.

In the geometry of the integer lattice Z
d, related problems have been recently investi-

gated by Akos Magyar in [12] and [13]. In particular, he proves in [13] that if d > 2k + 4
and E ⊂ Z

d has positive upper density, then all large (depending on density of E) dilates
of a k-simplex in Z

d can be embedded in E. Once again, serious difficulties arise when
the size of the simplex is sufficiently large with respect to the ambient dimension.

In finite field geometries, a step in this direction was taken by the listed authors in
[6]. They prove that if E ⊂ F

d
q, the d-dimensional vector space over the finite field with

q elements with |E| ≥ Cqd k−1
k

+ k−1
2 and ∆ is a k-dimensional simplex, then there exists

τ ∈ F
d
q and O ∈ SOd(Fq) such that τ + O(∆) ⊂ E. The result is only non-trivial in the

range d ≥
(

k
2

)
as larger simplexes are out of range of the methods used. See also [8] for a

detailed graph theoretic analysis of a more general problem.
In this paper, we ask whether a sufficiently large subset of F

d
q , the d-dimensional

vector space over the finite field with q elements, contains a k-tuple of mutually orthogonal
vectors. Similar questions, at least in the context of pairs of orthogonal vectors, are studied
in [1]. This problem does not have a direct analog in Euclidean or integer geometries
because placing the set strictly inside {x ∈ R

d : xj > 0} immediately guarantees that no
orthogonal vectors are present. However, the arithmetic of finite fields allows for a richer
orthogonal structure. Our main result is the following.

Theorem 1.1. Let E ⊂ F
d
q, such that

|E| ≥ Cqd k−1
k

+ k−1
2

+ 1
k

with a sufficiently large constant C > 0, where

0 < (k
2) < d.

Let λk be the number of k-tuples of k mutually orthogonal vectors in E. Then

λk = (1 + o(1))|E|kq−(k
2).

Soon after we presented our result, Le Anh Vinh, in [15], showed a way to gain in the
case k > 2 by employing graph theoretic techniques that can be found in [1] and [10]. The

threshold obtained therein is |E| & q
d
2
+k−1, which admits a wider effective range for k in

dimensions greater than 2. However, there were no counterexamples to show how sharp
either method was. Here, we present two counterexamples. The first shows that both
results are tight for k = d = 2. We then extend this intuitive construction, and utilize
elementary algebraic techniques to show sharpness at k = 2 for all dimensions.
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1.1 Graph theoretic interpretation

Define a hyper-graph Gk(q, d) by taking its vertices to be the elements of F
d
q and con-

nect k vertices by a hyper-edge if they are mutually orthogonal. Theorem 1.1 above
implies that any subgraph of Gk(q, d) with more than Cqd k−1

k
+ k−1

2
+ 1

k vertices contains

(1 + o(1))|E|kq−(k
2) hyper-edges, which is the statistically expected number.

Alternatively, we can think of Theorem 1.1 as saying that any sub-graph of G2(q, d)

of size greater than Cqd k−1
k

+ k−1
2

+ 1
k contains (1 + o(1))|E|kq−(k

2) complete sub-graph on k
vertices, once again a statistically expected number.

See [8], and the references contained therein, for a systematic description of the prop-
erties of related graphs.

1.2 Hyperplane discrepancy problem

One of the key features of the proof of this result is the analysis of the following discrepancy
problem. Let

Hx1,x2,...,xk = {y ∈ F
d
q : y · xj = 0, j = 1, 2 . . . , k}.

Define the discrepancy function rk by the equation

|E ∩ Hx1,...,xk | = |E|q−k + rk(x
1, . . . , xk),

where the first term should be viewed as the “expected” size of the intersection. In Lemma
2.1 below we show that on average,

|rk(x
1, . . . , xk)| .

√

|E|q−k,

where here, and throughout the paper, X . Y means that there exists C > 0, independent
of q, such that X ≤ CY .

1.3 Acknowledgements

The authors wish to thank Boris Bukh, Seva Lev and Michael Krivelevich for interesting
comments and conversations pertaining to this paper.

2 Proof of Theorem 1.1

Observe that

rk−1

(
x1, ..., xk−1

)
= q−(k−1)

∑

si∈F
∗

q

i=1,2,...,k−1

∑

xk∈F
d
q

E(xk)

k−1∏

i=1

χ(−six
i · xk).

Lemma 2.1. ‖rk−1‖L2 . |E|
1
2 q

(d−1)(k−1)+1
2 .
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Assuming Lemma 2.1 for now, we prove the main result, Theorem 1.1.

Proof. Define Dk :=
{
(x1, ..., xk) ∈ Ek : xi · xj = 0, ∀1 ≤ i < j ≤ k

}
, where Ek means

E × E × ... × E
︸ ︷︷ ︸

k times

. Also, let Dk(x
1, ..., xk) and E(x) be the indicator functions for the

set Dk and E, respectively. Clearly |Dk| = λk. Our goal is to get an expression for λk in
terms of λk−1. In order for that to do us any good, we will need an expression for λ2. We
will show the direct calculation of λ2, as well as the size condition on E for two vectors.
This will help to illustrate the ideas employed in the same calculations for general k.

λ2 =
∑

x1,x2∈F
d
q :x1·x2=0

E(x1)E(x2)

= q−1
∑

x1,x2∈F
d
q

E(x1)E(x2)
∑

s∈Fq

χ(−sx1 · x2)

= q−1
∑

s∈Fq

∑

x1,x2∈F
d
q

E(x1)E(x2)χ(−sx1 · x2)

= I2 + II2,

where I2 is the sum over s = 0, and II2 is the same sum, but over s 6= 0. We will show
that I2 dominates the other term when |E| satisfies the size condition, and is therefore
the number of sets of 2 mutually orthogonal vectors present in E, modulo a constant.

I2 =
∑

x1,x2∈F
d
q

E(x1)E(x2)q−1

= q−1
∑

x1∈F
d
q

E(x1)
∑

x2∈F
d
q

E(x2)

= |E|2q−1

If I2 indeed dominates the other two terms, we’ll have

λ2 = |E|2q−1.

So now we will have to compute II2. First we will separate the factors into the
indicator function of E and the discrepancy function. Then we will use Cauchy-Schwarz
so we can deal with the L2 norm of the discrepancy.

II2 = q−1
∑

s∈F
∗

q

∑

x1,x2∈F
d
q

E(x1)E(x2)χ(−sx1 · x2)

=
∑

x1,x2∈F
d
q

E(x1)q−1
∑

s∈F
∗

q

∑

x2∈F
d
q

E(x2)χ(−sx1 · x2)

≤ |E|
1
2 (

∑

x1,...,xk−1

r2
1)

1
2 ≈ |E|

1
2‖r1‖L2.
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Applying Lemma 2.1 gives us

‖r1‖L2 . |E|
1
2 q

d
2 .

So we can estimate II2 from above by |E|q
d
2 . Now we compare the sizes of I2 and II2.

Recall that we want our “main term”, I2, to dominate, so we get the expected number of
orthogonal pairs of vectors.

I2 > II2

|E|2q−1 > |E|q
(d−1)+1

2

|E| > q
d
2
+1 = qd 2−1

2
+ 2−1

2
+ 1

2 ,

as claimed. The same ideas work for higher k. In the general case, one must operate with
Dk−1 instead of the indicator function of E, and there is a product of several additive
characters present here, as opposed to only one. These and other details are handled
below.

λk =
∑

xj∈F
d
q :xj ·xk=0

j=1,2,...,k−1

Dk−1(x
1, ..., xk−1)E(xk)

= q−(k−1)
∑

xj∈F
d
q

j=1,2,...,k

Dk−1(x
1, ..., xk−1)E(xk)

∑

si∈Fq

i=1,2,...,k−1

k−1∏

i=1

χ(−six
i · xk)

= q−(k−1)
∑

si∈Fq

i=1,2,...,k−1

∑

xj∈F
d
q

j=1,2,...,k

Dk−1(x
1, ..., xk−1)E(xk)

k−1∏

i=1

χ(−six
i · xk)

= I + II + III,

where we separate the sum into three parts depending on the si’s. I is the sum when all
of the si’s are zero. II is the sum when none of the si’s are equal to zero. III is the sum
when some of the si’s are equal to zero, and some are not. We treat these three cases
separately. As before, we will show that I dominates the other terms when |E| satisfies
the size condition, and is a constant times the number of k-tuples mutually orthogonal
vectors contained in E.

I =
∑

xj∈F
d
q

j=1,2,...,k

Dk−1(x
1, ..., xk−1)E(xk)q−(k−1)

=
∑

xj∈F
d
q

j=1,2,...,k−1

Dk−1(x
1, ..., xk−1)|E|q−(k−1)

= |E|q−(k−1)
∑

xj∈F
d
q

j=1,2,...,k−1

Dk−1(x
1, ..., xk−1)

= |E|q−(k−1)λk−1
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If I indeed dominates the other two terms, we’ll have

λk

λk−1

= |E|q−(k−1).

To get an expression for λk, we recall the computation for k = 2 first: λ2 = |E|2q−1.
Then notice the following collapsing product.

λk =
λk

λk−1
·
λk−1

λk−2
· · · · ·

λ3

λ2
· λ2.

Substituting each in ratio, as computed above, yields

λk =
|E|k

q(k
2)

.

Now we need to compute II, the biggest error term. Now we recall the definition of
the discrepancy function.

rk−1

(
x1, ..., xk−1

)
= q−(k−1)

∑

si∈F
∗

q

i=1,2,...,k−1

∑

xk∈F
d
q

E(xk)

k−1∏

i=1

χ(−six
i · xk)

First, we separate the factors, then we apply Cauchy-Schwarz to the sum over the first
(k − 1) vectors xj. Again, we have an estimate in terms of the norm of the discrepancy.

II = q−(k−1)
∑

si∈F
∗

q

i=1,2,...,k−1

∑

xj∈F
d
q

j=1,2,...,k

Dk−1(x
1, ..., xk−1)E(xk)

k−1∏

i=1

χ(−six
i · xk)

≤
∑

xj∈F
d
q

j=1,...,k−1

Dk−1(x
1, ..., xk−1)q−(k−1)

∑

si∈F
∗

q

i=1,...,k−1

∑

xk∈F
d
q

E(xk)

k−1∏

i=1

χ(−six
i · xk)

≤ λ
1
2
k−1(

∑

x1,...,xk−1

r2
k−1)

1
2 ≈ |E|

k−1
2 q

−(k−1
2 )

2 ‖rk−1‖L2 .

So we use Lemma 2.1 to get a handle on ‖rk−1‖L2. Now we are guaranteed that

II . |E|
k−1
2 q

−(k−1
2 )

2 |E|
1
2 q

(d−1)(k−1)+1
2

= |E|
k
2 q

(d−1)(k−1)+1−(k−1
2 )

2 .

To deal with III, break it up into sums that have the same number of non-zero sj’s.

III =
∑

one sj=0

+
∑

two sj ’s=0

+...

= d
∑

s1=0

+d(d − 1)
∑

s1=s2=0

+...
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Now each of these sums will look like II, but with (k − 2) instead of (k − 1) for the
first sum, and (k − 3) instead of (k − 1) in the second sum, and so on. This allows us to
bound each sum in III as follows:

III . d|E|
k−2
2 q

(k−2
2 )
2 ‖rk−2‖L2 + d(d − 1)|E|

k−3
2 q

(k−3
2 )
2 ‖rk−3‖L2 + ...

So III is dominated by II as long as q > d, which is guaranteed, as q grows arbirtarily
large.

Now we only need to find appropriate conditions on E to ensure that I > II.

I > II

|E|kq−(k
2) > |E|

k
2 q

(d−1)(k−1)+1−(k−1
2 )

2

|E|
k
2 > q

2(d−1)(k−1)+2−(k−1)(k−2)+2k(k−1)
4

|E| > q(
k−1

k )d+ k−1
2

+ 1
k .

Now to prove the Lemma 2.1.

Proof. Recall the definition of rk−1

(
x1, ..., xk−1

)
and use orthogonality in x1, ..., xk−1.

‖rk−1‖
2
L2 = q−2(k−1)

∑

x1,...,xk−1

∑

s1,s′1,...,

sk−1,s′
k−1

∑

xk,yk∈E

k−1∏

j=1

χ((sjx
k − s′jy

k) · xj)

= qd(k−1)q−2(k−1)

(
∑

sj=s′
j

∑

xk,yk:
sjxk=s′jyk

E(xk)E(yk) +
∑

sj 6=s′
j

∑

xk,yk:
sjxk=s′jyk

E(xk)E(yk)

)

= q(d−2)(k−1) (A + B) .

Let us approach A first. Since s1 = s′1, and sjx
k = s′jy

k for all j, we know that it
holds for j = 1, and therefore xk = yk. This tells us that sj = s′j for all j. So

A =
∑

s1,...,sk−1

∑

xk

E(xk)E(xk) = q(k−1)
∑

xk

E(xk)E(xk) = |E|q(k−1)

Now we tackle the quantity B. Here we introduce a new variable, α = s1

s′1
. We know

that s′j 6= 0, as they are elements of F
∗
q. Also notice that the condition sjx

k = s′jy
k implies

α =
sj

s′j
for all j. So we did have to sum over 2(k − 1) different variables, but now we

know that these are completely determined by only (k − 1) of the originals. So we will
have (k − 1) free variables. In light of this, with a simple change of variables we get

B = q(k−1)
∑

yk=αxk

E(xk)E(αxk) ≤ q(k−1)
∑

xk∈Fd
q

|E ∩ lxk | ≤ |E|qk
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where lxk :=
{
txk ∈ F

d
q : t ∈ Fq

}
, which can only intersect E at most q times. With the

estimates for A and B in tow,

‖rk−1‖
2
L2 = q(d−2)(k−1) (A + B)

. q(d−2)(k−1)
(
|E|q(k−1) + |E|qk

)

≈ |E|q(d−1)(k−1)+1.

3 Sharpness examples

The following lemmata are included to show how close Theorem 1.1 is to being sharp.
While there are several possible notions of sharpness for this result, it is clearly interesting
to consider how big a set can be without containing any orthogonal k-tuples. The first
lemma is merely an intuitive construction used in the next lemma, both of which concern
large sets with no orthogonal k-tuples.

Lemma 3.1. There exists a set E ⊂ F
2
q such that |E| ≈ q2, but no pair of its vectors are

orthogonal.

Proof. This is done by taking the union of about q

2
lines through the origin, such that no

two lines are perpendicular, and removing the union of their q

2
orthogonal complements,

which are lines perpendicular to lines in the first union. Then our set E has about q2

2

points, but no pair has a zero dot product.

The next result is the main counterexample, which shows that it is possible to construct
large subsets of F

d
q with no pairs of orthogonal vectors.

Lemma 3.2. There exists a set E ⊂ F
d
q such that |E| ≥ cq

d
2
+1, for some c > 0, but no

pair of its vectors are orthogonal.

Proof. The basic idea is to construct two sets, E1 ⊂ F
2
q, and E2 ⊂ F

d−2
q , such that

|E1| ≈ q
3
2 and |E2| ≈ q

d−1
2 . If you pick q and build these sets carefully, you can guarantee

that the sum set of their respective dot product sets does not contain 0. The following
algorithm was inspired by [7].

Here we will indicate how to construct E1. The construction of E2 is similar. First,
let q = p2, where p is a power of a large prime. We also pick these such that p + 1 is
of the form 4n, where n is odd. This way we can be guaranteed a large, well-behaved
multiplicative group of order q − 1 = (p − 1)(p + 1), as well as a subfield of order p.

Let i denote the square root of −1, which is in F
∗
q, since q is congruent to 1 mod 4.

Now let B be a cyclic subgroup of F
∗
q of order p+1

4
(p−1) = n(p−1). Since n was odd, and

p was congruent to 3 mod 4, we know that 4 does not divide the order of B. This means
that B has no element of order 4, so it is clear that i /∈ B. Let β denote the generator of
B, as it is a subgroup of a cyclic group, and therefore cyclic. Since p− 1 is even, we know
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that we can find another cyclic subgroup, A, generated by β2. Let Cp be the elements of
F
∗
p that lie on the unit circle, that is,

Cp :=
{
x ∈ F

2
p : x2

1 + x2
2 = 1

}
.

From a lemma in [7], (or basic number theory) we know that |Cp| = p − 1, since −1
is not a square in a field of order congruent to 3 mod 4. We can be sure that for all
u, v ∈ Cp, u · v ∈ Fp. Now let

E ′
1 := {τu : τ ∈ A, u ∈ Cp} .

So, for all x, y ∈ E ′
1, we can be sure that x · y ∈ A ∪ {0}. To see this, let x = σu, and

y = τv, where σ, τ ∈ A and u, v ∈ Cp. Then x · y = στ(u · v) ∈ A ∪ {0}, as any non-zero
u · v ∈ F

∗
p ⊂ A. Now, the cardinality of E ′

1 is

|E ′
1| = |Cp||A| = (p − 1)

(
p + 1

4

p − 1

2

)

≈ q
3
2 .

Now pick q

2
mutually non-orthogonal lines in E ′

1. Call this collection of lines L. Let
L⊥ indicate the set of lines perpendicular to the lines in L. Now we need to prune E ′

1 so
that it has no pairs of orthogonal vectors. One of the sets E ′

1 ∩ L or E ′
1 ∩ L⊥ has more

points. Call the set with more points E1. This means that no zero dot products can show
up in E1, in a similar manner to the construction in the proof of Lemma 3.1. Now we
have |E1| ≈ q

3
2 , and for any x, y ∈ E1, we are guaranteed that x · y ∈ A, which does not

contain 0.
Construct E2 ⊂ F

d−2
q in a similar manner, using spheres instead of circles. However, in

the construction of E2, it will not be necessary prune anything. Now we have |E2| ≈ q
d−1
2

and all of its dot products lie in A ∪ {0}. Set E = E1 ×E2. Since E1 has its dot product
set contained in A, and E2 has its dot product set contained in A ∪ {0}, we know that
any dot product of two elements in E is in the sum set A + (A ∪ {0}).

Now we will show that 0 is not in the dot product set. If two elements did have a zero
dot product, that would mean that we had s, t ∈ A, where s comes from the first two
dimensions, or E1, and t comes from the other d− 2 dimensions, or E2, and we also have
s = −t. (Note, even though t could conceivably be zero, s can not, so we would not have
s = −t if t were zero. Therefore t is necessarily an element of A.) Recall that s and t are
squares of elements in B. Call them σ2 and τ 2, respectively, for some σ, τ ∈ B. Since B
has multiplicative inverses, let α = σ

τ
∈ B. So we would need the following:

σ2 = −τ 2 ⇒ −1 =
σ2

τ 2
= α2.

But we constructed B so that it does not contain the square root of −1. Therefore
there can be no two elements of E which have a zero dot product.

The authors believe that the preceeding example can be generalized to obtain results
about how large a set can be without containing orthogonal k-tuples for k > 2.

the electronic journal of combinatorics 15 (2008), #R151 9



References

[1] N. Alon and M. Krivelevich, Constructive bounds for a Ramsey-type problem, Graphs
and Combinatorics 13 (1997), 217–225.
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