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Abstract

The coefficients of a power series A(x) are smooth if an−1/an approaches a limit.

If A(x) = F (G(x)) and f
1/n
n approaches a limit, then the coefficients of A(x) are

often smooth. We use this to show that the coefficients of the exponential generating

function for graphs embeddable on a given surface are smooth, settling a problem

of McDiarmid.
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1 Introduction

Let A(x) =
∑

anxn have nonnegative coefficients and finite nonzero radius of convergence

ρ(A). Recall that lim sup a1/n
n = 1/ρ(A). If an−1/an approaches a limit, the limit is

ρ(A) and we say that the coefficients are smooth or have smooth growth. In the case

of a generating function, we say the corresponding class of objects is smooth. Suppose

bn is the number of objects of size n. For labeled objects we deal with an exponential

generating function B(x) =
∑

bnxn/n! the ratio of coefficients is therefore nbn−1/bn. Thus

we consider the ratio nbn−1/bn rather than bn−1/bn.

We prove the following theorem on smooth growth and present some applications.

The main one is a proof that the number of graphs on a surface grows smoothly, settling

a problem of McDiarmid [2].

Theorem 1 Suppose that

(a) F (x) =
∑

n≥0 fnxn and G(x) =
∑

n≥1 gnx
n have nonnegative coefficients and radii

of convergence 0 < ρ(F ) < ∞ and 0 < ρ(G);

(b) gcd{i − j | gigj 6= 0} = 1;

(c) G(s) = ρ(F ) for some 0 < s < ρ(G);

(d) limn→∞ f 1/n
n = 1/ρ(F ), where the limit is through a sequence S such that S∩[n, n+d]

is nonempty for some d = d(n) = o(n) and all sufficiently large n.

Then the coefficients of A(x) = F (G(x)) are smooth and, in fact, an−1/an ∼ s where s is

given by (c).

We note that smoothness of the an implies lim a1/n
n = 1/ρ(A). To see this, observe

that smoothness implies that for all δ > 0 there is a K such that |ak/ak−1 − 1/ρ(A)| < δ

whenever k > K and so

a1/n
n = a

1/n
K

n
∏

k=K+1

(ak/ak−1)
1/n ≥ a

1/n
K (1/ρ(A) − δ)(n−K)/n ∼ 1/ρ(A) − δ.

Since lim sup a1/n
n = 1/ρ(A), we are done.

Example 1 Graphs on surfaces. Let GS
n be the set of labeled graphs on the vertex set

{1, . . . , n} that can be embedded on the surface S. McDiarmid [2] showed that lim |GS
n |1/n

exists and is independent of S. Using this, he obtained some properties of such graphs in

both the labeled and unlabeled cases. McDiarmid showed that smoothness allowed one

to deduce additional properties and posed the problem of proving smoothness. In a later

section we will prove
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Theorem 2 GS
n has smooth growth and this remains true if we restrict ourselves to con-

nected graphs. This also remains true if we restrict ourselves to minimal embeddings; that

is, graphs not embeddable on a simpler surface.

We have not been able to prove smoothness for unlabelled graphs.

Example 2 Flags on poles. Let P be a set of positive integers. We are given a set F
of flags, each of which has some number of spots. Let fn be the number with n spots.

We want to place flags on poles and count the results by total number of spots. The

number of flags on a pole must lie in P , each pole must have a different number of flags,

and there is no order to the poles. Each flag may be used any number of times. If

P (x) =
∏

n∈P (1 + xn) =
∑

pnxn and F (x) =
∑

n fnxn, then the generating function is

P (F (x)). Suppose that

• gcd{i − j | fifj 6= 0} = 1;

• ρ(F ) ≥ 1;

• for some d and all sufficiently large n, [n, n + d] contains a nonzero pi.

Note that ρ(P ) = 1 and F (ρ(F )) ≥ 2 since F contains at least two nonzero terms.

Although P (x) may behave badly on the unit circle, Theorem 1 applies.

Example 3 Functional digraphs. A functional digraph is a digraph in which every ver-

tex has out-degree 1. A functional digraph with vertex set V can be thought of as a

function f : V → V . Some elements of V lie on directed cycles, which include loops and

2-cycles. When the cyclic edges are deleted, each cyclic element v becomes the root of a

tree whose other vertices are noncyclic and whose edges are directed toward v. If C(x) is

the exponential generating function for directed cycles and T (x) is the exponential gener-

ating function for rooted trees, then C(T (X)) is the exponential generating function for

functional digraphs.

If all functional digraphs are allowed,

C(x) = x +
x2

2
+

∞
∑

k=3

2(n − 1)! xn

n!
= − 2 ln(1 − x) − x − x2

2
.

and T (x) = xeT (x). Since ρ(C) = 1, ρ(T ) = 1/e and T (1/e) = 1, Theorem 1(c) fails to

hold. This leads to the open problem of how to extend the theorem to allow s = ρ(G)

in condition (c). The example F (x) = 1
1−x

and G(x) =
∑

x(n!)!/2n, provided by Jason

Bell [1], shows that stronger conditions are needed since a(n!)!−1/a(n!)! → 0.

If we restrict the allowable tree structures, it is quite possible that Theorem 1(c) can

be satisfied and so smooth growth follows. Here are some examples.

• If only finitely many tree structures are allowed, T (x) is a polynomial and r(T ) = ∞.
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• If the trees must be paths, then tn = n! and so T (x) = x
1−x

. We have s = 1/2.

• If the trees must be full binary trees, then T (x) = x + xT (x)2/2 and so

T (x) =
1 −

√
1 − 2x2

x
.

Since ρ(T ) = 2−1/2, T (2/3) = 1 and 2/3 < 2−1/2, it follows that (c) is satisfied with

s = 2/3.

We may also restrict the allowable cycle lengths. All that is required is that the set S

of allowable lengths satisfy Theorem 1(d). Since there will be 2(n − 1)! cycles of length

n > 2, it follows that ρ(C) = 1 still holds.

2 Proof of Theorem 1

Notation: For convenience, we let g(x) = ln G(x) and κ = k/n. In what follows, there

are three types of positive functions depending on k and n:

• ε → 0 and which we control;

• δ → 0 which are not under our control and may depend on ε;

• ν which has subexponential growth, i.e. ln ν/n → 0.

These functions may have different values in different paragraphs. Within a paragraph,

they are subscripted if more than one value is needed.

Note that
an+1

an
=

∑

k≤n+1 fk [xn+1](G(x)k)
∑

k≤n fk [xn](G(x)k)
, (2.1)

where the range of k is limited as indicated because G(x) has no constant term.

Step 1. We begin with some simple observations concerning G. Since the coefficients

of G(x) are nonnegative, G(r) is a strictly increasing function on (0, ρ(G)) and so the s

mentioned in Theorem 1(c) is well defined. By Theorem 1(b), G(x) has a nonlinear term

and so

rg′(r) =

∑

n>0 ngnrn

∑

n>0 gnrn

is strictly increasing on (0, ρ(G)). Define

L = lim
r→ρ(G)−

rg′(r) (2.2)

The function rg′(r) is a strictly increasing continuous function from (0, ρ(G)) onto (1, L)

and so 1/κ = rg′(r) defines r ∈ (0, ρ(G)) as a strictly decreasing continuous function of

κ ∈ (1/L, 1).
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Step 2. We now estimate [xn] G(x)k and [xn+1] G(x)k/[xn] G(x)k by stationary phase

when κ is on a closed subinterval of (1/L, 1) and n → ∞. Theorem 1(b) insures that

|G(z)| ≤ G(|z|) with equality if and only if z = |z|. Thus | arg z| ≥ ε implies that

|G(z)|/G(|z|) < 1 − δ. With z = reiθ, we have

[xn] G(x)k =
1

2πi

∮

G(z)k

zn+1
dz =

1

2π

∫ π

−π
exp(kg(reiθ) − niθ − n ln r) dθ. (2.3)

For stationary phase,

0 =
d

dθ
(kg(reiθ) − niθ − n ln r) = kizg′(z) − ni

and so

rg′(r) = 1/κ. (2.4)

Split the right-hand integral in (2.3) into integrals over |θ| < ε and ε ≤ |θ| ≤ π. Expanding

g(reiθ) as a power series in θ on the first interval, we have

kg(reiθ) − niθ − n ln r = kg(r) + kirg′(r)θ + O(kε2) − niθ − n ln r

= kg(r) + O(kε2) − n ln r,

and so
1

2π

∫ ε

−ε
exp(kg(reiθ) − niθ − n ln r) dθ = εν1G(r)k/rn. (2.5)

The integrand in the second integral is bounded in magnitude by (1 − δ)kG(r)k/rn. It

follows that, if ε → 0 sufficiently slowly

[xn] G(x)k = ν2G(r)k/rn where 1/κ = rg′(r) = rG′(r)/G(r) (2.6)

determines r > 0.

With the same value of r and ε as in the previous paragraph, we have

[xn+1] G(x)k =
1

2π

∫ π

−π

1

reiθ
exp(kg(reiθ) − niθ − n ln r) dθ.

On the first interval, namely |θ| < ε, |eiθ − 1| ≤ |θ| < ε and so that integral is asymptotic

to (2.5) divided by r. We bound the integral over the second interval as before. Thus

[xn+1] G(x)k

[xn] G(x)k
∼ 1

r
. (2.7)

Note that since r is a continuous function of κ,

[xn+1] G(x)k∗

[xn] G(x)k∗
∼ 1

r
provided k∗/n ∼ κ. (2.8)
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Step 3. We now study the maximum of fk [xn] G(x)k. For the sequence S in Theo-

rem 1(d) let δ be such that fk ≥ (ρ(F ) + δ)−k and set R = ρ(F ) + δ. For δ sufficiently

small, it follows from Theorem 1(c) that G(t) = R has a solution t < ρ(G). It follows

that, for k ∈ S,

fk [xn] G(x)k ≥ νR−kG(r)k/rn = ν

(

(G(r)/R)κ

r

)n

,

where r is given in (2.6) and the function ν may depend on δ.

We now seek the value κ1 of κ that maximizes (G(r)/R)κ/r, remembering that r

depends on κ. Differentiating the logarithm of the expression with respect to κ and

setting it to zero, we obtain

0 =
d(κg(r) − κ ln R − ln r)

dκ
= g(r)− ln R + (κg′(r) − 1/r)

dr

dκ
= g(r) − ln R,

where the last equality follows from (2.4). Thus

G(r) = R and, by (2.4), 1/κ1 = rG′(r)/G(r) (2.9)

determine r and a value of κ1n near which fk [xn] G(x)k is a maximum. As n → ∞,

R → ρ(F ) and r → s, the value given in Theorem 1(c). For reasons that become

apparent later, we write s = r(1). By continuity, when |κ − κ1| < ε the values of r and

G(r) given by (2.6) are asymptotic to r(1) and G(r(1)). Thus we have

fk [xn] G(x)k ≥
(

1 − δ

r(1)

)n

when |κ − κ1| < ε and k ∈ S. (2.10)

Step 4. We now bound
∑

ft [xn]G(x)t where the sum is over values of t much smaller

and much larger than κn. There are C and δ such that ft ≤ C
(

1+δ
ρ(F )

)t
. If u ≥ 1, then

∑

t≥k

ft [xn]G(x)t ≤ u−k
∑

t≤n

ft [xn]G(x)tut

≤ Cu−k
∑

t≤n

(

1 + δ

ρ(F )

)t

[xn]G(x)tut

≤ C(1 + δ)nu−k [xn]
(

∑

t≤n

(G(x)u/ρ(F ))t
)

= [xn]

(

C(1 + δ)nu−k

1 − G(x)u/ρ(F )

)

,

where the sums are limited to t ≤ n since G(x) has no constant term. Thus

∑

t≥k

ft [xn]G(x)t ≤ (1 + δ)nν

ukr(u)n
=

(1 + δ)nν

(uκr(u))n
where G(r(u)) = ρ(F )/u, (2.11)
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provided u ≥ 1. Note that r(1) = s and so equals the r(1) introduced in Step 3. The

same result holds for the sum over t ≤ k provided 0 < u ≤ 1 and such an r(u) < ρ(G)

exists. Theorem 1(c) guarantees the existence of r(u) as long as u is not too small.

Step 5. We now show that uκr(u) has a unique global minimum at u = 1 by computing

derivatives with respect to u. We have

d ln(uκr(u))

du
=

dκ

du
ln u +

κ

u
+

r′(u)

r(u)
.

From the right side of (2.11), r′(u) = −G(r(u))/uG′(r(u)). From the right side of (2.6),

κ = G(r(u)/r(u)G′(r(u)). Thus

d ln(uκr(u))

du
=

dκ

du
ln u. (2.12)

By Step 1, κ is a decreasing function of r. By the right side of (2.11), r is a decreasing

function of u. Thus dκ/du > 0. It follows from (2.12) that uκr(u) has a unique global

minimum at u = 1.

Step 6. We now put it all together. Recall κ1 from Step 3. Let ε1 be such that there

is a k ∈ S such that |κ1 − k/n| < ε1. Let δ1 be such that fk [xn] G(x)k ≥
(

1−δ1
r(1)

)n
at this

value of k. Choose ε2 > δ1. From (2.11) and (2.12), there is a δ2 > ε1 such that

∑

|κ1−t/n|≥δ2

ft [xn]G(x)t ≤
(

1 − ε2

r(1)

)n

.

Thus
∑

k≤n+1 fk [xn+1](G(x)k)
∑

k≤n fk [xn](G(x)k)
∼

∑

|κ1−k/n|<δ2 fk [xn+1](G(x)k)
∑

|κ1−k/n|<δ2 fk [xn](G(x)k)
.

Since the ratio of terms with the same k in the interval |κ1 − k/n| < δ2 are asymptotic to

1/r(1) by (2.8), the proof is complete.

3 Proof of Theorem 2

All generating functions in this section are exponential.

Let FS
n be the set of graphs embeddable on the surface S and for which all vertices

have degree at least two. There are two cases, depending on whether or not we limit

our attention to connected graphs. Let F S(x) =
∑ |FS

n |xn/n! =
∑

fnxn. We will show

that limn→∞ f 1/n
n exists, lies in (0, 1) and is independent of S. When S is the plane,

Theorems 3.3 and 2.2 in [3] dispose of the general and connected cases, respectively. For

other surfaces, our proof is essentially a copy of McDiarmid’s proof of his Theorem 2.1

in [2]. Consequently we assume the reader has a copy of that proof available. Our F S
n

plays the same role as his AS
n. The key observation is that his Lemma 4.2 remains valid.
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His proof involves cutting a graph along a cycle. Suppose {x, y} is an edge in the cycle.

As a result of the cut, he replaces x with two vertices, say x′ and x′′ and likewise for

y. When cutting, we add the edges {x′, y′} and {x′′, y′′}, thereby guaranteeing that all

vertices have degree at least two after cutting. The remainder of McDiarmid’s proof of

Theorem 2.1 is essentially unchanged. For the connected case, it suffices to observe that

McDiarmid’s B contains at most two components.

We begin with the connected case of Theorem 2. Set f0 = f1 = 0. Let R(x) and

T (x) be the generating functions for rooted and unrooted labelled trees, respectively.

Recall that ρ(R) = 1/e and R(1/e) = 1, results deducible from the functional equation

R(x) = xeR(x). Also, ρ(T ) = ρ(R) since R(x) = xT ′(x). The generating function for

connected graphs embeddable on S is F S(R(x))+T (x). To apply Theorem 1 to F S(R(x)),

we must verify condition (c). Since R(ρ(R)) = 1 and ρ(F S) < 1, the condition follows.

We claim γ = ρ(F S(R)) < 1/e = ρ(T ). If so smoothness then follows from the

smoothness of F S(R(x)) since lim([xn] F S(R(x)))1/n = 1/γ and lim sup([xn] T (x))1/n =

e < 1/γ. To prove the claim, note that γ is the solution to R(γ) = ρ(F S), that ρ(F S) < 1

and that R(ρ(T )) = 1.

We now prove the unrestricted case. Set f0 = 1 and f1 = 0. If U(x) is the exponential

generating function for unrooted labelled forests, then F S(T (x))U(x) counts all graphs

embeddable on S. Since unrooted forests are counted by eT (x), we have ρ(U) = ρ(T ) =

1/e. Theorem 1 can be applied to F S(T (x)) to obtain smooth growth of those coefficients.

We now apply a problem of Pólya and Szegö [4] to the product of B(x) = F S(T (x)) and

U(x). It concludes that [xn] (B(x)U(x)) ∼ ([xn] B(x))U(ρ(B)). The only condition that

is not obvious is ρ(B) < ρ(U), but this was proved in the previous paragraph since

ρ(U) = 1/e.

The minimal embedding result follows from Theorem 2.5 of [2].
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