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Abstract

The study of dihedral f-tilings of the sphere S2 by spherical triangles and equian-
gular spherical quadrangles (which includes the case of 4-sided regular polygons) was
presented in [3]. Also, in [6], the study of dihedral f-tilings of S2 whose prototiles
are an equilateral triangle (a 3-sided regular polygon) and an isosceles triangle was
described (we believe that the analysis considering scalene triangles as the pro-
totiles will lead to a wide family of f-tilings). In this paper we extend these results,
presenting the study of dihedral f-tilings by spherical triangles and r-sided regu-
lar polygons, for any r ≥ 5. The combinatorial structure, including the symmetry
group of each tiling, is given in Table 1.

Keywords: dihedral f-tilings, isometric foldings, spherical trigonometry

1 Introduction

Let S2 be the Euclidean sphere of radius 1. By a dihedral folding tiling (f-tiling , for
short) of the sphere S2 whose prototiles are a spherical r-sided regular polygon, P r, and
a spherical triangle, T , we mean a polygonal subdivision τ of S2 such that each cell (tile)
of τ is congruent to P r or T and the vertices of τ satisfy the angle-folding relation, i.e.,
each vertex of τ is of even valency 2n, n ≥ 2, and the sums of alternate angles are equal;
that is,

n
∑

i=1

α2i =

n
∑

i=1

α2i−1 = π,
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where the angles αi around any vertex of τ are ordered cyclically. In this paper we
shall discuss dihedral f-tilings by spherical triangles and spherical r-sided regular poly-
gons (r ≥ 5).

F-tilings are intrinsically related to the theory of isometric foldings of Riemannian
manifolds, introduced by S. A. Robertson [7] in 1977.

The classification of f-tilings was initiated by Ana Breda [1], with a complete classifi-
cation of all spherical monohedral f-tilings. Later on, in 2002, Y. Ueno and Y. Agaoka [11]
have established the complete classification of all triangular monohedral tilings (without
any restrictions on angles).

Dihedral f-tilings by spherical parallelograms and spherical triangles was recently ob-
tained in papers [3, 4, 5]. Robert Dawson has also been interested in special classes of
spherical tilings, see [8, 9, 10] for instance.

The study of dihedral f-tilings of the sphere by triangles and r-sided regular polygons
was initiated in 2004, [3], where the case r = 4 was considered. We believe that the case
r = 3 lead to a wide family of f-tilings and it is still in development. We will assume
throughout the text that r ≥ 5.

We shall denote by Ω (P r, T ) the set, up to an isomorphism, of all dihedral f-tilings of
S2 whose prototiles are P r and T .

From now on P r (r ≥ 5) is a r-sided regular polygon of internal angle α and edge
length a and T is a spherical triangle of internal angles β, γ and δ, with edge lengths b
(opposite to β), c (opposite to γ) and d (opposite to δ), see Figure 1.

P
T

g

d

b

?

?

?

?

?

?

a
b

d

c

a

aa

a

r

Figure 1: Prototiles: a spherical r-sided regular polygon and a spherical triangle

It follows straightway that

β + γ + δ > π and 3π
5
≤ (r−2)π

r
< α < π.

In [3] it was established that any τ ∈ Ω (P r, T ) has necessarily vertices of valency four.
We shall describe the set Ω (P r, T ) by considering different cases separately depending on
the nature of T (isosceles or scalene). If T is an equilateral spherical triangle, then it is
easy to see that Ω(P r, T ) = ∅ (the proof is analogous to the case r = 4 in [3]).

In order to get any dihedral f-tiling τ ∈ Ω (P r, T ), we find useful to start by considering
one of its planar representations (PR), beginning with a common vertex to a spherical
regular polygon and a spherical triangle in adjacent positions.
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In the diagrams that follows it is convenient to label the tiles according to the following
procedures:

(i) The tiles by which we begin the PR of the tiling τ ∈ Ω (P r, T ) are a regular polygon
and a triangle in adjacent positions, labelled by 1 and 1′, respectively;

(ii) For j ≥ 2, the location of tile j can be deduced from the configuration of tiles
(1, 1′, 2, 3, . . . , j − 1) and from the hypothesis that the configuration is part of a
complete PR of a f-tiling (except in the cases indicated).

The paper is structured as follows. In Section 2 we obtain the class of all dihedral
spherical f-tilings by isosceles triangles, T , and r-sided regular polygons, P r. The case
when the prototile T is a scalene triangle is studied in Section 3. The paper is finished
in Section 4 with a briefly summary of the f-tilings obtained, where the combinatorial
structure of each tiling is presented.

2 Dihedral Spherical F-Tilings by Isosceles Triangles

and r-Sided Regular Polygons

In this section P r and T denote, respectively, a spherical r-sided regular polygon (r ≥ 5)
and a spherical isosceles triangle, where P r has angle α, and T has angles β, γ, γ, with
β 6= γ. As referred before, one has (r−2)π

r
< α < π and 2γ + β > π.

Any element of Ω (P r, T ) has at least two cells congruent, respectively, to P r and T ,
such that they are in adjacent positions and in one of the situations illustrated in Figure 2.
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Figure 2: Distinct cases of adjacency

We begin by noting that the edge length a of P r is uniquely determined by α (extension
of [2, Proposition 3]):

cos a =
cos 2π

r
+ cos2 α

2

sin2 α
2

=
1 + cosα + 2 cos 2π

r

1 − cosα
. (1)

The two distinct cases of adjacency illustrated in Figure 2 will be now analyzed sepa-
rately in Proposition 2.2 and Proposition 2.3, respectively. The next lemma will be useful
in such propositions.
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Lemma 2.1 Let k1α + k2β + k3γ = π be a sum of alternate angles around a vertex v of
a tiling τ ∈ Ω (P r, T ). Then at least one of the ki is 0.

Proof. If each ki ≥ 1, then

π = k1α + k2β + k3γ ≥ α + β + γ > π,

which is impossible. �

Proposition 2.2 Let P r and T be a spherical r-sided regular polygon and a spherical
isosceles triangle, respectively, such that they are in adjacent positions as illustrated in
Figure 2–A. Then, Ω(P r, T ) 6= ∅ iff

α+ γ = π and β =
π

2
or α + β = π and γ =

π

2
.

The first case leads to r = 6 and to a unique f-tiling, denoted by C, with α = arccos −2
3

.
A planar representation is illustrated in Figure 7. For its 3D representation see Figure 8.

In the second situation, for each r ≥ 5, there is a single f-tiling given by an antiprism,
denoted by Ar

α, with α = arccos
(

1 − 2 cos π
r

)

= αr
0. A planar representation is illustrated

in Figure 10. Some 3D representations are illustrated in Figure 11.

Proof. Suppose that P r and T are in adjacent positions as illustrated below (Figure 3).
Consider also that this configuration is contained in some element of Ω (P r, T ). With the

q

1 1’
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v

Figure 3: Planar representation

labelling used in Figure 3, we have θ 6= α, and so

θ = γ or θ = β.

We begin by considering the case θ = γ.

(i) If θ = γ, then necessarily

α+ γ = π or α + γ < π.

1. Suppose firstly that α + γ = π. Then the initial PR is extended to get the one
illustrated in Figure 4. As α > (r−2)π

r
(r ≥ 5), then γ < 2π

r
. And so

β >
(r − 4)π

r
,
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Figure 4: Planar representation

since 2γ + β > π. We show that the angle θ1 at vertex v1 (Figure 4), adjacent to γ, is
also γ. Clearly this angle cannot be α. If it is β, then α + β = π, since α + β + ρ > π,
for all ρ ∈ {α, β, γ} (observe that α + β + β >

(3r−10)π
r

≥ π, for any r ≥ 5). Nevertheless
α + β = π = α + γ implies β = γ, which is a contradiction. Therefore θ1 = γ. Using
an analogous argument successive times around vertices surrounded by adjacent angles α
and γ we conclude that vertex v2 is exclusively surrounded by angles β. And so β = π

k
,

for some k ≥ 2. As β > (r−4)π
r

, then r ≤ 7.
We will now consider separately the cases r = 5, r = 6 and r = 7.
If r = 5, then either β = π

2
, β = π

3
or β = π

4
, whose corresponding extended planar

representations are illustrated in Figure 5.
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Figure 5: Planar representations

Nevertheless all these cases lead to a contradiction. We consider only the first one
since the others are analogous. At vertex v3 in Figure 5

(

β = π
2

)

, the angle θ2 must be
γ. And we get the configuration illustrated in Figure 6. But then we must have θ3 = α,
which is impossible (α + α > π).
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Figure 6: Planar representation

If r = 6, then β = π
2

and the PR illustrated in Figure 4 (with r = 6) is extended in a
unique way to get the configuration represented in Figure 7.
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Figure 7: Extended planar representation of C

Now, if a is the edge length of P r (opposite to β), then, as γ ∈ (0, π
3
),

cos π
2

+ cos2 γ

sin2 γ
=

cos π
3

+ cos2 α
2

sin2 α
2

⇐⇒

cot2 γ =
2 − cos γ

1 + cos γ
⇐⇒
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cos γ =
2

3
.

Hence γ = arccos 2
3

and α = π − γ ≈ 131.8◦. We shall denote this f-tiling by C.
It is a straightforward exercise to show that the edge lengths are a = b = arccos 4

5
and

c = arccos 2
√

5
5

(opposite to γ). A 3D representation of C is given in Figure 8.

Figure 8: F-tiling C

If r = 7, then we also have β = π
2
, and we reach, as in case r = 5, to a contradiction

(see Figure 9(a), where a vertex with three angles α cannot be avoided).
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Figure 9: Planar representations

2. Suppose now that α + γ < π (Figure 3). In this case we have, by Lemma 2.1,
α + kγ = π, for some k ≥ 2. Thus, tile 4 (Figure 9(b)) is uniquely determined and so
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β ≤ π
2

(see vertex v1). On the other hand, since α > (r−2)π
r

≥ 3π
5

, we obtain kγ < 2π
5

, i.e.,
γ < 2π

5k
≤ π

5
. But since 2γ + β > π, then β > 3π

5
> π

2
, which is impossible.

(ii) Consider now that θ = β (Figure 3). We study separately the cases

α + β = π and α+ β < π.

1. Suppose firstly that α + β = π. Taking in account the edge lengths, one gets
α + β = π = γ + γ, and so γ = π

2
. The extension of the planar f-tiling is uniquely

determined, as illustrated in Figure 10.
Now, since a is the edge length of P r (opposite to β), and using (1), we obtain

cos a =
1 + cosα + 2 cos 2π

r

1 − cosα
= − cosα.

Therefore,

cos2 α− 2 cosα− 1 − 2 cos 2π
r

= 0 and so cosα = 1 −
√

2 + 2 cos 2π
r

= 1 − 2 cos π
r
.

Taking in account that α ∈
(

(r−2)π
r

, π
)

, then we conclude that

α = arccos
(

1 − 2 cos π
r

)

= αr
0.

The edge length of T opposite to γ is c = π
2
, for any r ≥ 5.

The f-tiling with such a PR will be denoted by Ar
α, with α = αr

0 (Figure 10). It is
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Figure 10: Planar representation of Ar
αr

0
, αr

0 = arccos
(

1 − 2 cos π
r

)

, r ≥ 5

easy to see that αr
0 is an increasing function in r. We have α5

0 ≈ 128.2◦, α6
0 ≈ 137.1◦ and

lim
r→+∞

αr
0 = π. 3D representations of A5

α5
0

and A6
α6

0

are given in Figure 11.

2. Suppose now that α + β < π. Then, by Lemma 2.1, α + kβ = π, for some k ≥ 2.
As α > (r−2)π

r
≥ 3π

5
, then β < 2π

kr
≤ π

5
. And so γ > 2π

5
, since 2γ + β > π.

According to the edge lengths (Figure 12), the sum of alternate angles containing γ is
γ + (k − 1)β + γ, which is greater than π, and so we reach a contradiction.
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Figure 11: F-tilings Ar
αr
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(
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r

)

, cases r = 5 and r = 6
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Figure 12: Planar representation
�

Proposition 2.3 Let P r and T be a r-sided regular polygon and an isosceles triangle,
respectively, such that they are in adjacent positions as illustrated in Figure 2–B. Then,
Ω(P r, T ) 6= ∅ iff r = 5, α + γ = π and β = α. In this situation, there is a single tiling
given by an antiprism A5

α, with α = 4π
5
. A planar representation and a 3D representation

of A5
4π

5

are given in Figure 14(a) and Figure 14(b), respectively.

Proof. Let v be a common vertex to adjacent tiles, congruent to P r and T , respectively,
and surrounded by α and γ. The configuration of a such f-tiling near v must be the one
illustrated in Figure 13.
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Figure 13: Planar representation
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At vertex v we must have

α+ γ = π or α + γ < π.

(i) Suppose that α + γ = π. With the labelling of Figure 13, θ = β or θ = γ. If
θ = β, then α + β < π (otherwise β = γ). And so, by Lemma 2.1, α + kβ = π, for some
k ≥ 2. Hence, β < 2π

kr
≤ π

5
. Therefore, 2γ + β < 4π

r
+ π

5
≤ π, which is a contradiction.

We conclude that θ = γ and vertex v1 is surrounded by the cyclic sequence of angles
(α, β, γ, γ), with α + γ = π = β + γ, and so α = β.

The extension of the planar f-tiling is now uniquely determined. As

− cosα

1 − cosα
=

1 + cosα + 2 cos 2π
r

1 − cosα
,

we may conclude that

cosα = −1
2
− cos 2π

r
and so r = 5;

observe that if r > 5, then − 1
2
− cos 2π

r
< −1. Therefore, cosα = − 1

2
− cos 2π

5
= −1+

√
5

4

and so α = 4π
5

= β.

The edge lengths of the prototiles of A5
4π

5

are a = c = arccos
√

5
5

and b = arccos −
√

5
5

. A

planar representation of A5
4π
5

is given in Figure 14(a). Its 3D representation is illustrated

in Figure 14(b).
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Figure 14: F-tiling A5
4π
5

(ii) Suppose now that α+ γ < π. Thus, by Lemma 2.1, α+ kγ = π, with k ≥ 2. And
so β > α > γ, since β + 2γ > π. It follows that the sum of alternate angles containing β
at vertex v1 (Figure 13) cannot be defined, which is impossible. �
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3 Dihedral Spherical F-Tilings by Scalene Triangles

and r-Sided Regular Polygons

Here T stands for a scalene spherical triangle of angles β, γ and δ, with β > γ > δ

(β + γ + δ > π), and P r (r ≥ 5) is a spherical r-sided regular polygon of angle α and side
a.

If τ ∈ Ω(P r, T ), then there are necessarily two cells of τ congruent to P r and T , res-
pectively, such that they are in adjacent positions and in one of the situations illustrated
in Figure 15.

The three distinct cases of adjacency will be now analyzed in Proposition 3.1, Proposi-
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Figure 15: Distinct cases of adjacency

tion 3.2 and Proposition 3.3, respectively.

Proposition 3.1 Let τ ∈ Ω(P r, T ). Then τ does not contain a pair of tiles in the position
of Figure 15–A.

Proof. Suppose that τ ∈ Ω(P r, T ) has two cells in adjacent positions as illustrated in
Figure 15–A. Let θ1 be the angle adjacent to γ and opposite to α and let θ2 be the angle
adjacent to δ and opposite to α as indicated in Figure 16(a). It follows that

θ1 ∈ {β, γ} and θ2 ∈ {β, δ}.

If θ1 = β, then α+ β = π (otherwise, α+ β + ρ ≥ α+ β + δ > π, for all ρ ∈ {α, β, γ, δ}).
Taking in account the edge lengths, we obtain α + β = π = γ + δ < π, which is a
contradiction.

Thus, θ1 = γ and analogously we obtain θ2 = δ. Consequently β = π
2

and a corres-
ponding PR is illustrated in Figure 16(b).

Since α > β, we have, at vertex v1, α + γ = π. Consequently, at vertex v2, we obtain
α + kδ = π, for some k ≥ 2. As β + γ + δ > π, β = π

2
and γ = kδ, k ≥ 2, we obtain

γ > π
3
. On the other hand, since α > (r−2)π

r
, we have γ < 2π

r
. And so r = 5.

Now, π
2
< γ + δ < 2π

5
+ 2π

5k
, and so

k = 2 or k = 3.
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Figure 16: Planar representations
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Figure 17: Planar representations

With the labelling used in Figure 17(a), the angle θ must be α. In fact, the analysis of
the edge lengths implies θ 6= β and θ 6= δ. If θ = γ, then γ + γ + δ = π and consequently
we reach a contradiction at vertex v in Figure 17(b) (see edge lengths of tile 7). Thus,
θ = α and we obtain the PR below (Figure 18).

We study now the cases k = 2 and k = 3 separately.
We shall consider firstly that k = 3, i.e., α+ 3δ = π. The PR illustrated in Figure 18

is extended to get the one represented in Figure 19 (observe that, after we set up tile 17,
we get 2γ < π, and so 2γ + δ = π, at vertex w1). Taking in account the edge lengths, we
have no way to have the angle folding relation full filled at vertex w2.

Consider now the case k = 2. With the labelling of Figure 18, θ′ = δ or θ′ = γ. If
θ′ = δ, then we obtain the PR illustrated in Figure 20, where a vertex surrounded by the
cyclic sequence of angles (α, α, δ, δ, γ, γ) takes place, leading to a contradiction. The case
θ′ = γ is similar and also leads to a contradiction.
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Proposition 3.2 Let τ ∈ Ω(P r, T ) and suppose that P r and T are in adjacent positions
as illustrated in Figure 15–B. Then, τ is an antiprism Ar

α, where α + γ = π = β + δ,
r = 5 and α ∈

(

4π
5
, π

)

.

Proof. Suppose that there are two cells in adjacent positions as illustrated in Figure 15–B.
Let θ be the angle adjacent to β and opposite to α (Figure 21(a)). It follows that

θ = β or θ = γ.

(i) If θ = β, then necessarily α + β = π and the cyclic sequence of angles around v

is (α, β, β, α). Now, the vertices surrounded by α and δ cannot have valency 4, and so
α + kδ = π, for some k ≥ 2. A vertex surrounded by, at least, four consecutive angles γ
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Figure 21: Planar representations

takes place. Taking in account the edge lengths, we conclude that γ = π
3
, as represented

in Figure 21(b).
Observe now that if r ≥ 6, then α > 2π

3
, and so β < π

3
= γ, which is impossible.

Therefore r = 5. In this case, β < 2π
5

, and so δ > 4π
15

, since β + γ + δ has to be
greater than π. On the other hand, we have β = kδ (k ≥ 2), and so δ < π

5
, which is a

contradiction.
(ii) Suppose now that θ = γ. We consider separately the cases

α + γ = π and α + γ < π.

1. If α+ γ = π, beginning the PR from vertex v (Figure 21(a)) and taking in account
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the edge lengths of P r and T , we conclude that an extended PR of such f- tiling(s)
corresponds to antiprism(s) τ = Ar

α such that α + γ = π = β + δ. We will see that,
under these angles relations, we have necessarily r = 5. The refereed PR is shown in
Figure 22(a).

Having in consideration the relations between angles, we have β > α > π
2
, γ = π − α

and δ = π − β.
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(a) Planar representation (b) 3D representation

Figure 22: A5
α, α ∈

(

4π
5
, π

)

One has

cos a =
1 + cosα+ 2 cos 2π

r

1 − cosα
= −cosα + cos2 β

sin2 β
, (2)

where a is the edge length of T opposite to γ. As α, β ∈
(

π
2
, π

)

, we have

1 + cosα + 2 cos 2π
r

1 − cosα
+

cosα + cos2 β

sin2 β
= 0 ⇐⇒

(

1 + cosα+ 2 cos 2π
r

1 − cosα
− 1

)

sin2 β = − cosα− 1 ⇐⇒

sin2 β =
sin2 α

−2
(

cosα + cos 2π
r

) ⇐⇒

sin β =
sinα

√

−2
(

cosα + cos 2π
r

)

. (3)

Taking in account that β > α, we obtain
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sin β < sinα ⇐⇒
√

−2
(

cosα + cos 2π
r

)

> 1 ⇐⇒

cosα < −1
2
− cos 2π

r
,

leading us to conclude that r = 5 (otherwise, last inequality does not make sense), and
so α ∈

(

4π
5
, π

)

. Using (3), we may also conclude that 4π
5
< β < π and

lim
α→

4π
5

β = 4π
5

and lim
α→π

β = π.

In Figure 22(b) is illustrated a 3D representation of A5
α, 4π

5
< α < π.

2. If α + γ < π (Figure 21(a)), we must have

β > α > γ > δ.

Taking in account that there are necessarily vertices of valency four, it follows that
β + δ = π or β + γ = π.

If β + δ = π then, taking in account the edge lengths, we obtain, at vertex v,
β + δ = π = γ + α < π, which is impossible. It follows that β + γ = π and the
sums of alternate angles at vertex v must be β + kδ = π = α + γ + (k − 1)δ, for some
k ≥ 2, as represented in Figure 23.
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d
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g

g
dd

5
3

4
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Figure 23: Planar representation

The current conditions between angles allows to write α, β and γ as functions of δ:

α = π − (2k − 1)δ, β = π − kδ, γ = kδ, k ≥ 2.

Next we prove that these relations between angles lead to a contradiction. In fact, as
α >

(r−2)π
r

, we have δ < 2π
r(2k−1)

.
Since

1 + cosα + 2 cos 2π
r

1 − cosα
=

cos γ + cos β cos δ

sin β sin δ
,
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we conclude that

1 − cos((2k − 1)δ) + 2 cos 2π
r

1 + cos((2k − 1)δ)
=

cos(kδ)(1 − cos δ)

sin(kδ) sin δ
.

Considering the (continuously differentiable) function ψ defined in
(

0, 2π
r(2k−1)

)

by

ψ(δ) =
1 − cos((2k − 1)δ) + 2 cos 2π

r

1 + cos((2k − 1)δ)
− cos(kδ)(1 − cos δ)

sin(kδ) sin δ
,

we have that ψ has no zeros in
(

0, 2π
r(2k−1)

)

. Indeed, the first derivative of ψ is

ψ′(δ) = (2k − 1) cos2 π
r

sin((2k − 1)δ) sec4 (2k−1)δ
2

+ 1
2
φ(δ) csc(δ) csc2(kδ) tan δ

2
,

where φ(δ) = 2k sin δ − sin(2kδ). As 0 < δ < 2kδ < 4kπ
r(2k−1)

< π and using the fact that

the cosine is a decreasing function on (0, π), we conclude that

φ′(δ) = 2k(cos δ − cos(2kδ)) > 0, ∀δ ∈
(

0, 2π
r(2k−1)

)

⊂ (0, π).

Then φ is an increasing function and since φ(0) = 0, we obtain φ(δ) > 0 in
(

0, 2π
r(2k−1)

)

.

Thus we can easily observe that ψ′(δ) is positive and so ψ is an increasing continuous

function in
(

0, 2π
r(2k−1)

)

. Since lim
δ→0+

ψ(δ) = cos 2π
r
− 1

2k
> 0 (k ≥ 2), we obtain ψ(δ) > 0,

for all δ ∈
(

0, 2π
r(2k−1)

)

, and so ψ has no zeros in
(

0, 2π
r(2k−1)

)

. �

Proposition 3.3 Suppose that P r and T are in adjacent positions as illustrated in Figu-
re 15–C. Then, in this situation, Ω(P r, T ) 6= ∅ iff α + δ = π = β + γ. It is composed by
a family of antiprisms Ar

α, with α ∈
(

α5
0,

4π
5

)

if r = 5, and α ∈ (αr
0, π) if r ≥ 6, where

αr
0 = arccos

(

1 − 2 cos π
r

)

.

Proof. Let v be a common vertex to adjacent tiles, congruent to P r and T , and surrounded
by α and β. The PR near v is illustrated in Figure 24(a). With the labelling of this Figure,
we must have θ = β or θ = δ.

(i) Consider firstly that θ = β. Then necessarily α + β = π, implying α > β > γ > δ.
Consequently vertex v1 (Figure 24(b)) is not of valency four, and so α+ kδ = π, for some
k ≥ 2.

Taking in account the edge lengths of P r and T , the sum of alternate angles containing
γ at vertex v1 is γ + (k − 1)δ + β, which is greater than π.

(ii) Consider now that θ = δ (Figure 24(a)). If α+ δ < π, then it is a straightforward
exercise to show that the sum of alternate angles containing β at vertex v cannot be
defined (see edge lengths of P r and T ), which is an impossibility. And so α + δ = π.
The PR represented in Figure 24(a) is now extended in a unique way as illustrated in
Figure 25, which represents an antiprism, where

α + δ = β + γ = π, with α > β > π
2
> γ > δ.
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α, α ∈

(

α5
0,

4π
5

)

if r = 5, and α ∈ (αr
0, π) if r ≥ 6

As seen before, the equalities (2) and (3) are verified. Using the equality (3), it follows
that β < α iff cosα > − 1

2
− cos 2π

r
. This condition is always verified if r ≥ 6. And, if

r = 5, then we have β < α iff α < 4π
5

.

We also have 0 < sinα <
√

−2
(

cosα + cos 2π
r

)

. Consequently

sin2 α < −2 cosα− 2 cos 2π
r
,

and so
α > αr

0 = arccos
(

1 − 2 cos π
r

)

, r ≥ 5.

3D representations of A5
α, α ∈

(

arccos 1−
√

5
2
, 4π

5

)

, and A6
α, α ∈

(

arccos
(

1 −
√

3
)

, π
)

, are
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Figure 26: A5
α, α ∈

(

arccos 1−
√

5
2
, 4π

5

)

and A6
α, α ∈

(

arccos
(

1 −
√

3
)

, π
)

illustrated in Figure 26. �

With the notation used in the paper, we have:

• if α → (αr
0)

+, then β → (π
2
)+ and γ → (π

2
)−, for any r ≥ 5;

• if r = 5 and α→
(

4π
5

)−
, then β →

(

4π
5

)−
, with α > β, and so γ →

(

π
5

)+
, δ →

(

π
5

)+
;

• if r = 5 and α→
(

4π
5

)+
, then β →

(

4π
5

)+
, with α < β, and so γ →

(

π
5

)−
, δ →

(

π
5

)−
;

• if r > 5 and α → π−, then β → π−, with α > β, and so γ → 0+, δ → 0+;

4 Summary

In Table 1 is shown a complete list of all spherical dihedral f-tilings whose prototiles are
an isosceles triangle T of angles β, γ, γ (β 6= γ) or a scalene triangle T of angles β, γ, δ
(β > γ > δ), and a r-sided regular polygon P r (r ≥ 5; for r = 4 see [3]) with angle α.
Our notation is as follows:

• αr
0 = arccos

(

1 − 2 cos π
r

)

, r ≥ 5;

• β = βr
α, r ≥ 5, is the solution of equation (3);

• |V | is the number of distinct classes of congruent vertices;

• M and N are, respectively, the number of triangles congruent to T and the number
of r-sided regular polygons congruent to P r, used in the dihedral f-tilings;

• G(τ) is the symmetry group of each tiling τ ∈ Ω (P r, T ); by Dn we mean the dihedral
group of order 2n; the octahedral group is Oh

∼= C2 × S4 (the symmetry group of
the cube).

the electronic journal of combinatorics 15 (2008), #R22 19



F-Tiling α β γ δ |V | M N G(τ)

Ar

α
r

0

, r ≥ 5 αr
0 π − αr

0
π
2 – 1 2r 2 D2r

A5

α

(

α5
0,

4π
5

)

β5
α π − β5

α π − α 1 10 2 D5

A5
4π

5

4π
5

4π
5

π
5 – 1 10 2 D5

A5

α

(

4π
5 , π

)

β5
α π − α π − β5

α 1 10 2 D5

Ar

α
, r ≥ 6 (αr

0, π) βr
α π − βr

α π − α 1 2r 2 Dr

C (r = 6) arccos −2
3

π
2 π − α – 2 24 8 Oh

Table 1: The Combinatorial Structure of the Dihedral F-Tilings of S2 by r-Sided Regular
Polygons, r ≥ 5, and Triangles

In Figure 27 we illustrate in 3D the dihedral f-tilings obtained in the paper. They
consist of:

• a continuous family of pentagonal antiprisms (A5
α)

α∈[α5
0
,π), in which T is isosceles iff

α = α5
0 or α = 4π

5
; in Figure 27 we have considered α5

0 < α1 <
4π
5
< α2 < π and

α5
0 = arccos

(

1 − 2 cos π
5

)

= arccos 1−
√

5
2

;

• for each r ≥ 6, a continuous family of antiprisms (Ar
α)

α∈[αr

0
,π), in which T is isosceles

iff α = αr
0; we illustrate A6

α6
0

and A6
α, with α6

0 < α < π;

• an sporadic f-tiling C in which the prototiles are a 6-sided regular polygon of angle
α = arccos −2

3
and an isosceles triangle of angles π

2
, π − α and π − α.

References

[1] A. M. Breda, A Class of Tilings of S2, Geometriae Dedicata, 44 (1992), 241−253.

[2] A. M. Breda and A. F. Santos, Well centered sherical quadrangles, Beiträge zur
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