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Abstract

We introduce the concept of combed graphs and present an ear decomposition
theorem for this class of graphs. This theorem includes the well known ear decompo-
sition theorem for matching covered graphs proved by Lovász and Plummer. Then
we use the ear decomposition theorem to show that any two edges of a 2-connected
combed graph lie in a balanced circuit of an equivalent combed graph. This result
generalises the theorem that any two edges in a matching covered graph with at
least four vertices belong to an alternating circuit.

1 Introduction

Let G be a graph and T a subset of EG. We view circuits as sets of edges. A circuit C
in G is T -conservative if at most half its edges are in T . We say that T is conservative if
every circuit in G is T -conservative. In this case we also say that G is conservative with
respect to T .

Now let G be a bipartite graph with bipartition (A, B). We have written (A, B),
rather than {A, B}, to emphasise that we are imposing an ordering on the members of
the bipartition. Let T be a subset of EG. A circuit C is T -balanced (or balanced with
respect to T ) if each vertex of C in B is incident with a unique edge of T ∩ C. We say
that T is balanced if every edge of G lies in a T -balanced circuit. In this case, we refer to
G as a T -balanced graph.
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We describe T as a comb if it is balanced and conservative. We also refer to G as
combed by T . Combs generalise the “basic combs” of Padayachee [5], where each vertex
of B is incident with a unique edge of T . Figure 1 gives an example of a comb that is not
basic.

A

B

Figure 1: A comb that is not basic. The thick edges are those in the comb.

Note that the properties of being balanced and being conservative are independent:
Figure 2 gives examples of a conservative set that is not balanced and of a balanced set
that is not conservative.

B

A

Figure 2: The set of thick edges on the left is conservative but not balanced. The set on
the right is balanced but not conservative.

Let G be a T -balanced graph. A connected subgraph H of G is T -conformal (or simply
conformal if T is understood) if T ∩ EH is balanced in H.

Suppose that H is a T -conformal subgraph of G. Let C be a T -balanced circuit in
G which includes EG\EH. Then an ear of H (also called an CH-arc) is a subpath of
EG\EH, of maximal length, whose internal vertices are in V G\V H. If there are n such
arcs, then we say that G is obtained from H by an n-ear adjunction. An ear decomposition
of G is a sequence G1, G2, . . . , Gt of T -conformal subgraphs of G such that G1 is induced
by a circuit, Gt = G and, for each i > 0, Gi is obtained from Gi−1 by an n-ear adjunction
with n = 1 or n = 2. Our first goal is to show that such an ear decomposition exists in
a 2-connected balanced graph. We then use this result to prove that any two edges of a
2-connected comb lie in a common balanced circuit.

2 Ear decompositions in combed graphs

The aim of this section is to prove that any 2-connected balanced graph may be con-
structed from a circuit by a process of adjoining ears no more than two at a time, as
defined in the introduction. A path P is said to be T -balanced if each internal vertex of
P in B is incident with a unique edge of T ∩ P .

Lemma 2.1 Let G be a connected bipartite T -balanced graph with bipartition (A, B). Let
v and w be two vertices of G. Then v and w are joined by a T -balanced path P . Moreover,
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if v ∈ B then P may be chosen so that its edge incident on v is in T or so that its edge
incident on v is in T .

Proof: We may assume without loss of generality that if v ∈ B then the edge of P
incident on v is to be in T . Let S be the set consisting of v and the vertices joined to v
by a balanced path that contains an edge of T incident on v if v ∈ B. It suffices to show
that S = V G. Accordingly we assume that S ⊂ V G and look for a contradiction.

Since G is connected and ∅ ⊂ S ⊂ V G, there is an edge f ∈ ∂S, and f must belong to
a balanced circuit C. Clearly, C has a vertex in S and a vertex in V G\S (for instance, the
ends of f). Thus there are T -balanced paths joining v to vertices of C in S that contain
an edge of T incident on v if v ∈ B. Let P be a shortest such path (take P = ∅ if v ∈ V C).
Then C ∪ P includes a T -balanced path joining v to a vertex of V G\S that contains an
edge of T incident on v if v ∈ B. We now have a contradiction to the definition of S. 2

A circuit C is said to be quasibalanced if it passes through a unique vertex v ∈ B such
that C contains two edges of T incident on v or two edges of T incident on v. We refer
to v as the special vertex of C.

Lemma 2.2 Let G be a bipartite T -balanced graph with bipartition (A, B). Let H be a
connected T -balanced subgraph of G. Suppose that G has a quasibalanced circuit C such
that the special vertex v is in V H and there are at least two CH-arcs. Then EH ∪ C
includes a balanced circuit D such that D\EH 6= ∅.

Proof: Let P1 and P2 be CH-arcs. For each i ∈ {1, 2} let Pi join vertices ui and vi,
and assume these vertices and v appear on C in the cyclic order u1, v1, v, u2, v2. (Possibly
v ∈ {v1, u2}.) Let Qi = C\Pi for both i.

By Lemma 2.1, there is a T -balanced path R in H, of minimal length, joining v to a
vertex w ∈ V Q1[u1, v2]. We may assume R to have been chosen so that its edge incident
on v is in T if and only if the edges of C incident on v are in T . We use induction on the
number n of RC-arcs.

Suppose first that n = 1. If w ∈ A then either C1 = R∪Q1[v, w] or R∪Q2[v, w] is the
required balanced circuit. If w ∈ B then let e and f be the edges of R and C, respectively,
incident on w such that exactly one of them is in T . Without loss of generality let f ∈ C1.
Then C1 is the required balanced circuit.

We may now suppose that n > 1. Let u be the vertex of V C ∩ (V R\{v}) that
minimises |R[v, u]|. Clearly, u ∈ V Q1[v1, u2]. We may assume without loss of generality
that u ∈ V Q1[v, u2]. If u ∈ A then

C2 = Q2[u1, v] ∪ R[v, u] ∪ Q1[u, u1]

is the required balanced circuit. Suppose u ∈ B. Let a and b be the edges of R and
C, respectively, incident on u such that just one of them is in T . If b ∈ Q1[u, u1], then
once again C2 is the required circuit. Suppose therefore that b ∈ Q2[u, v]. Then C2 is
quasibalanced with special vertex u. Let R′ = R[u, w]. Then the number of R′C2-arcs is
less than n. Accordingly we may apply the inductive hypothesis to deduce the existence
of the required balanced circuit. 2
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Theorem 2.3 Let G be a connected bipartite T -balanced graph with bipartition (A, B).
Let H be a proper T -conformal subgraph of G. Then G has a balanced circuit C such that
V C ∩ V H 6= ∅ and C\EH 6= ∅ but there are no more than two CH-arcs.

Proof: Since H is a proper subgraph of the connected graph G, there is an edge of
EG\EH incident on a vertex of H. This edge must belong to a balanced circuit C in G.
If |V C ∩ V H| = 1 then there are no CH-arcs. We therefore assume that |V C ∩V H| > 1,
in which case there is at least one CH-arc.

We now assume that C is chosen as a balanced circuit which has a CH-arc but as few
CH-arcs as possible subject to this requirement. If C has no more than two CH-arcs,
then the theorem holds, and so we suppose that C has at least three.

Let P1, P2, P3 be CH-arcs, and let Pi join vertices ui and vi for each i. We may assume
that these vertices occur on C in the cyclic order u1, v1, u2, v2, u3, v3. For each i we let
P ′

i = C\Pi.
By Lemma 2.1 there is a balanced path Q0 in H joining vertices in distinct components

of G[C\(P1 ∪ P2 ∪ P3)]. Without loss of generality we can therefore assume the existence
of a subpath Q of Q0 joining a vertex q1 ∈ V P ′

3
[v1, u2] to a vertex q2 ∈ V P ′

1
[v2, u3] such

that Q ∩ C = ∅ and V Q ∩ V C = {q1, q2}.
We now entertain various possibilities concerning q1 and q2. First, if both are in

A then the choice of C is contradicted by both the circuits C1 = P ′

1
[q1, q2] ∪ Q and

C2 = P ′

2
[q1, q2] ∪ Q. If just one of q1 and q2 is in A, then one of C1 and C2 contradicts

the choice of C. We may therefore assume that q1 and q2 are in B. Let a1 and a2 be the
edges of Q incident on q1 and q2 respectively. Let b1 be the edge of C incident on q1 with
the property that exactly one of a1 and b1 is in T . Define b2 similarly with respect to q2

and a2. We may assume without loss of generality that b1 ∈ P ′

1
[q1, q2] and b2 ∈ P ′

2
[q1, q2],

as the other possibilities are disposed of by symmetry or the observation that C1 or C2

contradicts the choice of C. Now we may apply Lemma 2.2 to the quasibalanced circuit
C2, which has q1 as its special vertex. We deduce that C2 ∪ EH includes a balanced
circuit D such that D\EH 6= ∅. This circuit must include either P1 or P3 but not P2 and
thereby contradicts the choice of C. 2

Let G be a connected bipartite T -balanced graph. Theorem 2.3 shows that there is
a sequence G1, G2, . . . , Gn of T -conformal subgraphs of G such that G1 is induced by a
circuit, Gn = G and, for all i > 0, Gi is obtained from Gi−1 by the adjunction of one
or two not necessarily vertex disjoint ears. If G is 2-connected and combed by T , then
the next theorem shows that the vertex disjoint property can also be achieved. We begin
with the following lemma.

Lemma 2.4 Let G be a bipartite graph with bipartition (A, B) and combed by T . Let H
be a T -conformal subgraph of G. Suppose there is a balanced circuit C in G such that there
are two CH-arcs P and Q having at least one end in common. Then either G[EH ∪ P ]
or G[EH ∪ Q] is T -conformal.

Proof: Let x be a common end of P and Q. Let y be the other end of P . Let p and q be
the edges of P and Q, respectively, incident on x. By Lemma 2.1, there is a T -balanced
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path R in H joining x and y. Let r be its edge incident on x. If {x, y} ⊆ A, then P ∪R is
a balanced circuit, and it follows immediately that G[EH ∪ P ] is T -conformal. If x ∈ B
and y ∈ A, then R may be chosen so that r ∈ T if and only if p /∈ T . Then once again
P ∪R is a balanced circuit and we reach the same conclusion. The argument is similar if
x ∈ A and y ∈ B.

Suppose therefore that {x, y} ⊆ B. Since P ∪ Q ⊆ C and C is balanced, exactly one
of p and q is in T . Assume without loss of generality that p ∈ T . Choose R so that its
edge incident on y is also in T . If both terminal edges of R or both terminal edges of P
are in T , then we have the contradiction that P ∪ R is not conservative. Hence neither r
nor the edge of P incident on y is in T . Consequently P ∪R is balanced and the proof is
complete. 2

Theorem 2.5 Let G be a 2-connected bipartite graph with bipartition (A, B) and combed
by T . Let H be a proper T -conformal subgraph of G. Then G has a balanced circuit C
such that C\EH is either a non-empty path or the union of two vertex disjoint non-empty
paths.

Proof: Suppose first that |V C ∩ V H| ≤ 1 for any balanced circuit C meeting EG\EH.
Since G is balanced, it follows that G[EG\EH] is also balanced. Let K be a component
of this graph. Since G is 2-connected, subgraphs H and K must have at least two vertices,
v and w, in common. By Lemma 2.1 there is a balanced path P in K joining v to w such
that if v ∈ B then the edge of P incident on v is in T . We may assume w chosen so that
no internal vertex of P is in H. Similarly there is a balanced path Q in H joining v to w.
The choice of w guarantees that P ∪ Q is a circuit, X. If v and w are both in A, then X
is balanced, contrary to hypothesis. If v ∈ B but w ∈ A, then we may assume Q to be
chosen so that its edge incident on v is not in T . Again we have the contradiction that
Q is balanced. Similarly if v ∈ A and w ∈ B then we may assume Q chosen so that just
one of the edges of P and Q incident on w is in T , and we reach the same contradiction.
Assume therefore that v ∈ B and w ∈ B. Assume Q chosen so that its edge incident on
w is in T . If both P and Q have a terminal edge in T , then once again X is balanced. In
the remaining case we have the contradiction that X has more than half its edges in T .

Therefore |V C ∩ V H| ≥ 2 for any balanced circuit C meeting EG\EH. We conclude
from Theorem 2.3 that there is such a circuit C having just one or two CH-arcs. It now
suffices to show that if there are two such arcs P and Q then either they are vertex disjoint
paths or there is a balanced circuit in G[EH ∪P ∪Q] that includes one but not the other.
But this fact is an immediate consequence of Lemma 2.4. The proof is complete. 2

Double ear adjunctions are sometimes needed even though balanced graphs are bipar-
tite. For example, consider the graph G in Figure 3, where the solid vertices are those
in B and the thick edges are those in T . If H is the subgraph spanned by the edge set
{e1, e2, e3, e4, e5, e6, e7, e8} then a 2-ear adjunction is required to produce G.

We finish this section by showing that the well known ear decomposition theorem for
matching covered graphs can be deduced from Theorem 2.5. Matching covered graphs
are connected graphs in which every edge lies in a perfect matching. We shall assume
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Figure 3: Double ear adjunctions are sometimes necessary.

familiarity of the reader with this theory. Lovász and Plummer proved a fundamental
ear decomposition theorem for matching covered graphs which plays an important role in
matching theory.

An ear decomposition of a matching covered graph G is a sequence G0, G1, . . . , Gt of
matching covered subgraphs of G such that G0 = K2, Gt = G and, for each i > 0, Gi is
obtained from Gi−1 by an n-ear adjunction with n = 1 or n = 2.

Theorem 2.6 (Lovász and Plummer [4]) Every matching covered graph has an ear
decomposition.

Proof: Let G be a matching covered graph and T a perfect matching of G. We may
assume that |EG| > 1 and therefore that every edge lies in an alternating circuit. Let H
be the bipartite graph obtained from G by subdividing every edge e once so that the two
new edges are both in T or both in T according to whether or not e ∈ T . Note that H is
conservative. Let the bipartition of H be (A, B), where B = V G. Thus, each vertex of A
is of degree 2 in H. Note that every T -alternating circuit in G corresponds naturally to
a T -balanced circuit in H. Thus, H is T -balanced. We can now apply Theorem 2.5 and
note that there is a natural correspondence between an ear decomposition of H and an
ear decomposition of G. 2

3 A generalisation of a theorem of Padayachee

Padayachee [5] also generalises to basic combs the theorem that, in a matching covered
graph with at least four vertices, any two edges belong to an alternating circuit. Here we
extend the theorem to combed graphs. We start by proving some useful tools.

3.1 Equivalence of combs

Let G be a bipartite graph with bipartition (A, B) and combed by T . Let C be a T -
balanced circuit. We shall show that T ⊕ C is also a comb in G, where ⊕ denotes the
symmetric difference. We begin by recording the following theorem of Guan.

Theorem 3.1 (Guan [2]) Let G be a graph and T a conservative subset of EG. Let C
be a circuit with exactly half its edges in T . Then T ⊕ C is also conservative in G.
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Note that every T -balanced circuit has exactly half its edges in T . By Theorem 3.1,
T ⊕ C is conservative for every balanced circuit C in G. Thus, in order to show that
T ⊕ C is a comb we need only show that T ⊕ C is balanced.

Theorem 3.2 Let G be a bipartite Eulerian graph with bipartition (A, B) and T a con-
servative subset of EG. Suppose that for every vertex v ∈ B exactly half the edges incident
on v are in T . Then EG is a union of (edge-)disjoint T -balanced circuits. (Thus, T is a
comb in G.)

Proof: By induction on |EG|. As the theorem is certainly true if EG = ∅, we may
assume that EG is non-empty. First we construct a balanced circuit C in G and then
apply induction to G\C.

The hypotheses of the theorem imply that exactly half the edges of G belong to T
and no circuit of G has more than half its edges in T . As G is Eulerian, any circuit
D constitutes a cell of some partition of EG into disjoint circuits. We conclude that
exactly half the edges of D are in T , so that D cannot be quasibalanced. Thus G has no
quasibalanced circuits.

Let P be a balanced path, of maximal length, with an end in A. Since EG is non-
empty, the maximality of P shows that P 6= ∅. Therefore P has distinct ends x and y,
where x ∈ A. Let e an edge of EG\P incident on y. The maximality of |P | shows that e
joins y to another vertex of P . Hence P ∪ {e} includes a unique circuit, and this circuit
must be balanced since it cannot be quasibalanced.

We conclude that G has a balanced circuit C. Note that G\C is Eulerian, bipartite
and conservative, with bipartition (A, B). Moreover each vertex of B in G\C has exactly
half its incident edges in T , since C is balanced. We may therefore partition EG\C
into disjoint balanced circuits, by the inductive hypothesis. As EG is the union of these
circuits and C, we have established the existence of a partition of EG into disjoint balanced
circuits. 2

Lemma 3.3 Let G be a bipartite graph with bipartition (A, B) and combed by T . Suppose
that G is formed by the union of two balanced circuits C and D. Let T1 = T ⊕ C and
H = C ⊕ D. Then T1 is balanced in G and H is a T1-conformal subgraph of G.

Proof: Let e be an edge of G, and let us show that there is a T1-balanced circuit in G
that contains e. Certainly such a balanced circuit exists if e ∈ C, since C is balanced with
respect to both T and T1. We may thus assume that e ∈ D\C. Therefore e ∈ EH. We
show now that H and T1 ∩ EH satisfy the hypotheses of Theorem 3.2, thereby proving
the lemma.

Graph H is certainly bipartite and Eulerian, and T1 is conservative in H. Choose
v ∈ B and let ∇v be the set of edges of H incident on v. If EH ∩ ∇v = ∅, then v is of
degree 0 in H. On the other hand, if |EH ∩ ∇v| = 4, then v is incident in H with just
2 edges of T1 and just 2 edges of T1. Suppose therefore that |EH ∩ ∇v| = 2. Then v is
incident in H with either two edges of C, two edges of D or an edge a ∈ C ∩ D, an edge
b ∈ C\D and an edge c ∈ D\C. In the first two cases, v is incident in H with just one
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edge of T1 and one edge of T1. In the last case, if a ∈ T then b /∈ T and c /∈ T ; hence
b ∈ T1 and c /∈ T1. If a /∈ T then b ∈ T and c ∈ T ; thus b /∈ T1 and c ∈ T1. In any of these
subcases v is incident in H with just one edge of T1 and one edge of T1.

We conclude that v is incident in H with equal numbers of edges in T1 and T1. The-
orem 3.2 therefore shows that e belongs to a T1-balanced circuit C ′ in H. Necessarily C ′

is also T1-balanced in G, whence T1 is balanced in G. This argument also shows that H
is a T1-conformal subgraph of G. 2

Theorem 3.4 Let G be a bipartite graph with bipartition (A, B) and T a comb in G. Let
C be a T -balanced circuit in G. Then T ⊕ C is balanced in G.

Proof: Let T1 = T ⊕ C. Choose an edge e in G and let us find a T1-balanced circuit in
G that contains e. Certainly such a balanced circuit exists if e ∈ C, since C is balanced
with respect to both T and T1. Assume therefore that e /∈ C. Since T is balanced, e
belongs to a T -balanced circuit D in G.

Let H = G[C ∪ D] and TH = T ∩ EH. Then H is formed by the union of two
TH-balanced circuits C and D. Clearly, TH = T ∩ EH is conservative in H, as T is
conservative in G. Thus, TH is a comb in H. By Lemma 3.3, TH ⊕ C is balanced in H.
Thus, e belongs to a (TH ⊕ C)-balanced circuit X in H. But

TH ⊕ C = (T ∩ EH) ⊕ (C ∩ EH) = (T ⊕ C) ∩ EH = T1 ∩ EH.

It follows that X is also T1-balanced in G, whence T1 is balanced in G, as required. 2

Summarising the above results, we have the following corollary.

Corollary 3.5 Let G be a bipartite graph with bipartition (A, B) and T a comb in G. Let
C be a T -balanced circuit in G. Then T ⊕ C is also a comb in G.

The set T ⊕C is said to be obtained from T by a rotation about a T -balanced circuit
C. A set T ′ of edges is said to be equivalent to T if T ′ can be obtained from T by a
sequence of rotations. Clearly an equivalence relation is herein defined. Corollary 3.5
shows that a set equivalent to a comb is also a comb. We can use our results to determine
the conditions under which combs are equivalent.

Theorem 3.6 Let G be a bipartite graph with bipartition (A, B) and T a comb in G.
Then T ′ ⊆ EG is equivalent to T if and only if

|T ∩ ∇v| ≡ |T ′ ∩∇v| (mod 2) (1)

for each v ∈ A and

|T ∩ ∇v| = |T ′ ∩ ∇v| (2)

for each v ∈ B.
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Proof: Suppose first that T ′ = T ⊕ C for some balanced circuit C. In this case congru-
ence (1) is immediate from the fact that |C ∩ ∇v| ∈ {0, 2} for each vertex v. Similarly
equation (2) holds since C contains just one edge of each of T and T incident on any
vertex v ∈ B through which it passes. It follows inductively that (1) and (2) hold also in
the general case.

Conversely suppose that (1) holds for each vertex v of G and that (2) holds for each
vertex v ∈ B. Let H = G[T ⊕ T ′]. Then H is bipartite, Eulerian and conservative, and
exactly half the edges of H incident on a given vertex v ∈ B are in T . By Theorem 3.2,
EH is a union of disjoint balanced circuits. Sets T and T ′ are obtained from each other
by rotations about these circuits. 2

3.2 The main theorem

Theorem 3.7 Let e and f be any two edges of a 2-connected bipartite graph G with
bipartition (A, B) and combed by T . Then there is a comb T ′, equivalent to T , that has a
balanced circuit containing e and f .

Proof: If EG is a circuit, then T itself is the required comb. We may therefore proceed
by induction on |EG|. Let e and f be two edges of G.

Case 1 G has a 2-connected T ′-conformal proper subgraph H containing e and f , where
T ′ is equivalent to T .

Certainly T ′, being equivalent to the comb T , is a comb. Moreover subsets of con-
servative sets are conservative. If we set T ′

H = T ′ ∩ EH, it follows that T ′

H is a comb
in H since H is T ′-conformal. By the inductive hypothesis, there is a comb T ′′

H in H,
equivalent to T ′

H , with respect to which there is a balanced circuit C containing e and f .
Let T ′′ = T ′′

H ∪ (T ′\EH). Then T ′′ is equivalent to the comb T ′ and is therefore itself a
comb equivalent to T in G. Moreover C is a T ′′-balanced circuit containing e and f .

Case 2 EG is the union of two T -balanced circuits with at least one edge in common.

Let C and D be the two T -balanced circuits such that G = C ∪ D. If e and f are
both in C or both in D the theorem is immediate. Suppose therefore that e ∈ C\D and
f ∈ D\C.

Let T1 = T ⊕C and H = C ⊕D. Then, H is a proper subgraph of G, as the common
edge of C and D is not in H. Moreover, H contains e and f . By Lemma 3.3, T1 is
balanced in G and H is a T1-conformal subgraph of G. Then H has T1-balanced circuits
C ′ and D′ containing e and f , respectively. If C ′ and D′ have an edge in common then
C ′ ∪ D′ is a 2-connected T1-conformal proper subgraph of G containing e and f , and we
finish by Case 1.

We may thus assume that C ′ and D′ have no edge in common. In this case, let
J = C ∪ D′. Observe that e ∈ C and f ∈ D′. Moreover, C and D′ are both T1-balanced.
Also observe that G\C is a proper subgraph of D, since C and D have an edge in common.
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That is, G\C is acyclic. It follows that every circuit of G contains at least one edge of C.
Thus, D′ contains at least one edge of C. Consequently, J is 2-connected. On the other
hand, not all edges of C ′ are in C, for otherwise we would have C ′ = C in contradiction
to the fact that C ′ does not meet D′ but C does. Moreover, no edge of C ′ is in D′. Thus,
there are edges of C ′ which are neither in C nor in D′. It follows that J is a proper
subgraph of G.

Summarising, J is a 2-connected T1-conformal proper subgraph of G containing e and
f . We now finish by case 1.

Case 3 The previous cases do not apply.

Let Y be a T -balanced circuit of G containing e. If Y contains f , we are done.
Therefore we may assume that Y ⊂ EG. By Theorem 2.5 we may construct an ear
decomposition of G starting with Y , that is, a sequence G1, G2, . . . , Gn of 2-connected
T -conformal subgraphs of G such that G1 = Y , Gn = G and, for all i > 1, Gi is obtained
from Gi−1 by the adjunction of one or two ears. As Ti = T ∩ EGi is conservative for all
i ≥ 1, Ti is a comb in Gi.

Let P be the ear in G containing f . Let j be the smallest integer such that Gj contains
both ends of P . If j = 1 then both ends of P are of degree 2 in Gj. If j > 1 then at
least one end of P is not a vertex of Gj−1, and this end is of degree 2 in Gj. Now P ⊂ X
for some balanced circuit X in G. Let G′ = G[EGj ∪ X]. Then G′ is 2-connected (since
|V X∩V Gj| > 1) and T -balanced. As Case 1 does not apply, G = G′. Since X is balanced
and |V X ∩ V Gj| > 1, G is obtained from Gj by the adjunction of (possibly more than
two) ears, one of which is P .

Suppose first that P does not share an end with any other ear of X. Then P has an
end, say x, of degree 3 in G. Let g be an edge of Gj incident with x. By the inductive
hypothesis, Gj has a comb T ′

j, equivalent to Tj, that has a balanced circuit containing
e and g. It follows that G has a comb T ′, equivalent to T , and a T ′-balanced circuit
C containing e and g, where T ′ = T ′

j ∪ (T\EGj). Let D be a T ′-balanced circuit in G
containing f . Clearly, D includes P and contains one of the edges of C incident with
x. Then G[C ∪ D] is a 2-connected T ′-conformal subgraph of G containing e and f . As
Case 1 does not apply, we conclude that G = G[C ∪ D].

Now suppose that there is another ear Q sharing an end with P . Then Lemma 2.4
shows that either G[EGj ∪ P ] or G[EGj ∪ Q] is T -balanced. As Case 1 does not apply,
we conclude that H = G[EGj ∪ Q] is T -conformal and every balanced circuit containing
P also contains all the other ears of X, including Q. By the inductive hypothesis, H has
a comb T ′

H , equivalent to T ∩EH, that has a balanced circuit containing e and the edges
of Q. Then G has a comb T ′, equivalent to T , and a T ′-balanced circuit C containing
e and Q, where T ′ = T ′

H ∪ (T\EH). Let D be a T ′-balanced circuit in G containing f .
Since T ′ is a comb, D also includes Q and thus G[C ∪ D] is a 2-connected T ′-conformal
subgraph of G containing e and f . As Case 1 does not apply, G = G[C ∪ D].

In any case, EG is the union of two balanced circuits C and D, where e ∈ C and
f ∈ D. We now finish by case 2. This completes the proof. 2
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Arguing as we did in the proof of Theorem 2.6, we obtain the following corollary,
which was proved by Little [3].

Corollary 3.8 Any two distinct edges of a matching covered graph lie in an alternating
circuit.

4 Final remarks

Theorem 3.7 generalises a result of Padayachee [5]. In order to establish this fact, we need
to introduce some new concepts. Let G be a graph. A function t from V G into {0, 1}
is called a join function if there are an even number of vertices v for which t(v) = 1. In
this case, (G, t) is called a join pair. A t-join in (G, t) is the edge set of a subgraph of
G in which the parity of the degree of any vertex v is that of t(v). (See [1] and [6] for
earlier papers that study t-joins.) A minimum t-join is one of minimum cardinality. This
cardinality is denoted by τ(G, t). A join pair (G, t) is a join covered pair if each edge of
G lies in a minimum t-join. Note that if T is a t-join in a join pair (G, t) and C is a
circuit with more than half its edges in T , then T ⊕ C is a t-join with fewer edges than
T . Consequently G is conservative with respect to a minimum t-join.

Suppose now that (G, t) is a join covered pair, where G is connected and bipartite
with bipartition (A, B), and that t(b) = 1 for each b ∈ B. Then (G, t) is said to be a basic
comb if τ(G, t) = |B|. This equation holds if and only if there is a t-join T , necessarily a
minimum one, such that each vertex in B is incident with a unique edge of T . Moreover,
since the pair (G, t) is join covered, every edge of G must belong to such a t-join. Fix such
a minimum t-join T and, if possible, choose an edge e /∈ T . Then e belongs to another
minimum T -join T ′. Furthermore, T ⊕ T ′ is a cycle and therefore a union of disjoint
circuits, one of which contains e. Since each vertex of B is incident with just one edge
of each of T and T ′, this circuit must be balanced. Thus e belongs to a balanced circuit.
If G is 2-connected, then the same must be true even if e ∈ T : if v is the end of e in
B, then there must be an edge f /∈ T incident on v, and f must belong to a balanced
circuit which necessarily contains e. We conclude that if (G, t) is a basic comb and G is
2-connected, then G is balanced with respect to a minimum t-join T .

A closely related idea is the concept of a conservative graph as that terminology is
used in [5]. Let G be a graph. A function w from EG into {−1, 1} is called a weight
function. For any edge e we call w(e) the weight of e. The weight, w(T ), of a subset T
of EG is the sum of the weights of the elements of T . We say that T is conservative if
its weight is non-negative. Thus T is conservative if and only if no more than half its
edges are of negative weight. The weight function w is conservative if every circuit is
conservative. In this case the pair (G, w) is called a conservative graph in [5].

The concepts of a join pair and a conservative graph are related by a theorem of
Guan [2]. Let (G, t) be a join pair where G is connected, and let T be a t-join. Let w
be the weight function for which the negative edges are those in T . For example, the
weight of any balanced circuit in a bipartite graph is then 0. Guan’s theorem asserts
that T is minimum if and only if (G, w) is a conservative graph. Let us refer to w as the
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weight function associated with T . Then T is minimum if and only if its associated weight
function w is conservative, and therefore if and only if every circuit is conservative. This
condition is equivalent to the property that no more than half the edges of any circuit
are of negative weight. In other words, T is minimum if and only if no circuit has more
than half its edges in T . In our terminology, T is therefore minimum if and only if T is
conservative.

Now consider a basic comb (G, t) where G is 2-connected. Let T be a minimum t-join.
Then G is conservative and balanced and hence combed by T . Let e and f be two edges
of G. By Theorem 3.7 there is a comb T ′, equivalent to T , with respect to which there
is a balanced circuit C containing e and f . Let w be the weight function associated with
T . Since T is minimum, w is conservative. Now consider a balanced circuit D. Then
D has exactly half its edges in T . Consequently by Theorem 3.1 we find that D ⊕ T is
conservative. As T ′ is equivalent to T , we may proceed inductively and conclude that T ′

is conservative. Hence T ′ is a minimum t-join and so its associated weight function w′ is
conservative. Moreover w′(C) = 0 since C is balanced. In summary, if (G, t) is a basic
comb and G is 2-connected, then for any two edges there is a circuit that contains them
both and is of weight 0 with respect to some conservative weight function. This is the
theorem of Padayachee for which Theorem 3.7 is a generalisation.

Acknowledgment: The authors would like to thank the referee for several helpful sug-
gestions and, in particular, for shortening the proof of Theorem 3.2.
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