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Abstract

Let f and F be two polynomials satisfying F (x) = u(x)f(x) + v(x)f ′(x). We
characterize the relation between the location and multiplicity of the real zeros of
f and F , which generalizes and unifies many known results, including the results of
Brenti and Brändén about the q-Eulerian polynomials.

1 Introduction

Let Sn denote the symmetric group on the set {1, 2, . . . , n} and π = a1a2 · · ·an ∈ Sn. An
excedance in π is an index i such that ai > i. Let exc (π) denote the number of excedances
in π. The classical Eulerian polynomials An(x) are defined by

A0(x) = 1, An(x) =
∑

π∈Sn

xexc (π)+1 for n ≥ 1,

and have been extensively investigated. It is well known that the classical Eulerian poly-
nomials satisfy the recurrence relation

An+1(x) = (n + 1)xAn(x) + x(1 − x)A′
n(x)

(see Bóna [1, p. 23] for instance). In [5], Brenti considered a q-analog of the classical
Eulerian polynomials defined by

A0(x; q) = 1, An(x; q) =
∑

π∈Sn

xexc (π)qc(π) for n ≥ 1,
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where c(π) is the number of cycles in π. The first few of the q-Eulerian polynomials are

A0(x; q) = 1, A1(x; q) = q, A2(x; q) = q(x + q), A3(x; q) = q[x2 + (3q + 1)x + q2].

Clearly, An(x) = xAn(x; 1) for n ≥ 1. Brenti obtained the recurrence relation

An+1(x; q) = (nx + q)An(x; q) + x(1 − x)
d

dx
An(x; q) (1)

([5, Proposition 7.2]) and showed that An(x; q) has only real nonpositive simple zeros
when q is a positive rational number ([5, Theorem 7.5]). He also proposed the following.

Conjecture 1 ([5, Conjecture 8.8]). Let n, t ∈ N. Then An(x;−t) has only real zeros.

The conjecture has been settled recently by Brändén [3]. Let

En(x; q) = (1 + x)nAn

(

x

1 + x
; q

)

.

Then it is clear that An(x; q) has only real zeros if and only if En(x; q) does. The recurrence
(1) induces

En+1(x; q) = q(1 + x)En(x; q) + x(1 + x)
d

dx
En(x; q),

with E0(x; q) = 1. Using multiplier n-sequences, Brändén can prove that if q > 0, n+q ≤ 0
or q ∈ Z, then En(x; q) has only real zeros, and so does An(x; q) (see [3, Theorem 6.3] for
details). In the next section, we will obtain a more precise result directly by the recurrence
(1) as an application of our main results in this paper.

Polynomials with only real zeros arise often in combinatorics, algebra, analysis, geom-
etry, probability and statistics. For example, let S(n, k) be the Stirling numbers of the
second kind and Bn(x) =

∑n

k=0 S(n, k)xk the Bell polynomials. Then

Bn(x) = xBn−1(x) + xB′
n−1(x), B0(x) = 1. (2)

For showing that the Stirling behavior is asymptotically normal, Harper [8] showed that
the Bell polynomials have only real simple zeros by means of the recurrence (2).

Let RZ denote the set of real polynomials with only real zeros. Furthermore, denote
by RZ(I) the set of such polynomials all of whose zeros are in the interval I. Suppose that
f, F ∈ RZ. Let {ri} and {sj} be all zeros of f and F in nonincreasing order respectively.
We say that f separates F , denoted by f � F , if deg f ≤ deg F ≤ deg f + 1 and

s1 ≥ r1 ≥ s2 ≥ r2 ≥ s3 ≥ r3 ≥ · · · .

It is well known that if f ∈ RZ, then f ′ ∈ RZ and f ′ � f . Following Wagner [13], a real
polynomial is called standard if it has positive leading coefficient.

Let f and F be two polynomials satisfying the relation F (x) = u(x)f(x) + v(x)f ′(x).
A natural question is in which cases f has only real zeros implies that F does. There
have been some partial results [10, 14]. However, these results can not tell us the relation
of the multiplicity and location of zeros of f and F . The main object of this paper is
to provide a characterization for such a problem, which can give a unified explanation of
many known results.
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2 Main results

In this section we present the main results of this paper.

Theorem 2. Let f and F be two standard polynomials satisfying the relation

F (x) = u(x)f(x) + v(x)f ′(x), (3)

where u(x), v(x) are real polynomials and deg F = deg f or deg f+1. Assume that f ∈ RZ
and v(r) ≤ 0 whenever f(r) = 0. Then F ∈ RZ and f � F . Moreover, if r is a zero of f
with the multiplicity m, then the multiplicity of r as a zero of F is

(a) m − 1 if v(r) 6= 0; or

(b) m if v(r) = 0 but u(r) + mv′(r) 6= 0; or

(c) m + 1 if v(r) = 0 and u(r) + mv′(r) = 0.

Furthermore, we have the following result.

(A) Suppose that f ∈ RZ(−∞, r], where r is the largest zero of f , with the multiplicity

m. Then F ∈ RZ(−∞, r] if and only if v(r) = 0 and u(r) + mv ′(r) ≥ 0.

(B) Suppose that f ∈ RZ[r, +∞), where r is the smallest zero of f , with the multiplicity

m. Then F ∈ RZ[r, +∞) if and only if deg F = deg f , or v(r) = 0 and u(r) +
mv′(r) ≤ 0.

Proof. The first part of the statement about F ∈ RZ and f � F follows from [10,
Theorem 2.1]. However, we give a direct proof of it for our purpose. Without loss of
generality, we may assume that f and F are monic. Let f(x) =

∏k

i=1(x − ri)
mi where

r1, . . . , rk are distinct zeros of f(x) with the multiplicities m1, . . . , mk respectively. Then
∏k

i=1(x − ri)
mi−1|F (x). Denote g(x) =

∏k

i=1(x− ri) and G(x) = F (x)/
∏k

i=1(x − ri)
mi−1.

Then deg G − deg g = deg F − deg f = 0 or 1, and by (3),

G(x) = u(x)g(x) + v(x)

k
∑

i=1

mig(x)

x − ri

. (4)

Consider first the case v(ri) < 0 for all i. Let rk < · · · < r1. Then by (4), the sign of
G(ri) is (−1)i for i = 1, . . . , k. Note that G(x) is monic and deg G−deg g = deg F −deg f .
Hence G(x) has precisely one zero in each of k intervals (rk, rk−1), . . . , (r2, r1), (r1, +∞)
and has an additional zero in the interval (−∞, rk) if deg G − deg g = 1. Thus G ∈ RZ
and g � G. It implies that F ∈ RZ and f � F . Clearly, ri is not a zero of G. So ri is a
zero of F with the multiplicity mi − 1. This proves (a).

Next consider the general case. Let vj(x) = v(x) − 1/j and Fj(x) = u(x)f(x) +
vj(x)f ′(x). Then vj(ri) < 0 for all i when j is sufficiently large, and so Fj ∈ RZ and
f � Fj. It is well known that the zeros of a polynomial are continuous functions of the
coefficients of the polynomial and the limit of a sequence of RZ polynomials is still a RZ
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polynomial (see [7] for instance). Thus F ∈ RZ and f � F by continuity. Assume now
that v(r) = 0 for some zero r of f with the multiplicity m. Then (x − r)m|f implies
(x− r)m|F from (3). Let f(x) = (x− r)mh(x) and F (x) = (x− r)mH(x). Then h(r) 6= 0
and

H(x) =

[

u(x) + m
v(x)

x − r

]

h(x) + v(x)h′(x)

by (3). So H(r) = [u(r) + mv′(r)]h(r). If u(r) + mv′(r) 6= 0, then H(r) 6= 0, and so the
multiplicity of r as a zero of F is precisely m. This proves (b). If u(r) + mv ′(r) = 0, then
H(r) = 0 and so the multiplicity of r as a zero of F is at least m + 1. However, f � F
and r is a zero of f with the multiplicity m. Hence the multiplicity of r as a zero of F is
at most m + 1. Thus the multiplicity of r as a zero of F is precisely m + 1. This proves
(c).

(A) Now let r be the largest zero of f , with the multiplicity m. Then F has at most
one zero larger than r since f � F .

Assume that v(r) 6= 0. Then r is a zero of F with the multiplicity m − 1. Thus F
has one zero larger than r. Assume that v(r) = 0 and u(r) + mv ′(r) < 0. Then h(r) > 0
since h is standard and has no zero larger than r. Hence H(r) = [u(r) + mv ′(r)]h(r) < 0.
Thus H has one zero larger than r since H is standard, and so does F . Assume that
v(r) = 0 and u(r) + mv′(r) > 0. Then H(r) > 0. Hence H has an even number of
zeros larger than r. Thus H has no zero larger than r, and so does F . Assume that
v(r) = u(r) + mv′(r) = 0. Then r is a zero of F with the multiplicity m + 1. Thus F has
no zero larger than r.

So we conclude that F ∈ RZ(−∞, r] if and only if v(r) = 0 and u(r) + mv ′(r) ≥ 0.
(B) If deg F = deg f , then the result is clear since f � F . If deg F = deg f +1, then

let g(x) = (−1)nf(−x) and G(x) = (−1)n+1F (−x) where n = deg f . It follows that

G(x) = −u(−x)g(x) + v(−x)g′(x)

from (3). Thus the statement follows from (A).

Combining (A) and (B) of Theorem 2, it is not difficult to give a necessary and sufficient
condition that guarantees zeros of f and F are in the same closed interval. We omit the
details for the sake of brevity and only give the following result as a demonstration. As
usual, let xm‖f(x) denote xm|f(x) but xm+1 - f(x).

Corollary 3. Let f and F be two standard polynomials satisfying

F (x) = (ax + b)f(x) + x(x + 1)f ′(x).

Suppose that f(x) ∈ RZ[−1, 0], xm0‖f and (x + 1)m1‖f . Then b + m0 ≥ 0 and a + m1 ≥ b
imply that F ∈ RZ[−1, 0] and f � F . Furthermore, xm0‖F if b + m0 > 0 or xm0+1‖F if

b + m0 = 0, and (x + 1)m1‖F if a + m1 > b or (x + 1)m1+1‖F if a + m1 = b.

Now we can apply Theorem 2 to strengthen the results of Brenti and Brändén about
the q-Eulerian polynomials by the recurrence (1) and by induction.
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Proposition 4. Let q ∈ R and n ∈ N.

(a) If q > 0, then An(x; q) has nonpositive and simple zeros for n ≥ 2.

(b) If n + q ≤ 0, then An+1(x; q) ∈ RZ[1, +∞).

(c) If q is a negative integer, then An(x; q) ∈ RZ[1, +∞) and (x − 1)m‖An(x; q) where

m = max{n + q, 0}. In particular, An(x;−1) = −(x − 1)n−1.

We can also give an interpretation of the result when q is a negative integer. For this
purpose, we give a q-analog of the Frobenius formula of the classical Eulerian polynomials

An(x) = x
n

∑

k=0

k!S(n, k)(x − 1)n−k.

Proposition 5. We have

An(x; q) =
n

∑

k=0

(

q + k − 1

k

)

k!S(n, k)(x − 1)n−k. (5)

Proof. We proceed by induction on n. The equality is obvious for n = 0 and n = 1. Now
assume that (5) holds for n ≥ 1. Then by (1),

An+1(x; q) = (nx + q)
n

∑

k=0

(

q + k − 1

k

)

k!S(n, k)(x − 1)n−k

+x(1 − x)
n

∑

k=0

(

q + k − 1

k

)

k!S(n, k)(n − k)(x − 1)n−k−1

=

n
∑

k=0

(

q + k − 1

k

)

k!S(n, k)(kx + q)(x − 1)n−k

=

n
∑

k=0

(

q + k − 1

k

)

k!S(n, k)k(x − 1)n−k+1

+
n

∑

k=0

(

q + k − 1

k

)

k!S(n, k)(q + k)(x − 1)n−k

=
n+1
∑

k=0

(

q + k − 1

k

)

k! [kS(n, k) + S(n, k − 1)] (x − 1)n−k+1

=
n+1
∑

k=0

(

q + k − 1

k

)

k!S(n + 1, k)(x − 1)n−k+1

where we use the well-known recurrence S(n+1, k) = kS(n, k)+S(n, k−1) for the Stirling
numbers of the second kind in the last equality. This completes the proof.

the electronic journal of combinatorics 15 (2008), #R17 5



When q = −t is a negative integer, (5) can be written as

An(x;−t) =
n

∑

k=0

(−1)k

(

t

k

)

k!S(n, k)(x − 1)n−k.

It immediately follows that (x − 1)n−t‖An(x;−t) for n ≥ t, as desired.

3 Applications

Theorem 2 can provide a unified explanation of many known results, including the fact
that the classical Eulerian polynomials and the Bell polynomials have only real simple
zeros. In this section we give more examples as applications.

3.1 Linear transformations preserving RZness

Consider the invertible linear operator T : R[x] → R[x] defined by

T ((x)i) = xi

for all i ∈ N and linear extension, where (x)i = x(x − 1) · · · (x − i + 1) and (x)0 = 1.
Wagner [13, Lemma 3.3] showed the following result.

Proposition 6. Let ξ ∈ R and let p be a real polynomial such that T (p) ∈ RZ(−∞, 0].
Then

(a) F := T ((x − ξ)p) ∈ RZ.

(b) Let m denote the multiplicity of 0 as a zero of T (p). Then F ∈ RZ(−∞, 0] if and

only if ξ ≤ m.

(c) Furthermore, the multiplicity of 0 as a zero of F is m if ξ 6= m, and is at least m+1
if ξ = m.

Actually, let f = T (p). Then F = (x− ξ)f + xf ′. Thus Proposition 6 is obvious from
the viewpoint of Theorem 2.

The E-transformation is the invertible linear operator E : R[x] → R[x] defined by

E(

(

x

i

)

) = xi

for all i ∈ N and linear extension. This transformation is important in the theory of (P, Ω)-
partitions (see Brenti [4] for details). Brändén [3, Lemma 4.4] showed the following.

Proposition 7. Let α ∈ [−1, 0] and let p be a polynomial such that E(p) ∈ RZ[−1, 0].
Then E((x−α)p) ∈ RZ[−1, 0] and E(p) � E((x−α)p). If E(p) in addition only has simple

zeros, then so does E((x − α)p).
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Actually, let f = E(p) and F = E((x − α)p). Then F = (x − α)f + x(x + 1)f ′.
Thus Proposition 7 is an immediate consequence of Corollary 3. Furthermore, if the
multiplicity of 0 as a zero of f is m0, then the multiplicity of 0 as a zero of F is also m0

except m0 = α = 0; if the multiplicity of −1 as a zero of f is m1, then the multiplicity of
−1 as a zero of F is also m1 except m1 = 0 and α = −1.

3.2 Compositions of multisets

Let n = (n1, n2, . . .) be the multiset consisting of ni copies of the ith type element. A
composition of n is an expression of n as an ordered partition of nonempty multisets.
Denote by O(n, k) the number of compositions of n into exactly k parts. Then

(nj + 1)O(n + ej, k) = kO(n, k − 1) + (nj + k)O(n, k), (6)

where n + ej denotes the multiset obtained from n by adjoining one (additional) copy of
the jth type element. Let f

n
(x) =

∑

k≥0 O(n, k)xk be the associated generating function.
Then by (6),

(nj + 1)f
n+ej

(x) = (x + nj)fn
(x) + x(x + 1)f ′

n
(x). (7)

Simion showed that the multiplicity of −1 as a zero of f(x) is maxi{ni−1} by means of the
theory of posets ([11, Lemma 1.1]). Based on this result and appropriate transformation
to the recurrence (7), she further showed that f

n
(x) ∈ RZ[−1, 0] and f

n
(x) � f

n+ej
(x)

([11, Theorem 1]). These results are now clear from the viewpoint of Corollary 3.
In particular, if n = (1, 1, . . . , 1), then O(n, k) = k!S(n, k), where S(n, k) is the

Stirling number of the second kind. Thus the polynomial Fn(x) =
∑n

k=1 k!S(n, k)xk has

only real simple zeros in the interval [−1, 0]. It is interesting that Fn(x) = xn+1

x+1
An(x+1

x
)

by the Frobenius formula, where An(x) is the classical Eulerian polynomial.

3.3 Alternating runs

Let π = a1a2 · · ·an ∈ Sn. We say that π changes direction at position i if either ai−1 <
ai > ai+1, or ai−1 > ai < ai+1. We say that π has k alternating runs if there are k − 1
indices i such that π changes direction at these positions. Let R(n, k) denote the number
of permutations in Sn having k alternating runs. Then

R(n, k) = kR(n − 1, k) + 2R(n − 1, k − 1) + (n − k)R(n − 1, k − 2) (8)

for n, k ≥ 1, where R(1, 0) = 1 and R(1, k) = 0 for k ≥ 1 (see Bóna [1, Lemma 1.37] for
a combinatorial proof). Let Rn(x) =

∑n−1
k=1 R(n, k)xk. Then the recurrence (8) induces

Rn+2(x) = x(nx + 2)Rn+1(x) + x
(

1 − x2
)

R′
n+1(x), (9)

with R1(x) = 1 and R2(x) = 2x. Bóna and Ehrenborg [2, Lemma 2.3] showed that Rn(x)
has the zero x = −1 with multiplicity bn

2
c − 1 and suspected that the other half zeros of
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Rn(x) are all real, negative and distinct. The polynomial Rn(x) is closely related to the
classical Eulerian polynomial An(x):

Rn(x) =

(

1 + x

2

)n−1

(1 + w)n+1An

(

1 − w

1 + w

)

, w =

√

1 − x

1 + x
(10)

(Knuth [9, p. 605]). From the relation (10) and the fact that An(x) has only real zeros,
Wilf can show that Rn(x) has only real zeros for n ≥ 2 (see Bóna [1, Theorem 1.41] and
Stanley [12] for details). Very recently, Canfield and Wilf [6] pointed out (without proof)
that this result can also be obtained based on the recurrence (9). Indeed, we can give the
following more precise result by Theorem 2.

Corollary 8. Let Rn(x) be the generating function of alternating runs. Then Rn(x) ∈
RZ[−1, 0] and Rn(x) � Rn+1(x) for n ≥ 1. More precisely, Rn(x) has dn

2
e simple zeros

including x = 0, and the zero x = −1 with the multiplicity bn
2
c − 1.
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