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Abstract

Let H be a finite tree. We consider trees T such that if the edges of T are colored
so that no color occurs more than b times, then T has a subgraph isomorphic to H

in which no color is repeated. We will show that if H falls into a few classes of trees,
including those of diameter at most 4, then the minimum value of e(T ) is provided
by a known construction, supporting a conjecture of Bohman, Frieze, Pikhurko and
Smyth.

1 Introduction

Let P denote the set of positive integers. Let H = (V, E) be a graph, b ∈ P, and c be a
coloring of the edges of H, i.e. c : E → X where X is a set of colors. We say that c is
b-bounded if |c−1(x)| ≤ b for all x ∈ X. We say a subgraph U of H is rainbow with
respect to c if c is injective on the edges of U . Unlike traditional Ramsey theory, which
focuses on questions regarding monochromatic copies of H in colorings of a larger graph
G, anti-Ramsey theory focuses on questions regarding rainbow copies of H. For example,
Erdős, Simonovits, and Sós considered the minimum number of colors x required so that
every coloring of Kn using exactly x colors produces a rainbow H [2]. Lefmann, Rödl and
Wysocka considered the same problem but with restricted colorings, including b-bounded
colorings [3]. Bohman, Frieze, Pikhurko and Smyth considered the probabilistic issue
of the threshold for the random graph Gn,p to asymptotically almost surely contain a
rainbow H under any b-bounded coloring [1]. In doing so, they explored the following
question: if H is a tree, what is the minimum size of a tree T that yields a rainbow H
under every b-bounded coloring?

Notation 1. Let H and T be trees. We say that T  (H; b) if every b-bounded coloring
of the edges of T induces a rainbow copy of H in T . Let

AR(H; b) := min{e(T ) : T  (H; b)},
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where e(T ) is the number of edges in T .

We henceforth assume that H is a finite tree. The first natural question is whether
a finite T exists such that T  (H; b) for every choice of H, i.e. if AR(H; b) < ∞. The
second natural question is whether or not we can determine AR(H; b). The first question
is answered in [1] by construction, which yields a partial answer to the second.

Definition 1. For a tree H = (V, E), and any two edges e, f ∈ E, let d(e, f) denote the
distance between the vertices corresponding to e and f in L(H), the line graph of H. Let
b ∈ P, and let

F (H, e; b) =
∑

f∈E

bd(e,f)

and
G(H; b) = min

e∈E
F (H, e; b).

In [1], the authors show that

AR(H; b) ≤ G(H; b) (1)

by constructing a tree BH,e,b for each e ∈ E(H), called the b-blow-up of H centered at
e, such that e(BH,e,b) = F (H, e; b) and BH,e,b  (H; b). (The proof of (1), including the
definition of BH,e,b, is contained at the end of this section.) Furthermore, they conjecture
that this bound is sharp for all trees:

Conjecture 1 (Bohman, Frieze, Pikhurko, Smyth [1]). For all trees H, AR(H; b) =
G(H; b).

Bohman, Frieze, Pikhurko and Smyth verified Conjecture 1 for paths, rooted trees with
a constant branching factor (i.e. all leaves are at the same depth, and all non-leaves have
the same degree) and for trees constructed by adding leaves to one end of a 3-path.

In this paper, we approach the problem in the following inductive way. Given H, H ′

will be a carefully chosen subtree formed by removing some of the leaves of H. Given any
tree T such that T  (H; b), we construct a subtree T ′ of T such that T ′

 (H ′; b) and
e(T )− e(T ′) ≥ G(H; b)−G(H ′; b). If Conjecture 1 holds for H ′, then it holds for H. Our
first application of this method will be to trees of diameter at most 4:

Theorem 1. Let H be a tree of diameter at most 4. Then AR(H; b) = G(H; b).

With additional structure on H and H ′, we can use this method to prove a stronger
result. Suppose AR(H ′; b) = G(H ′; b), and for any tree U with U  (H ′; b), U has at
least as many leaves as the minimum-size b-blow up of H ′. If H can be constructed from
H ′ by adding a constant number of leaves to each leaf of H ′, then AR(H; b) = G(H; b)
and for all trees T with T  (H; b), T has at least as many leaves as the minimum-size
b-blow-up of H contains. Thus, proceeding by induction, we can construct a large class
of trees for which Conjecture 1 holds. To formalize this idea, we introduce the following
definitions.
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Definition 2. Let H be a tree, let e ∈ E(H), and let LH = {f ∈ E(H) : ∃u ∈
f with d(u) = 1} be the set of “edge” leaves of E(H). Then we define

L(H, e; b) :=
∑

f∈LH

bd(e,f).

We note that L(H, e; b) is the number of edge leaves in the b-blow-up BH,e,b.

Definition 3. For b ∈ P, let Sb denote the set of trees H such that AR(H; b) = G(H; b)
and, for any tree T such that T  (H; b), T has at least L(H, e; b) leaves, where e ∈ E(H)
satisfies F (H, e; b) = G(H; b). Let

S =
⋂

b∈P

Sb.

Definition 4. Let H be a tree. For k ∈ P, let H(k) be the tree constructed by adding
k leaves to every leaf of H. For k1, . . . , kn ∈ P, inductively define H(k1, . . . , kn) =
H(k1, . . . , kn−1)(kn).

Theorem 2. Let H be a tree with e(H) ≥ 2, and let b, k ∈ P. If H ∈ Sb, then H(k) ∈ Sb.

Theorem 2 provides us with a method to construct trees in Sb from trees known to lie in
it, but it does not provide us with examples of trees that actually lie in any Sb, let alone
S. To remedy this, we show that if H is a path, star, or of diameter 3, H(k1, . . . , kn) ∈ S
for all k1, . . . , kn ∈ P, provided H(k1, . . . , kn) is not a path of length 2.

Notation 2. For n ≥ 0, we let Pn denote a path on n + 1 vertices, and Sn denote a star
graph on n + 1 vertices.

Corollary 1. If H is Pn for n 6= 2, Sn for n ≥ 3, P2(k) for k ≥ 2 or of diameter 3, then
H ∈ S.

The methods we employ in this paper, however, have serious limitations. The first
is that they require that an edge e ∈ E(H ′) which minimizes F (H ′, e; b) also minimizes
F (H, e; b). We know, however, that this is not always the case: consider the tree U formed
by taking a 3-path and adding one leaf to one end, and m leaves to the other end. If we
let e be the edge centered on the original 3-path, and f be the edge adjacent to e and
incident with the vertex of degree m + 1, we have

F (U, e; b) = (m + 1)b2 + 2b + 1, and F (U, f ; b) = b3 + b2 + (m + 1)b + 1.

If b < m−1, G(H; b) = F (H, f ; b), while if b ≥ m−1, G(H; b) = F (H, e; b). This example
also illustrates a second limitation: the edge e that minimizes F (H, e; b) can depend on b,
while our techniques so far have only analyzed the structure of H independent of b. One
way to avoid this peril is to take the asymptotic route: by fixing H and letting b → ∞,
the conjecture suggests the choice of e should lie centermost on a longest-path. We will
show that this is precisely the case for trees formed by adding leaves to the ends of a path.
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Theorem 3. Let k ≥ h ∈ P, and let H be the tree constructed by connecting the central
vertex of an Sh to the central vertex of an Sk by a path of length n ∈ P. Then, provided
b ≥

(

h+1
h

)

(k − h) + 1,

AR(H; b) = G(H; b) =

{

(h + k)br +
∑r−1

i=1 (2bi) + 1 if n = 2r − 1,

hbr+1 + kbr + br +
∑r−1

i=1 (2bi) + 1 if n = 2r.

Another limitation to this approach is the idea that the structure of H necessarily
induces structure on all T such that T  (H; b). Taking H to be a path of length 2, we
have G(H; b) = b + 1 but any tree with b +1 edges necessarily contains a rainbow copy of
H. We mention that this will require care in our proof of Theorem 1.

The remainder of the paper is organized as follows: proofs that paths, stars, and trees
of diameter 3 lie in S, as well as some necessary structural results, will be covered in
Section 2. The proof of Theorem 1 will follow in Section 3. Proofs of Theorem 2 and
Corollary 1 lie in Section 4. Finally, the proof of Theorem 3 will follow in Section 5.

Proof of (1). (Bohman, Frieze, Pikhurko, Smyth [1]) Let e = {x, y} be an edge of H.

Definition 5. We define the b-blow-up of H centered at e, BH,e,b, as follows: for each
v ∈ V (H), let lv = min{d(v, x), d(v, y)}, and let Sv be the set of strings of the form
(v, i1, i2, . . . , ilv), where ij ∈ {1, 2, . . . , b}.

Define the vertex set of BH,e,b to be
⋃

v∈V (H) Sv. Define the edge set of BH,e,b as the pair

{(x), (y)} and all pairs {(v, i1, . . . , ilv), (w, j1, . . . , jlw)}, where {w, v} ∈ E(H), lw = lv +1,
and ik = jk for k = 1, . . . , lv.

The b-blow-up can be viewed as an algorithmic construction as follows: treat H as a
rooted tree with the edge e as its root (rather than a vertex). Starting with i = 0, for
each vertex u of depth i (x and y have depth 0 in this construction) replace each of u’s
downward branches with b copies. Increment i and repeat until the depth of H is reached.
One can easily show that these definitions are equivalent, and that BH,e,b is a tree.

Figure 1: A tree H with edge e and the 2-blow-up BH,e,2.

Our interest lies in showing that BH,e,b  (H; b) and e(BH,e,b) = F (H, e; b), which
together imply (1).

We call the set of edges between a vertex in Sv and all adjacent vertices in Sw, where
lw = lv + 1, a bundle, as well as the singleton containing {(x), (y)}, so that the set B of
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bundles partitions the edge set of BH,e,b. Let c be a b-bounded coloring of BH,e,b, and for
each B ∈ B, let CB be the set of colors used on edges in B. Then, for any Y ⊆ B, we
have

∣

∣

∣

∣

∣

⋃

B∈Y

CB

∣

∣

∣

∣

∣

≥
1

b

∑

B∈Y

|B| ≥
(|Y | − 1)b + 1

b
,

and hence |
⋃

B∈Y CB| ≥ |Y |. By Hall’s Theorem, there exists a system of distinct repre-
sentatives of the sets of bundles, call it Z.

As Z contains an edge from every bundle, the subgraph of BH,e,b containing those
edges contains a copy of H. Since each edge in Z has a different color, that copy is
rainbow. Therefore, BH,e,b  (H; b).

For v ∈ V (H) \ {x, y}, letting fv be the unique edge incident with v on the path from
v to, say, x in H, lv is precisely d(e, fv), the distance from e to fv in L(H). Therefore

e(BH,e,b) =





∑

v∈V (H)

|Sv|



− 1 = 1 +
∑

v∈V (H)\{x,y}

blv = 1 +
∑

f∈E(H)\{e}

bd(e,f) = F (H, e; b).

2 Preliminary Results

Clearly AR(P1; b) = 1 = G(P1; b) and AR(P2; b) = b + 1 = G(P2; b), so our focus will be
on larger trees. By convention, we will often refer to edges of a tree incident with a vertex
of degree 1 as “leaves”. Additionally, as we are only considering b-bounded colorings, we
will simply refer to them as “colorings” (or “partial colorings”).

Prior to establishing the theorems, we need several preliminary results. In Section 2.1
we will show that if e(H) ≥ 3 and H is a path (Lemma 1 and Corollary 2), a star (Lemma
2), or of diameter 3 (Lemma 3) then H ∈ S.

Then, in Section 2.2, we will generalize our methods in a way more suitable for the
applications that follow. The colorings we use will be constructed locally to force re-
strictions on where particular subtrees of any rainbow H in T can lie. To that end, we
will introduce the notion of clumped vertices and that of forbidding sets of vertices. The
former allows us to keep track of the vertices and edges “outside” of a subtree U of T in
a very natural way. The latter notion will allow us to guide our selection of a subtree T ′

by restricting which vertices in a rainbow H in T can lie outside T ′ under suitable partial
colorings.

2.1 Paths, Stars, and Trees of Diameter 3

Notation 3. Let T be a tree and U be a subtree of T . For every v ∈ V (T ), let N(v) =
NT (v) = {w ∈ V (T ) : vw ∈ E(T )} denote the neighborhood of v and d(v) = dT (v) =
|N(v)| the degree of v. Similarly, for u ∈ V (U), let NU (u) = NT (u) ∩ V (U) and dU(u) =
|NU(v)|.
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Let ∆(T ) = max{d(v) : v ∈ V (T )} be the maximum degree of T , and let L(T ) = {v ∈
V (T ) : d(v) = 1} denote the set of (vertex) leaves of T .

If T is a rooted tree with root v, for every u ∈ V (T ), let N̂(u) = {w ∈ V (T ) :
w is a child of u} and d̂(u) = |N̂(u)|.

Lemma 1. If n ≥ 3 and T  (Pn; b), T contains at least AR(Pn−2; b) + 1 vertices of
degree at least b + 1.

The proof of Lemma 1 will follow Lemma 5 in Section 2.2.

Corollary 2.

AR(P2r−1; b) = 1 +
r−1
∑

i=1

2bi = G(P2r−1; b), and

AR(P2r; b) = 1 +
r−1
∑

i=1

2bi + br = G(P2r; b).

Additionally, if n ≥ 3 then Pn ∈ S.

Proof. By our comments earlier, we know Corollary 2 holds for P1 and P2, so suppose
n ≥ 2 (and hence r ≥ 2). Here we consider the odd case; the even case is analogous.

Letting e be the edge centermost on P2r−1 gives F (P2r−1, e; b) = 1 +
∑r−1

i=1 2bi and
L(H, e; b) = 2br−1 by direct computation. We will show that these provide the appropriate
lower bounds by induction on r.

Let T  (P2r−1; b), and let B = {v ∈ V (T ) : d(v) ≥ b + 1}. By Lemma 1 and
induction, |B| ≥ AR(P2r−3; b) + 1 ≥ (1 +

∑r−2
i=1 2bi) + 1. We now use the fact that if

∅ 6= X ⊆ V (T ) \L(T ), then |L(T )| ≥
∑

x∈X d(x)− 2(|X| − 1), which can easily be shown
by induction on |X|. Then, since d(v) ≥ b + 1 > 1 for all v ∈ B,

|L(T )| ≥
∑

v∈B

d(v) − 2(|B| − 1)

≥ (b + 1)|B| − 2(|B| − 1)

= (b − 1)|B| + 2

≥ (b − 1)

(

1 +
r−2
∑

i=1

2bi + 1

)

+ 2

= 2br−1.

Noting that e(T ) ≥ |B| + |L(T )| − 1 completes the proof.

Lemma 2. Sn ∈ S for n ≥ 3.

Proof. Let T  (Sn; b). Taking any edge e of Sn, F (Sn, e; b) = L(Sn, e; b) = (n− 1)b + 1,
so it suffices to show |L(T )| ≥ (n − 1)b + 1.
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Let v ∈ V (T ) with d(v) = ∆(T ). Root T at v. Then for every u ∈ V (T ), color the
edges between u and N̂(u) using dd̂(u)/be colors. Let w be the center vertex of a rainbow
Sn in T . If w = v, then d̂(v)/b > (n− 1), and hence |L(T )| ≥ d(v) = d̂(v) ≥ (n− 1)b + 1.

Otherwise, w has 1 + dd̂(w)/be ≥ n colors on incident edges (by including the edge
connecting it to its parent), and therefore dd̂(w)/be ≥ n − 1, so d̂(w) ≥ (n − 2)b + 1 and
d(w) ≥ (n− 2)b + 2. Since d(v) ≥ d(w) ≥ 2, |L(T )| ≥ 2((n− 2)b + 2)− 2 = 2(n− 2)b + 2
by our comment in the proof of Corollary 2, and 2(n − 2)b + 2 ≥ (n − 1)b + 1 as n ≥ 3.

Lemma 3. If H is a tree of diameter 3, then H ∈ S.

Proof. Showing AR(H; b) = G(H; b) can be done directly by choosing the interior edge
e of H: then (e(H) − 1)b + 1 ≤ AR(H; b) ≤ F (H, e; b) = (e(H) − 1)b + 1. Additionally,
L(H, e; b) = (e(H)− 1)b. Let T  (H; b), and let L = L(T ). The remainder of this proof
will be devoted to showing that |L| ≥ (e(H) − 1)b.

In the proof of Corollary 1 in Section 4, we will show that if H = P1(k) for some
k ∈ P, then T has at least 2kb = (e(H) − 1)b leaves. Therefore, assume H consists of a
central edge with h leaves attached to one end and k > h leaves attached to the other
end, so that (e(H) − 1)b = (k + h)b. Let v ∈ V (T ) be a vertex of maximum degree, and
we consider the cases d(v) ≥ kb + 1 and d(v) ≤ kb separately.

Case 1. d(v) ≥ kb + 1.

If h = 1, then T  (H; b) implies T  (P3; b), so by Lemma 1, there is a w 6= v with
d(w) ≥ b + 1, and therefore |L| ≥ (kb + 1) + (b + 1) − 2 = (k + 1)b = (k + h)b.

Otherwise h > 1, so let K1, . . . , Kd(v) be the connected components of T − v, and note
that each contains a leaf of T . If T [{v} ∪ Ki] 6 (Sh+1; b) for all i, 1 ≤ i ≤ d(v), we can
color T so that only v sees at least h+1 colors. This contradicts the fact that T  (H; b),
as H has two vertices of degree at least h+1. Therefore T [{v}∪Ki] (Sh+1; b) for some
i and consequently has at least hb + 1 leaves by Lemma 2. This implies Ki contains at
least hb leaves of T , and as the remaining components have at least one leaf of T each,
|L| ≥ d(v) − 1 + hb ≥ (k + h)b.

Case 2. d(v) ≤ kb.

As in the proof of Lemma 2, color T by rooting it at v and coloring the edges between
a vertex u and its d̂(u) children using dd̂(u)/be colors. Since a rainbow H occurs, some
vertex w sees at least k+1 colors on incident edges, and w 6= v since d̂(v)/b = d(v)/b ≤ k.
Therefore d(w) ≥ (k − 1)b + 2 and d(v) ≥ d(w), so

|L| ≥ 2((k − 1)b + 2) − 2 > 2(k − 1)b = (k + (k − 2))b,

which suffices if k − 2 ≥ h, i.e. k ≥ h + 2.
Suppose now that k = h + 1. If there is a u ∈ V (T ) \ {v, w} with d(u) ≥ b + 1, then

|L| ≥ 2((k − 1)b + 2) + (b + 1) − 2(2) > (2k − 1)b = (k + h)b,
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so we may assume d(u) ≤ b for all u ∈ V (T ) \ {v, w}.
Let (A, B) be a bipartition of T . If v and w lie in the same part, say, A, then every

vertex in B has degree at most b, and we can color the edges incident with each vertex
in B with a single color. But then T 6 (P3; b), a contradiction as T  (H; b) and P3 is
a subgraph of H. So, without loss of generality assume v ∈ A and w ∈ B.

We now consider two further subcases, vw ∈ E(T ) and vw /∈ E(T ):

Case 2a. vw ∈ E(T ).

If d(v) + d(w) ≥ (2k − 1)b + 2, then |L| ≥ (2k − 1)b = (k + h)b, so suppose otherwise.
Then at most (2k − 1)b edges in T are incident with v or w, so color T as follows: first,
root T at v. For u ∈ V (T )\{v, w}, d(u) ≤ b, so color the edges between u and its children
with a single color. Since d(v) ≥ d(w) ≥ (k − 1)b + 2, color the edges between w and
(k− 1)b of its children with k− 1 colors, and color the edges between v and (k− 1)b of its
children other than w with k − 1 colors. At most (2k − 1)b − 2(k − 1)b = b edges remain
uncolored, so color them with the same color. Then v and w each see k colors on incident
edges, and every u ∈ V (T ) \ {v, w} sees at most 2 colors. But then T 6 (H; b), as no
vertex has at least k + 1 ≥ 3 colors on incident edges, a contradiction.

Case 2b. vw /∈ E(T ).

Let x and y be adjacent vertices on the path between v and w so that vx ∈ E(T ),
y 6= v. Since v ∈ A and w ∈ B, d(v, w) is odd; since d(v, y) = 2, therefore y 6= w. If
d(x) + d(y) ≥ b + 2, then

|L| ≥ 2((k − 1)b + 2) + (b + 2) − 2(3) = (2k − 1)b = (k + h)b,

so suppose otherwise. Therefore there are at most b edges of T incident with x or y.
As x has odd distance to v and y has odd distance to w, consider the tree T −xy. Let

(A∗, B∗) be a bipartition of T − xy in which x, y ∈ A∗; so v, w ∈ B∗. Color all edges of
T incident with x or y with a single color, and for each u ∈ A∗ \ {x, y}, color the edges
incident with u with a single color. Then xy cannot lie on a rainbow P3 in T , and by our
earlier observation, T − xy does not contain a rainbow P3, therefore T 6 (H; b).

2.2 Clumps And Partial Coloring

Suppose that H and T are trees, e(H) > 1, and T  (H; b). Let H ′ = H[V (H) \ L(H)]
and T ′ = T [V (T ) \ L(T )], i.e. form H ′ and T ′ by removing the leaves of H and T
respectively. For every v ∈ V (T ′), let Lv = NT (v) ∩ L(T ).

We make two trivial observations about T ′ that will lead to very practical generaliza-
tions. The first observation is that no matter how we color the edges of T , no x ∈ L(T )
can correspond to any y ∈ V (H ′) in any rainbow copy of H in T , since dT (x) = 1 and
dH(y) > 1. Since T  (H; b), this implies that T ′

 (H ′; b).
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Our second observation is that the sets Lv, v ∈ V (T ′), partition V (T ) \ V (T ′) and
the trees T [{v} ∪ Lv], v ∈ V (T ′), partition the edges of E(T ) \ E(T ′), and consequently
e(T ) = e(T ′)+

∑

v∈V (T ) |Lv|. Here as in the rest of the paper, we drop the restriction that
all sets in a partition be nonempty.

To generalize our first observation, we introduce the following definition:

Definition 6. Let H and T be trees with T  (H; b), and let X ⊆ V (H) and S ⊆ V (T ).
We say that S forbids X if there is a coloring f of the edges of T incident with S such
that, under any extension of this coloring to all edges of T , no vertex in S can correspond
to any vertex in X in any rainbow copy of H in T . We call f a forbidding coloring

for S with respect to X.

In our example earlier we see that L(T ) forbids V (H ′), and any coloring of the edges
incident with L(T ) is a forbidding coloring. As another example, suppose there is a
v ∈ V (T ) with d(v) ≤ b: we can color the edges of T incident with v with a single color,
as there are d(v) ≤ b of them, and consequently {v} forbids V (H ′).

We note that if X ⊆ V (H), and S1, . . . , Sn are disjoint subsets of V (T ) such that
e(Si, Sj) = |{ab ∈ E(T ) : a ∈ Si, b ∈ Sj}| = 0 for all 1 ≤ i < j ≤ n, and each Si forbids
X, then S =

⋃n

i=1 Si forbids X.
To generalize our second observation, we introduce the following definition.

Definition 7. Let T be a tree, and let U be a subtree of T . Let T − E(U) be the graph
formed by removing the edges of U from T , and for v ∈ V (U), let Kv denote the connected
component of T − E(U) containing v. Define

Cv(U) = Kv \ {v}.

Now, rooting T [Kv] at v, for all w ∈ Cv(U) define

Cw(U) = {w} ∪ {a ∈ Kv : a is a descendant of w}.

For all v ∈ V (T ), define Lv(U) = Cv(U) ∩ L(T ).
We call the sets Cv(U) clumps of U , and the vertices in Lv(U) clumped leaves.

When U is understood from the context, we simply write Cv and Lv.

In our earlier example, we have that for v ∈ V (T ′), Lv = Lv(T
′) = Cv(T

′), and for
w ∈ V (T ) \V (T ′), we have Cw(T ′) = {w} = Lw(T ′). We now state some basic properties
of clumps.
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Figure 2: A subtree U of a tree T , with v ∈ V (U) and w ∈ Cv.

Lemma 4. Let U be a subtree of a tree T . Then the following hold:

1. The sets Cv = Cv(U), v ∈ V (U) form a partition (with possibly empty parts) of
V (T ) \ V (U).

2. For any x ∈ V (T ), |Cx| is the number of edges of T incident with vertices in Cx.

3. e(T ) = e(U) +
∑

v∈V (U) |Cv|.

4. Let z be a leaf of U , and let y be its neighbor in U . Then Cy(U −z) = Cy(U)∪{z}∪
Cz(U), Cz(U − z) = {z}∪Cz(U), and Cx(U − z) = Cx(U) for all x ∈ V (T ) \ {y, z}.

5. If U ′ is a subtree of U , then Cv(U
′) ⊇ Cv(U) for all v ∈ V (U), and Cw(U ′) = Cw(U)

for all w ∈ V (T ) \ V (U).

Throughout much of the remainder of the paper, we will use clumps in the following
manner: given H and T with T  (H; b), we will choose an appropriate subtree H ′ of H
such that AR(H ′; b) = G(H ′; b). Then, we will construct a subtree T ′ of T by enforcing
conditions on the clumps Cv(T

′) such that Cv(T
′) forbids V (H ′) for all v ∈ V (T ′). In

particular, this implies that T ′
 (H ′; b), and by Lemma 4 we have e(T ) = e(T ′) +

∑

v∈V (T ′) |Cv(T
′)| ≥ G(H ′; b) +

∑

v∈V (T ′) |Cv(T
′)|, so all that will remain is to argue that

∑

v∈V (T ′) |Cv(T
′)| ≥ G(H; b) − G(H ′; b).

Our first application of these ideas provides a fairly general result on partial coloring.
Suppose H∗ is a subtree of H, and T  (H; b). Then T  (H∗; b), so clearly any subset
of V (T ) that forbids H∗ must exclude at least AR(H∗; b) + 1 vertices. Suppose now that
we have found a subtree U of T so that Cv(U) forbids V (H∗) for every v ∈ V (U). In
the following lemma, we will show that there cannot be too many x ∈ V (U) such that
{x} ∪ Cx(U) forbids V (H∗).

Lemma 5. Let H be a tree, let H∗ be a subtree of H, and let T  (H; b). Let U be a
subtree of T such that Cv(U) forbids V (H∗) with forbidding coloring cv for all v ∈ V (U).
Let S0 ⊂ V (U), S0 6= V (U), such that for all x ∈ S0, {x} ∪ Cx(U) forbids V (H∗) with
forbidding coloring sx. Let B0 = V (U) \ S0.
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Then U contains a subtree U ′ such that U ′
 (H∗; b), |V (U ′)| ≤ |B0|, and for every

x ∈ S0 ∩ V (U ′), dU ′(x) < dU(x). In particular, |B0| ≥ AR(H∗; b) + 1.

Proof. We assume that the colorings cv for v ∈ V (U) and sx for x ∈ S0 have pairwise-
disjoint ranges. This can be done without loss of generality, as a forbidding coloring is
determined by the edge-partition it induces via its color classes, and not the labels of the
colors themselves. Moreover, as we will use the forbidding colorings to construct a partial
coloring, this assumption will trivially allow us to maintain b-boundedness at each step
of the construction.

We construct a partial coloring of T as follows: Let S = S0, B = B0, and C = ∅. We
note that B0 6= ∅, and that for all x ∈ S0, the edges of T incident with {x} ∪ Cx(U) are
the edges of T [{x} ∪ NU(x) ∪ Cx(U)].

While S 6= ∅,
1. Choose x ∈ S with NU(x) ∩ B 6= ∅.
2. Apply sx to the edges of T [{x} ∪ NU(x) ∪ Cx(U)].
3. Let B = B ∪ NU(x), S = S \ ({x} ∪ NU(x)), and C = C ∪ {x}, and repeat.

First, we note that B = B0 6= ∅ initially as S 6= V (U), and |B| never decreases. After
each iteration, for each x ∈ C, NU(x) ⊆ B by Step 3. In particular, this means that
if S 6= ∅, there is necessarily an x ∈ S with NU(x) ∩ B 6= ∅, so Step 1 can be applied.
Since S ⊆ S0, Step 2 can be applied as well. By Step 3, |S| decreases after each iteration,
therefore the algorithm terminates with B and C partitioning V (U) (with C possibly
empty).

For distinct x, y ∈ C, x and y are nonadjacent (as we set NU(x) ⊆ B) and therefore
the edges in T [{x}∪NU(x)∪Cx(U)] and T [{y}∪NU(y)∪Cy(U)] are disjoint, so no edge
is colored more than once.

Claim 1. If K is a connected component of U − C, |K| ≤ |B0|.

Proof of Claim 1. It suffices to show that after each iteration,

each component K of U − C satisfies |K ∩ B| ≤ |B0|, (2)

as every component of U − C is a subset of B after the final iteration.
Prior to the start of the algorithm, (2) holds trivially, so suppose it holds after i ≥ 0

iterations, and S 6= ∅. Let x ∈ S be the vertex chosen in Step 1, and Kx be the component
of T − C containing x. Since the only vertices whose labels change lie in Kx, we simply
need to show (2) holds for each new component formed after Step 3, which we can identify
with each w ∈ NU (x). Choose any such w, and let Kw be the component of U − (C∪{x})
containing w. Then prior to Step 3 we have

|(Kw \ {w}) ∩ B| = |(Kw \ NU(v)) ∩ B)| ≤ |(Kx \ NU(x)) ∩ B| ≤ |Kx ∩ B| − 1,

and after Step 3 we have w ∈ B, so |Kw ∩ B| ≤ |Kx ∩ B| ≤ |B0|, and (2) holds after the
(i + 1)st iteration.
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Until this point we have only colored edges incident with vertices in {x} ∪ Cx(U) for
x ∈ C. For every v ∈ B, apply coloring cv to T [{v}∪Cv(U)]. The only edges that remain
uncolored are the edges of U − C. We consider an arbitrary coloring of these edges.

Since T  (H; b), there is a rainbow H in T . Since T [{x} ∪ NU (x) ∪ Cx(U)] is
colored according to sx for all x ∈ C, and T [{v} ∪ Cv(U)] is colored according to cv for

all v ∈ B, the vertices corresponding to V (H∗) cannot lie in C ∪
(

⋃

v∈V (U) Cv(U)
)

, and

consequently must lie in B = V (U)\C. In particular, some component of U −C contains
a rainbow copy of H∗, and since we can color the edges in each component independently,
therefore some component K of U − C satisfies T [K]  (H∗; b). Let U ′ = T [K]. Then
|V (U)| = |K| ≤ |B0| by Claim 1. Suppose x ∈ V (U ′) ∩ S0. Then x ∈ V (U ′) implies
x ∈ B, and consequently there is some y ∈ C with xy ∈ U , and y /∈ V (U ′). Therefore,
dU ′(x) < dU(x).

Our first application of Lemma 5 will be the proof of Lemma 1.

Proof of Lemma 1. Let n ≥ 3, T  (Pn; b), and S0 = {v ∈ V (T ) : d(v) ≤ b}. Every
x ∈ S0 forbids the non-leaves of Pn, and every clump Cv(T ) = ∅ for v ∈ V (T ). In other
words, {x} ∪ Cx(T ) forbids the non-leaves of Pn for every x ∈ S0.

If S0 = V (T ), then remove any vertex from S0 arbitrarily, so that |V (T ) \ S0| = 1.
Applying Lemma 5, with U = T , H = Pn, H∗ = Pn−2 and S0,

|V (T ) \ S0| = |V (U) \ S0| ≥ AR(H∗; b) + 1 = AR(Pn−2; b) + 1 ≥ 2.

In particular, we cannot have |V (T ) \ S0| = 1, and therefore V (T ) \ S0 = {v ∈ V (T ) :
d(v) ≥ b + 1}, completing the proof.

With appropriate choices of the subtree H∗ of H and of the subtree U of T , we can
force additional and useful structure on the U ′ produced by Lemma 5. An example of
this is given in the following lemma.

Lemma 6. Let H be a tree of diameter at least 3, and let H ′ be formed by removing all
of the leaves of H, i.e. H ′ = H[V (H) \ L(H)]. Let h ∈ P such that dH(v) ≥ h + 1 for
all v ∈ L(H ′). Let T  (H; b). Then T contains subtrees U and U ′ with the following
properties:

1. For all u ∈ L(U), |Lu(U)| ≥ hb.

2. For all v ∈ V (U), Cv(U) forbids V (H ′), so U  (H ′; b).

3. U ′ is a subtree of U and U ′
 (H ′; b).

4. For all v ∈ V (U ′), dU ′(v) ≥ b + 1 or dU ′ + |Lv(U
′)| ≥ hb + 1.
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Proof. Let T  (H; b). We will construct U from T so that Properties 1 and 2 hold, and
then with an appropriate choice of S0, apply Lemma 5 to construct U ′ and show that
Properties 3 and 4 hold.

Claim 2. Let R be a subtree of T , and let v ∈ V (R) such that 1 ≤ dR(v) ≤ b and
dR(v) + |Lv(R)| ≤ hb. Then {v} ∪ Cv(R) forbids V (H ′).

Proof of Claim 2. If v is a leaf of T , the result follows trivially, so suppose otherwise. The
edges of T incident with vertices in {v}∪Cv(R) are the edges of T [{v}∪NR(v)∪Cv(R)],
so for convenience let T̄ = T [{v} ∪ NR(v) ∪ Cv(R)]. We note that as v is not a leaf of T ,
the leaves of T̄ are NR(v) ∪ Lv(R), and |NR(v) ∪ Lv(R)| = dR(v) + |Lv(R)| ≤ hb.

If h = 1, ∆(T̄ ) ≤ b, so let (A, B) be a bipartition of T̄ with v ∈ A, and color each edge
e ∈ E(T̄ ) with the color e ∩ A. Then T̄ does not contain a rainbow P3 and consequently
no rainbow H, and all edges incident with v have the same color. Extending this to a
coloring of all of T , we note that v can only serve as a leaf in a rainbow copy of H, and
the result follows.

If h > 1, then let x ∈ V (T̄ ) \ NR(v) with dT̄ (x) = ∆(T̄ ): as vertices in NR(v) are
leaves in T̄ and v ∈ V (T̄ ) \ NR(v), such an x exists. Then, by the proof of Lemma
2, if we root T̄ at x and color the edges between a vertex u ∈ V (T̄ ) and its children
using dd̂(u)/be colors, T̄ contains no rainbow Sh+1. As x /∈ NR(v), vertices in NR(v) are
children of v and |NR(v)| ≤ b, we may assume that the edges between v and NR(v) have
the same color. Extend this to a coloring of T , and consider a rainbow copy of H in T :
the vertices corresponding to L(H ′) cannot lie in {v}∪Cv(R). If v corresponds to a vertex
in V (H ′) \ L(H ′), since the edges between v and NR(v) have the same color, exactly one
such edge can be used, implying Cv(R) contains a vertex corresponding to one in L(H ′),
a contradiction.!

Now, let T0 = T , i = 0, and if Ti contains a leaf vi with |Lvi
(Ti)| < hb, define

Ti+1 = Ti − vi, increment i, and repeat. This process terminates with a tree Tk, k ≤ e(T ),
so let U = Tk. Note that Property 1 holds by construction, so we show Property 2 holds
as well.

Claim 3. Cv(U) forbids V (H ′) for all v ∈ V (U).

Proof of Claim 3. Since the Cw(U) where w ∈ N(v) \ V (U) partition Cv(U), and the
edges of T incident with each such Cw(U) are the edges in T [{v}∪Cw(U)], if each Cw(U)
forbids V (H ′) then Cv(U) does as well.

Let w ∈ N(v) \ V (U). Then w = vi for some i, 0 ≤ i ≤ k − 1, so w is a leaf of Ti,
|Lw(Ti)| < hb and Ti+1 = Ti − w. Since dTi

(w) + |Lw(Ti)| ≤ hb, by Claim 2 {w} ∪Cw(Ti)
forbids V (H ′). By Lemma 4, Cw(Ti+1) = Cw(Ti − w) = {w} ∪ Cw(Ti), and as U is a
subtree of Ti+1, Cw(U) = Cw(Ti+1) = {w} ∪ Cw(Ti), so Cw(U) forbids V (H ′).

Claim 3 shows that U  (H ′; b), and therefore e(U) ≥ e(H ′) ≥ 1 as H has diameter
at least 3. Consequently, L(U) 6= ∅. Let S = {x ∈ V (U) : dU(x) + |Lx(U)| ≤ hb}.
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By Claim 2, for every x ∈ S, {x} ∪ Cx(U) forbids V (H ′). As S ∩ L(U) = ∅, therefore
S ( V (U), and applying Lemma 5 with S0 = S, we see that U contains a subtree U ′ such
that U ′

 (H ′; b) and dU ′(x) < dU(x) for all x ∈ S ∩ V (U ′). Consequently, Property 3
holds. All that remains is to show Property 4 holds.

Claim 4. For all v ∈ V (U ′), dU ′(v) ≥ b + 1 or dU ′(v) + |Lv(U
′)| ≥ hb + 1.

Proof of Claim 4. Let v ∈ V (U ′) with dU ′(v) ≤ b, and first suppose that dU ′(v) = dU(v).
Then v /∈ S, and consequently dU(v)+|Lv(U)| ≥ hb+1. But Lv(U) ⊆ Cv(U), and as U ′ is a
subtree of U , by Lemma 4, Lv(U) ⊆ Lv(U

′), so dU ′(v)+|Lv(U
′)| ≥ dU(v)+|Lv(U)| ≥ hb+1.

If dU ′(v) < dU(v), consider the forest U −E(U ′): dU(v) > dU ′(v) implies v lies in some
component K of U − E(U ′) with |K| > 1, and as U ′ is a subtree of U , K ∩ L(U) 6= ∅.
Letting u ∈ K ∩ L(U) and noting that U − E(U ′) is a subgraph of T − E(U ′), therefore
u ∈ Cv(U

′). But, by Lemma 4, Lu(U) ⊆ Cu(U) ⊆ Cu(U
′) ⊆ Cv(U

′), which immediately
implies |Lv(U

′)| ≥ |Lu(U)| ≥ hb, and dU ′(v) + |Lv(U
′)| ≥ hb + 1 follows.

3 Proof of Theorem 1

By Corollary 2 and Lemmas 2 and 3, Conjecture 1 is true for trees of diameter at most 3, so
we assume H has diameter 4. Letting Ĥ = H[V (H)\L(H)], we see Ĥ has diameter 2 and
is therefore an Sn for some n ≥ 2. Let v0 denote the central vertex of Ĥ, and v1, v2, . . . , vn

denote its leaves, such that dH(v1) ≥ dH(v2) ≥ · · · ≥ dH(vn). Let ki = dH(vi) − 1 for
1 ≤ i ≤ n and k0 = dH(v0)−n, so that ki is the number of leaves adjacent to vi in H. By
our construction, k1 ≥ k2 ≥ · · · ≥ kn ≥ 1.

Our goal is to show that

AR(H; b) = F (H, v0v1; b) =

(

n
∑

i=2

ki

)

b2 + (k1 + k0 + n − 1)b + 1. (3)

We will show this by induction on n + k1, but the case n = 2 poses a more technical
challenge than when n > 2. As such, we state it as a lemma and prove it in Section 3.1.

Lemma 7. If H is as above with n = 2, then

AR(H; b) = F (H, v0v1; b) = k2b
2 + (k0 + k1 + 1)b + 1.

We now suppose that n ≥ 3. Let H ′ be the tree formed by removing a leaf adjacent
with each of v1, . . . , vn. As this removes one edge adjacent with v0v1 and (n− 1) edges of
distance 2 from v0v1 in the line graph L(H), we have

F (H ′, v0v1; b) = F (H, v0v1; b) −
(

(n − 1)b2 + b
)

. (4)
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Claim 5. AR(H ′; b) = F (H ′, v0v1; b).

Proof of Claim 5. Suppose first that k1 = 1. Then 1 = k1 ≥ · · · ≥ kn ≥ 1 implies equality
holds throughout, and consequently dH′(vi) = 1 for 1 ≤ i ≤ n, so H ′ is a star, and as v0v1

is an edge of H ′, by Lemma 2, therefore AR(H ′; b) = F (H ′, v0v1; b).
If k1 > 1 and k2 = 1, then by an analogous argument, H ′ is a tree of diameter 3 with

central edge v0v1, so by Lemma 3, AR(H ′; b) = F (H ′, v0v1; b).
Finally, if k1 > 1 and k2 > 1, then H ′ has diameter 4, so consider Ĥ ′ = H ′[V (H ′) \

L(H ′)]. As dH′(vi) = ki − 1 for 1 ≤ i ≤ n, and k1, k2 > 1, Ĥ ′ is an Sn′ for some n′,
2 ≤ n′ ≤ n with central vertex v0 and leaves v1, . . . , vn′, and dH′(v1) ≥ · · · ≥ dH′(vn′).
Letting k′

1 = dH′(v1)− 1 = k1 − 1, we therefore have n′ +k′
1 ≤ n+k− 1, and by induction

AR(H ′; b) = F (H ′, v0v1; b).

Now, let T  (H; b).

Claim 6. T contains a subtree T ′ such that T ′
 (H ′; b), and e(T )−e(T ′) ≥ (n−1)b2 +b.

Proof of Claim 6. Applying Lemma 6 to H and T with h = 1, we find a subtree T̂ of T
such that T̂  (Ĥ; b) and for all v ∈ V (T̂ ), dT̂ (v) ≥ b + 1 or dT̂ (v) + |Lv(T̂ )| ≥ b + 1.

Since Ĥ is an Sn with n ≥ 3, by Lemma 2 we have |L(T̂ )| ≥ (n − 1)b + 1, and for all
u ∈ L(T̂ ), we have |Lu(T̂ )| ≥ b, and consequently |Cu(T̂ )| ≥ b.

We now construct a partial coloring of T : For each u ∈ L(T̂ ), root the tree T [{u} ∪
Cu(T̂ )] at u. Color edges of maximum depth using a single color αu until b edges are
colored (which is possible as |Cu(T̂ )| ≥ b).

Suppose xy is a colored edge in T [{u} ∪ Cu(T̂ )], where x is the parent of y. By
construction, all edges of T incident with y have color αu, so {y} forbids V (Ĥ). For each
child z of x, any edge of T incident with z other than xz necessarily has color αu. In
particular, this implies that x cannot be the endpoint of three color-disjoint rainbow P2’s
in T under any extension, by noting that x ∈ Cu(T̂ ) implies x has a unique parent, and
x = u implies x has a unique neighbor outside Cu(T̂ ) as u ∈ L(T̂ ).

Therefore {x} forbids {v0} under this coloring, so if xy is an edge of a rainbow H
under some extension, then x corresponds to some vi, 1 ≤ i ≤ n. Additionally, edges with
different colors are nonadjacent under this coloring.

Letting T ′ be the tree formed by removing the colored edges (as we colored from
maximum depth in each clump, T ′ is a tree), we conclude that T ′

 (H ′; b), and e(T ) −
e(T ′) = b|L(T̂ )| ≥ (n − 1)b2 + b.

Combining Claims 5 and 6 with (4), therefore

e(T ) ≥ e(T ′) + (n − 1)b2 + b

≥ AR(H ′; b) + (n − 1)b2 + b

= F (H ′, v0v1; b) + (n − 1)b2 + b

= F (H, v0v1; b),
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completing the proof.

3.1 Proof of Lemma 7

To simplify notation, let l = k0, k = k1, h = k2, and let vl, vk, vh denote v0, v1, v2. Let
T  (H; b). Our goal is to show that

e(T ) ≥ F (H, vlvk; b) = hb2 + (k + l + 1)b + 1. (5)

By Lemma 6, there is a subtree T ′ of T so that T ′
 (P2; b), and for all v ∈ V (T ′),

dT ′(v) ≥ b + 1 or dT ′(v) + |Lv(T
′)| ≥ hb + 1.

We first mention that if e(T ′) > b + 1 and z ∈ L(T ′), then T ′ − z satisfies the same
conditions: since e(T ′ − z) ≥ b + 1, T ′ − z  (P2; b). Letting y be z’s neighbor in
T ′, we have Cy(T

′ − z) ⊇ Cz(T
′) and Cx(T

′ − z) = Cx(T
′) for all x ∈ V (T ′) \ {y, z}

by Lemma 4. Since dT ′−z(x) = dT ′(x) for x ∈ V (T ′) \ {y, z}, it suffices to note that
dT ′−z(y)+ |Ly(T

′−z)| ≥ 1+ |Lz(T
′)| ≥ 1+hb. In particular, we can assume e(T ′) = b+1

without loss of generality.
While our goal is to show that e(T ) is sufficiently large, our decision to reduce e(T ′)

to b + 1 (if necessary) is that it provides us with an advantage when constructing partial
colorings. Specifically, if R is any tree of size b + 1 and r ∈ V (R) \ L(R), then we can
color the edges of R using two colors so that vertex r is the center of every rainbow P2 in
R produced by this coloring. This can easily be shown by induction on b.

We also mention that for the arguments that follow, we will only need the condition
dT ′(v) + |Cv(T

′)| ≥ hb + 1 to hold for v ∈ V (T ′) with dT ′(v) ≤ b, which trivially does as
Lv(T

′) ⊆ Cv(T
′) for all v ∈ V (T ′).

As we will only deal with clumps of T ′ from this point on, we will simply write Cv

instead of Cv(T
′), and we will use d′ in place of dT ′ and V ′ in place of V (T ′) to further

minimize notation. In what follows, we will use the conditions on T ′ to construct a partial
coloring of T that yields the quadratic term in (5), and then argue that the uncolored
edges remaining must make up the linear gap.

Claim 7. Let v ∈ V (T ′) \ L(T ′), and suppose |Cx| ≥ hb for all x ∈ V ′ \ {v}. Then (5)
holds.

Proof of Claim 7. For every x ∈ V ′\{v}, color (any) hb edges incident with vertices in Cx

using h colors. This colors hb(b+1) = hb2 +hb edges in total, so let γ = e(T )− (hb2 +hb)
be the number of uncolored edges remaining. Note that all edges incident with vertices
in Cv are uncolored, as are the edges of T ′.

By way of contradiction, suppose γ ≤ (k+l+1−h)b. Then we can color the remaining
edges using at most k + l + 1 − h colors. Also, as e(T ′) = b + 1 and d(v) ≥ 2, we can do
so by first coloring the edges of T ′ using two colors so v is the center of every rainbow P2

in T ′. Since T  (H; b), a rainbow copy of H occurs: let uh, ul, uk be the vertices of T
corresponding to vh, vl, vk, respectively, in that copy.
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First, we see that {uh, ul, uk} * {x, y} ∪ Cx ∪ Cy for any edge xy of T ′, as the edges
incident with vertices in {x, y}∪Cx∪Cy have at most 2h+(k+ l+1−h) = k+ l+h+1 =
e(H) − 1 colors on them, and edges incident with {uh, ul, uk} have at least e(H) colors.

This implies that {uh, ul, uk} ⊆ V ′, and by our coloring of the edges in T ′, we must
have ul = v. But the edges incident with vertices in {uh, uk, v} ∪ Cuh

∪ Cuk
∪ Cv again

have at most 2h + (k + l + 1 − h) = e(H) − 1 colors on them, a contradiction. Therefore
γ ≥ (k + l + 1 − h)b + 1, and (5) follows.

Suppose that ∆(T ′) = b + 1. Then e(T ′) = b + 1 implies that T ′ is a star with
central vertex v, and V ′ \ {v} = L(T ′). But for all x ∈ L(T ′), d′(x) = 1 ≤ b, so
|Cx| ≥ hb + 1 − d′(v) = hb, and by Claim 7, (5) holds.

Therefore, we assume ∆(T ′) ≤ b, and consequently d′(v)+ |Cv| ≥ hb+1 for all v ∈ V ′.
By Lemma 4,

e(T ) = e(T ′) +
∑

v∈V ′

|Cv| ≥ (b + 1) +
∑

v∈V ′

(hb + 1 − d′(v)) = hb2 + 2hb + 1,

so if 2h ≥ k + l + 1, (5) follows immediately.
Suppose instead that k+l+1 > 2h. As we can rewrite that as (k−h)+(l−(h−1)) > 0,

we separate the remainder of the proof into two cases: l ≤ h − 1 and l ≥ h.

Case 1. l ≤ h − 1.

For each v ∈ V ′, color min{|Cv|, hb} edges incident with vertices in Cv using at most
h colors. Since d′(v) + |Cv| ≥ hb + 1 and d′(v) ≥ 1, at least

∑

v∈V ′

(hb + 1 − d′(v)) = (hb + 1)(b + 2) − 2(b + 1) = hb2 + (2h − 1)b

edges are colored, and every vertex sees at most h colors on colored incident edges. Let
γ be the number of uncolored edges remaining in T .

Suppose γ ≤ (k − h + 1)b. Color the remaining edges using at most k − h + 1 colors.
Since T contains a rainbow copy of H under this coloring, let uk and uh denote the
vertices corresponding to vk and vh in that copy. Since vk and vh are nonadjacent in H and
dH(vk)+dH(vh) = k+h+2, the edges incident with uh and uk must have at least k+h+2
colors on them. But, by our coloring, uh and uk see at most 2h + (k − h + 1) = h + k + 1
colors on incident edges, a contradiction. Therefore γ ≥ (k − h + 1)b + 1, and

e(T ) ≥ (hb2 + (2h − 1)b) + γ ≥ hb2 + (k + h)b + 1 ≥ hb2 + (k + l + 1)b + 1.

Case 2. l ≥ h.

If |Cx| ≥ hb for all x ∈ V ′, then Claim 7 yields the result, so suppose otherwise. Let
v ∈ V ′ with |Cv| < hb; note that v is not a leaf of T ′. Then |Cv| + e(T ′) ≤ (h + 1)b and
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we can color the edges of T [V ′ ∪ Cv], i.e. those in T ′ and those incident with vertices in
Cv, using h + 1 colors. In particular, we can assume that the edges of T ′ have only two
colors, and v is the center of every rainbow P2 in T ′.

For each x ∈ V ′ \ {v}, color min{|Cx|, hb} edges incident with vertices in Cx using at
most h colors. Then for every edge yz ∈ E(T ′), the edges of T incident with vertices in
{y, z} ∪ Cy ∪ Cz have at most 2h + 1 colors on them. Additionally, we have colored at
least

∑

y∈V ′(hb + 1 − d′(y)) + b + 1 = hb2 + 2hb + 1 edges of T . Let γ be the number of
edges that remain uncolored.

Suppose γ ≤ (k+ l−h)b: color the remaining edges of T using at most k+ l−h colors.
Let uh, ul, uk be the vertices corresponding to vh, vl, vk in a rainbow copy of H in T . Since
every rainbow P2 in T ′ has central vertex v, and the edges incident with v have been colored
with at most h + 1 colors, we see that ul 6= v, as dH(vl) = l + 2 > h + 1. Consequently,
{uh, ul, uk} ⊆ {y, z} ∪ Cy ∪ Cz for some edge yz of T ′. But the edges of T incident with
vertices in {y, z}∪Cy ∪Cz have at most (2h + 1) + (k + l− h) = k + l + h + 1 = e(H)− 1
colors on them, a contradiction.

Therefore γ ≥ (k + l − h)b + 1, and

e(T ) ≥ hb2 + 2hb + 1 + (k + l − h)b + 1 > hb2 + (k + l + h)b + 1 ≥ hb2 + (k + l + 1)b + 1.

4 Proofs of Theorem 2 and Corollary 1

Since H ∈ Sb, there is an e ∈ E(H) such that AR(H, b) = F (H, e; b) and for every tree
U with U  (H; b), U has at least L(H, e; b) edge leaves. Our goal will be to show that
AR(H(k); b) = F (H(k), e; b) and for every tree T with T  (H(k); b), T has at least
L(H(k), e; b) leaves.

Claim 8. L(H(k), e; b) = kb · L(H, e; b) and F (H(k), e; b) = F (H, e; b) + kb · L(H, e; b).

Proof of Claim 8. Recall that LH and LH(k) are the sets of edge leaves of H and H(k)
respectively. As e(H) ≥ 2, there is a natural bijection between LH and L(H), namely
f(e) = v where v ∈ e ∩ L(H). As H(k) is formed by adding k edge leaves to each vertex
leaf of H, LH(k) = E(H(k)) \ E(H). Moreover, for each g ∈ LH(k) there is a unique
f ∈ LH such that f and g are adjacent, and for each f ∈ LH there are exactly k distinct
g ∈ LH(k) with f and g adjacent. Consequently, for each f ∈ LH and g ∈ LH(k) with f
and g adjacent, d(e, g) = d(e, f) + 1 as g /∈ E(H).

Therefore

L(H(k), e; b) =
∑

g∈LH(k)

bd(e,g) =
∑

f∈LH

k · bd(e,f)+1 = kb
∑

f∈LH

bd(e,f) = kb · L(H, e; b),
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and

F (H(k), e; b) =
∑

f∈E(H(k))

bd(e,f)

=
∑

f∈E(H)

bd(e,f) +
∑

g∈LH(k)

bd(e,g)

= F (H, e; b) + kb · L(H, e; b).

Suppose T  (H(k); b). As e(H) ≥ 2, H(k) has diameter at least 3. Applying Lemma
6, there is a subtree T ′ of T with T ′

 (H; b) and for all v ∈ V (T ′), dT ′(v) ≥ b + 1 or
dT ′(v) + |Lv(T

′)| ≥ kb + 1.
As e(T ′) ≥ e(H) ≥ 2 and H ∈ Sb, therefore |L(T ′)| ≥ L(H, e; b). For each v ∈

L(T ′), dT ′(v) = 1 implies |Lv(T
′)| ≥ kb, and consequently |L(T )| ≥

∑

v∈L(T ′) |Lv(T
′)| ≥

L(H, e; b) · kb = L(H(k), e; b), so T has at least L(H(k), e; b) vertex leaves, and conse-
quently at least that many edge leaves. Finally,

e(T ) ≥ e(T ′) +
∑

v∈V (T ′)

|Lv(T
′)| ≥ F (H, e; b) + kb · L(H, e; b) = F (H(k), e; b),

so AR(H(k); b) = F (H(k), e; b) and therefore H(k) ∈ Sb.

Proof of Corollary 1. Corollary 2 and Lemma 2 show that H ∈ S if H = Pn or H = Sn

for n ≥ 3, and clearly P0, P1 ∈ S. Suppose H = Pa(k), with a ∈ {1, 2} and k ∈ P.
Let T  (H; b). As H has diameter at least 3 and the tree formed by removing all

leaves of H is Pa, by Lemma 6 there is a subtree T ′ of T such that T ′
 (Pa; b) and

dT ′(v) ≥ b + 1 or dT ′(v) + |Lv(T
′)| ≥ kb + 1 for all v ∈ V (T ′). Again, for notational

convenience we will write d′, V ′, E ′ for dT ′, V (T ′), and E(T ′), respectively. We only
consider clumps of T ′, so we will just write Cv and Lv.

If a = 1, let e denote the center edge of H. T ′
 (P1; b) implies T ′ has at least 2

leaves, say u1 and u2, and d′(u1) = d′(u2) = 1 implies |Lu1 | ≥ kb and |Lu2 | ≥ kb. Therefore
|L(T )| ≥ |Lu1| + |Lu2 | = 2kb = L(H, e; b), and each vertex leaf corresponds to a unique
edge leaf. Since e(T ) ≥ 1 + 2kb = F (H, e; b) follows immediately, therefore H ∈ Sb, and
as b is arbitrary, therefore H ∈ S. This completes the proof of Lemma 3, so trees of
diameter 3 lie in S.

If a = 2, letting e be either edge on the interior P2 of H, then AR(H; b) = F (H, e; b)
by Lemma 7. By our earlier comments it suffices to show |L(T )| ≥ L(H, e; b), and direct
computation gives L(H, e; b) = kb(b + 1).
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If ∆(T ′) = b + 1, |L(T ′)| ≥ b + 1, and consequently

|L(T )| ≥
∑

u∈L(T ′)

|Lu| ≥ kb|L(T ′)| ≥ kb(b + 1).

Otherwise, d′(v) + |Lv| ≥ kb + 1 for all v ∈ V ′, and therefore

|L(T )| ≥
∑

v∈V ′

|Lv|

≥
∑

v∈V ′

(kb + 1 − d′(v))

= (kb + 1)|V ′| − 2|E ′|

= (kb − 1)|E ′| + kb + 1

≥ (kb − 1)(b + 1) + kb + 1

= kb(b + 1) + (k − 1)b,

as |E ′| ≥ AR(P2; b) = b + 1. Since k ∈ P, (k − 1)b ≥ 0 and therefore H ∈ Sb, and as b is
arbitrary, therefore H ∈ S.

5 Proof of Theorem 3

First, we note that if n = 2r − 1, letting e be the centermost edge on a longest path of
H gives F (H, e; b) = (h + k)br +

∑r−1
i=1 (2bi) + 1. If n = 2r, then letting v be the center

vertex of a longest path, we choose e to be the edge incident with v along the path from
v to the vertex of degree k + 1, yielding F (H, e; b) = hbr+1 + kbr + br +

∑r−1
i=1 (2bi) + 1.

Therefore, we show the lower bound holds. Additionally, when n = 1 or n = 2, the result
follows from Lemmas 3 and 7.

Suppose n ≥ 3, b ≥
(

h+1
h

)

(k − h) + 1 and T  (H; b). Let vh and vk denote the
vertices of degrees h + 1 and k + 1 in H, i.e. the centers of the Sh and Sk we constructed
H from.

The tree H ′ formed by removing the leaves of H is a Pn with leaves vh and vk, and
dH(vk) ≥ dH(vh) ≥ h+1. By Lemma 6, there is a subtree T ′ of T such that T ′

 (H ′; b),
Cv(T

′) forbids V (H ′) for all v ∈ V (T ′), and |Lu(T
′)| ≥ hb for all u ∈ L(T ′). For notational

convenience, we use d′, V ′ in place of dT ′ and V (T ′), and in what follows we will only
consider clumps of T ′.

Consider the following partition of V ′ (some sets may be empty):

Lk = {v ∈ V ′ : d′(v) = 1, |Cv| ≥ kb},

Lh = {v ∈ V ′ : d′(v) = 1, |Cv| < kb},

B = {v ∈ V ′ : d′(v) ≥ b − (k − h) + 1},

SB = {v ∈ V ′ : 2 ≤ d′(v) ≤ b − (k − h), |Cv| ≥ (k − h)b}, and

SS = {v ∈ V ′ : 2 ≤ d′(v) ≤ b − (k − h), |Cv| < (k − h)b}.
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We know that T ′
 (Pn; b), and by Lemma 1 T ′ has a large number of vertices of large

degree. By Corollary 2, Pn ∈ S and T ′ therefore has at least the “right” number of leaves,
in the context of the associated b-blow-up. We might further expect T ′ to contain the right
number of leaves that can correspond to vk (Lk) and the right number that correspond
to vh (Lh) and the bound would immediately follow. This does not necessarily happen,
and the Lk can fail to provide the bound we need. We will show that this deficiency is
balanced out by vertices of large degree in T ′ (implying many leaves of T ′), and vertices
of small degree but with a large contribution in their clumps (SB). Vertices of smaller
degree that are “too small” (SS) will be accounted for by the coloring we construct.

In what follows, let Ĥ = H[V (H) \ ({vh} ∪ L(H))] = H ′ − vh.

Claim 9. Let v ∈ Lh. Then {v} ∪ Cv forbids V (Ĥ).

Proof of Claim 9. Let u ∈ V ′ such that uv ∈ E ′, and let W = N(v) \ N ′(v). We can
greedily partition W into N1, . . . , Ns+1, where for 1 ≤ i ≤ s, Ni 3 wi so that

∑

w∈Ni
d(w) ≥

b + 1 and
∑

w∈Ni\{wi}
d(w) ≤ b, and

∑

w∈Ns+1
d(w) ≤ b. Since

∑

w∈W d(w) ≤ |Cv| < kb,

s ≤ k − 1, and if s = k − 1, then
∑

w∈Ns+1
d(w) ≤ b − k.

For 1 ≤ i ≤ s, color all edges incident with vertices in Ni \{wi} with color i, and color
edge vwi with color k. Color all edges incident with vertices in Ns+1 with color s + 1.
Additionally, since we have used color k at most (k − 1) + (b− k) = b− 1 times, color uv
with color k.

Figure 3: The partial coloring on edges incident with {u, v} ∪ Ni, 1 ≤ i ≤ s.

Since there are at most kb edges incident with {v} ∪ Cv, and we have used colors
1, 2, . . . , s + 1 at most b times each, color the remaining uncolored edges (which are
incident with Cv) with 1, 2, . . . , k. Extend this to a coloring of all of T , and suppose v lies
in a rainbow H. If v is not a leaf, then some x in Cv serves as a vertex in H. Since edges
incident with Cv are k-colored, x cannot correspond to vk, so a rainbow path from x to
u must exist. Since uv has color k, this path must include some w ∈ W \ {w1, . . . , ws}.
But w only sees one color, which implies x = w, and that v corresponds to either vh or
vk. As v only sees at most k colors, it must be vh, and {v} ∪ Cv forbids V (Ĥ).

Claim 10. Let v ∈ SS. Then {v} ∪ Cv forbids V (Ĥ).
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Proof of Claim 10. Constructing the same sets W, N1, . . . , Ns+1 as in the proof of Claim
9, we see that s ≤ k − h − 1, but instead, our coloring will use k − h + 1 colors, and
color k − h + 1 is applied to edges vwi, and to edges of the form uv, where u ∈ V ′. Since
s ≤ k − h− 1 and there are at most b− (k − h) such u, color k − h + 1 is applied at most
b − 1 times. Since k − h + 1 ≤ k, the result follows from same argument as in Claim 9.

Claim 11. |B| + |SB| + |Lk| ≥ AR(Pn−1; b) + 1.

Proof of Claim 11. Let S0 = SS ∪Lh. We know that every Cv, v ∈ V ′, forbids V (H ′) and
consequently forbids V (Ĥ). By Claims 9 and 10, for all x ∈ S0, {x} ∪ Cx forbids V (Ĥ).
T ′
 (Pn; b) with n ≥ 2 shows that B 6= ∅ by Lemma 1, so S0 is a proper subset of V ′.
Applying Lemma 5, we therefore have |V ′ \ S0| ≥ AR(Ĥ; b) + 1, and the rest follows

from noting |V ′ \ S0| = |B| + |SB| + |Lk| and Ĥ is a Pn−1.

We have now established all of the bounds we need for the result: Since

e(T ) = e(T ′) +
∑

v∈V ′

|Cv|,

and e(T ′) ≥ AR(Pn; b), we bound
∑

v∈V ′ |Cv|. First, notice

∑

v∈V ′

|Cv| ≥ hb|L(T ′)| + (k − h)b(|Lk| + |SB|).

By Lemma 1, letting X = AR(Pn−2; b) + 1, since b + 1 ≥ b− (k− h) + 1 we have |B| ≥ X
and

|L(T )| ≥
∑

v∈B

d′(v) − 2(|B| − 1)

≥ (b + 1)X + (b − (k − h) + 1)(|B| − X) − 2(|B| − 1)

= (b − 1)X + (b − (k − h) − 1)(|B| − X) + 2

= A1 + A2(|B| − X),

with A1 = (b− 1)X +2 and A2 = b− (k−h)− 1. Combining this with Claim 11, we have

∑

v∈V ′

|Cv| ≥ hb(A1 + A2(|B| − X)) + (k − h)b(1 + AR(Pn−1; b) − X − (|B| − X))

≥ hbA1 + (k − h)b(1 + AR(Pn−1; b) − X),

provided hbA2−(k−h)b ≥ 0. Rewriting, we see that we simply need b ≥
(

h+1
h

)

(k−h)+1,
the condition posited in the statement of this theorem.
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We now prove the main result in the even case, so assume n = 2r. Applying Corollary
2 to our bound on

∑

v∈V ′ |Cv|, we get

A1 = (b − 1)X + 2

= (b − 1)(AR(Pn−2; b) + 1) + 2

≥ (b − 1)

(

1 +
r−2
∑

i=1

2bi + br−1 + 1

)

+ 2

= br + br−1,

and

1 + AR(Pn−1; b) − X = AR(Pn−1; b) − AR(Pn−2; b)

=

(

1 +

r−1
∑

i=1

2bi

)

−

(

1 +

r−2
∑

i=0

2bi + br−1

)

= br−1,

yielding
∑

v∈V ′ |Cv| ≥ hbr+1 + kbr. Combining this with our bound on e(T ), we see that

e(T ) ≥

(

1 +
r−1
∑

i=1

2bi + br

)

+ (hbr+1 + kbr).

The proof for n odd is analogous.
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