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Abstract

A finite collection C of closed convex sets in R
d is said to have a (p, q)-property

if among any p members of C some q have a non-empty intersection, and |C| ≥ p.
A piercing number of C is defined as the minimal number k such that there exists
a k-element set which intersects every member of C. We focus on the simplest
non-trivial case in R

2, i.e., p = 4 and q = 3. It is known that the maximum
possible piercing number of a finite collection of closed convex sets in the plane with
(4, 3)-property is at least 3 and at most 13. We consider the following three special
types of collections of closed convex sets: segments in R

d, unit discs in the plane
and positively homothetic triangles in the plane, in each case only those satisfying
(4, 3)-property. We prove that the maximum possible piercing number is 2 for the
collections of segments and 3 for the collections of the other two types.

1 Introduction

A finite collection C of closed convex sets in d-dimensional Euclidean space is said to have
a (p, q)-property if among any p members of C some q have a non-empty intersection, and
|C| ≥ p. A piercing number of C is defined as the minimal number k such that there exists
a k-element set which intersects every member of C.

The well-known Helly Theorem [9] states that the piercing number of any finite collec-
tion of closed convex sets in R

d with (d+1, d+1)-property is equal to 1. By considering a
collection of hyperplanes in R

d in general position, we get that for q ≤ d the piercing num-
ber is unbounded. Hadwiger and Debrunner [6] conjectured that for every p ≥ q ≥ d + 1
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Figure 1: Collections of six sets with (4, 3)-property and the piercing number 3. Left:
six triangles ACD, BCD, CEF , DEF , EAB, FAB. Right: four rectangles and two
segments, two of the rectangles are disjoint.

the piercing number of any finite collection of closed convex sets in R
d with (p, q)-property

is bounded by a constant, which depends only on the values of p, q and d. This conjecture
has been proved by Alon and Kleitman [1, 2].

Now, we can ask the following question: what is the exact value of M(p, q; d), the
maximum possible piercing number of a finite collection of closed convex sets in R

d with
(p, q)-property? The general arguments [1, 2] do not give any reasonable upper bounds
on M(p, q; d). The simplest non-trivial case of this problem occurs for p = 4, q = 3 and
d = 2. It is easy to construct a collection of six triangles in the plane with (4, 3)-property
and the piercing number 3 (for an example, see Figure 1, left). There also exists such
collection with two disjoint sets; see Figure 1, right. In this paper we construct two more
examples with another restrictions on the involved sets. But a collection with the piercing
number 4 has not been found yet. The best known upper bound, M(4, 3; 2) ≤ 13, has
been established by Kleitman, Gyárfás and Tóth [11].

It seems to be quite difficult to improve these bounds significantly. So, we approach
the problem from a different direction: we try to find the exact value of the maximum
possible piercing number for some restricted collections of closed convex sets which satisfy
(4, 3)-property. In particular, we consider collections of segments in R

d, unit discs in the
plane and positively homothetic triangles in the plane. We prove that the maximum
possible piercing number is equal to 2 for segments and 3 for discs and triangles. Similar
results were proved for d-dimensional boxes in R

d with edges parallel to the coordinate
axes [7, 8]; it is known that for 2 ≤ q ≤ p ≤ 2q − 2 the maximum piercing number is
p − q + 1. It is also known that the maximum piercing number is 6 for the collections of
unit discs satisfying (3, 2)-property [13], 4 for the collections of pairwise intersecting discs
(i.e., with (2, 2)-property) [3], and at most 3 for the collections of pairwise intersecting
translates of a convex set [10]. See the survey by Eckhoff [4] for other related results. The
survey [4] also refers to the paper of Wegner [13], who claims that the piercing number
of the collection of unit discs with (4, 3)-property is 3, but he does not give a proof of
that. He only states that one can prove it similarly as the upper bound for the case of
(3, 2)-property, but it may be not so easy. So we believe it is worth giving the proof in
this paper.
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2 Preliminaries

In this section we introduce notation and some propositions used throughout the paper.
Let R

d be a d-dimensional Euclidean space. Let x ∈ R
d and S ⊆ R

d. We will say that
x pierces S if x ∈ S.

Let C be a collection of subsets of R
d and let X be a set of points in R

d. We will say
that X pierces C if every C ∈ C is intersected by X.

For a finite collection S of sets define P (S) as the piercing number of S, i. e.,

P (S) = min{|X|; X pierces S}.
Now for a collection C define

MC = max {P (S)|S is a finite subcollection of C with the (4, 3)-property} .

Our aim is to determine precise values of MC for the three collections C mentioned in
the introduction.

Now we formulate Helly’s Theorem [9], and then introduce two lemmas widely used
throughout the paper.

Theorem 1 (Helly). Let d ≥ 1 be an integer and let C = {C1, C2, . . . , Ck}, k ≥ d + 1,
be a collection of convex subsets of R

d. If the intersection of every d + 1 elements of C is

non-empty, then the intersection of all the elements of C is non-empty.

Lemma 2. Let S be a collection of subsets of R
d satisfying (4, 3)-property.

1. There are no three pairwise disjoint sets S1, S2, S3 ∈ S.

2. If A, B ∈ S are two disjoint sets, then one of these sets intersects all the sets from

S \ {A, B}.
Proof.

1. For contradiction, suppose that there exist pairwise disjoint sets S1, S2, S3 ∈ S.
According to (4, 3)-property, |S| ≥ 4, so there exists S ∈ S \ {S1, S2, S3}. By using
(4, 3)-property for the quadruple S1, S2, S3, S we obtain a contradiction.

2. For contradiction, suppose that there exist C1, C2 ∈ S \{A, B} such that C1∩A = ∅
and C2 ∩ B = ∅. According to the first part of this lemma, C1 6= C2. But then
(4, 3)-property is not satisfied for A, B, C1, C2.

Let S ⊆ R
2 and v ∈ R

2. We will use the notation −S = {−s|s ∈ S}, and S + v =
{s + v|s ∈ S}.
Lemma 3. Let S ⊆ R

2 be an arbitrary set and let v1, v2, . . . , vk ∈ R
2. Then the sets

S + v1, S + v2, . . . , S + vk have a non-empty intersection if and only if there exists v ∈ R
2

such that the set −S + v contains all the points v1, v2, . . . , vn.

Proof. The statement easily follows from the following equivalence: v ∈ S + vi ⇔ −v ∈
−S − vi ⇔ vi ∈ −S + v.
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Figure 2: No two segments lie on a common line.

3 Segments

Let Gd be a collection of all segments in R
d.

Theorem 4. MGd
= 2.

Proof. To show that MGd
≥ 2, consider a collection of four segments where three of them

have a common point and are disjoint with the fourth segment.
For the second inequality, let S be a finite subcollection of Gd satisfying (4, 3)-property.

We will show that P (S) ≤ 2.
In this proof, a segment will always mean a segment which is an element of S.
We distinguish several cases:

1. No two segments lie on a common line.

See Figure 2, left, for the first of the following subcases, and right, for the second
one.

1.1. There exist two disjoint segments S, T .

Let U ∈ S be any segment different from S and T . By Lemma 2 we observe
that S∩U 6= ∅ or T ∩U 6= ∅. Note that |S∩U | ≤ 1 and |T ∩U | ≤ 1, since there
are no two segments lying on a common line. If S ∩ U 6= ∅, let {xS} = S ∩ U ,
otherwise choose xS as an arbitrary point of S, similarly we choose a point xT .
According to the first observation, the segments S, T and U are pierced by
the points xS and xT . Let V be a segment different from S, T and U . Then
among the segments S, T, U, V there is a triple with non-empty intersection.
Since S ∩ T = ∅, we have S ∩ U ∩ V = ∅ or T ∩ U ∩ V = ∅, hence xS ∈ V or
xT ∈ V . Therefore, points xS and xT pierce S.

1.2. Every two segments intersect.

If S1 ∩ S2 ∩ S3 6= ∅ for each triple of segments S1, S2, S3, then by Helly’s
Theorem, one point is sufficient to pierce all the segments.

So we can assume that there are three segments S, T , U such that S∩T∩U = ∅.
According to the assumptions for this subcase, we have |S ∩ T | = |S ∩ U | =
|T ∩ U | = 1. Let V ∈ S, V 6= S, T, U . Among the segments S, T , U , V there
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is a triple with non-empty intersection. This triple is different from the triple
S, T, U . Without loss of generality, we can assume that from the remaining
triples, S, T, V is the triple with non-empty intersection. Since |S ∩T | = 1, we
have |S ∩ T ∩ V | = 1. Let S ∩ T ∩ V = {x} and S ∩ U = {y}. Then S, T ,
U and V are pierced by x, y. It remains to show that every other segment W
from S contains x or y. Actually, we show that every such W contains x.

Let T ∩ U = {z}. Note that x 6= y 6= z 6= x, because S ∩ T ∩ U = ∅. From
the (4, 3)-property for the segments S, T, U, W we get that W contains at least
one of the points x, y, z. Moreover, W does not contain two of them, according
to the assumptions for this case. For contradiction, suppose that x /∈ W . By
symmetry, we can assume that z ∈ W and y /∈ W , so W ∩ U = {z}. Then,
among the segments S, V, U, W , no three have a common point. This violates
the (4, 3)-property: S ∩ V = {x}, but x /∈ W ∪ U ; similarly W ∩ U = {z}, but
z /∈ S ∪ V . As a corollary we obtain that {x, y} pierces S.

2. Two of the segments lie on a common line.

2.1. There exist two disjoint segments on a common line p.

2.1.1. All the segments lie on p.
Consider p being a horizontal line. Let L ∈ M be a segment whose right
endpoint xl is the leftmost point among all right endpoints of the segments.
Similarly, let R be a segment whose left endpoint xr is the rightmost point
among all left endpoints of the segments. Every other segment S intersects
L or R. By the definition of xl and xr, S must contain at least one of these
two points.

2.1.2. There exists a segment S 6⊆ p.
Let T1 and T2 be two disjoint segments on p. By Lemma 2, S must
intersect exactly one of these two segments, say T1. Let {x} = S ∩ T1. By
(4, 3)-property, every other segment T (different from S, T1, T2) must pass
through x. Thus we can choose the second piercing point as an arbitrary
point from T2.

2.2. Every two segments lying on a common line intersect.

2.2.1. There are two disjoint segments S, T .
S and T do not lie on a common line. Let s and t be the lines containing
segments S and T . If every segment lies on s or t, then every two segments
lying on s intersect. Hence, according to the one-dimensional Helly’s The-
orem, there exists a point xs ∈ s which is contained in all these segments.
Similarly we can find a point xt ∈ t which is contained in all the remaining
segments lying on t. In case there exists a segment which does not lie on
any of the two lines s, t, we can choose the required two points the same
way as in subcase 1.1.

the electronic journal of combinatorics 15 (2008), #R27 5



I

Sa Sb Sc

a b c

y

T

Figure 3: Sub-subcase 2.2.2.

2.2.2. Every two segments intersect.
See Figure 3. Let p be a line containing at least two segments. Consid-
ering p as a horizontal line, let L be the segment whose right endpoint is
the leftmost point among all right endpoints of the segments lying on p.
Similarly, let R be the segment whose left endpoint is the rightmost point
among all left endpoints of the segments lying on p. Then I = L ∩ R is a
non-empty interval (which may be degenerate), which is contained in all
the segments lying on p. Let oblique segment be a segment not lying on p.
According to the assumption of this sub-subcase, every oblique segment
crosses p somewhere in the interval I. Let X be the set of all intersections
of some oblique segment and I. If X is empty, then an arbitrary point
from I pierces S. If |X| = 1 or |X| = 2, then every segment contains at
least one point from X. We are left with the case |X| ≥ 3. Let a, b, c be
three different points from X and let Sa, Sb, Sc be some oblique segments
such that a ∈ Sa, b ∈ Sb, c ∈ Sc. Among the segments L, Sa, Sb, Sc, the
triple Sa, Sb, Sc is the only one which can have a non-empty intersection.
So there exists a point y not lying on p such that {y} = Sa ∩ Sb ∩ Sc. If
every oblique segment contains y, we can choose y and an arbitrary point
from I as the required two piercing points. In the other case there exists
an oblique segment T not containing y. The segment T contains at most
one point from {a, b, c}, so we can assume that a, b 6∈ T . But then, among
the segments L, Sa, Sb, T no three have a point in common, which is a
contradiction with (4, 3)-property.

4 Discs

Let D be a set of all closed unit discs in R
2.

Theorem 5. MD = 3.

Proof. First we establish the upper bound.
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Let S be a finite subcollection of D satisfying (4, 3)-property. We will show that
P (S) ≤ 3.

Let C be the set of all centers of discs in S. According to Lemma 3 we can use the
following dual form of (4, 3)-property: among every four points in C some three can be
covered by a closed unit disc. To prove that P (S) ≤ 3, it suffices to show that C can be
covered by three unit discs.

Let r be the largest distance between two points of C. We will distinguish three cases:

1. r ≤ 2 (every two discs from S have a non-empty intersection).

Let a, b ∈ C be the points whose distance is equal to r. Then all points from C
lie in the lens-like region Lr, which is the intersection of two closed discs with the
radius r centered at the points a, b; see Figure 4. Let x be the line determined
by points a, b. Consider x as an x-axis of a Cartesian coordinate system with the
origin o at the center of the segment ab, such that b has a positive x-coordinate.
Let (x1, y1) ∈ C be a point with the largest y-coordinate, and (x2, y2) ∈ C a point
with the least y-coordinate. Then y1 ≥ 0, y2 ≤ 0 and y1 − y2 ≤ r. Without loss of
generality, suppose that |y1| ≥ |y2|. Then y2 ≥ − r

2
, so all the points from C lie in

the set L′
r = {(x, y) ∈ Lr; y ≥ − r

2
}. It now suffices to prove that L′

r can be covered

by three closed unit discs. To finish the proof, we refer to case 3 (2 < r ≤
√

8),
where a set larger then L′

r is covered by three unit discs.

2. r >
√

8.

Let A, B ∈ S be the discs with the centers a, b such that |a−b| = r. The discs A and
B are disjoint, so, according to Lemma 2 and by the symmetry, we can assume that
all the discs from S \ {A} intersect B. By (4, 3)-property and Helly’s Theorem, all
the discs from S disjoint with A have a common point b0 ∈ B (if there are just two
such discs, use Lemma 2). Equivalently, all the points from C whose distance from
a is larger than 2 can be covered by one closed unit disc centered at b0. It remains
to cover the set C ′ = {s ∈ C; |s − a| ≤ 2} by two closed unit discs. Except of a,
every other point s ∈ C ′ satisfies |s − b| ≤ 2, so it lies in the region L, which is the
intersection of two closed discs of radius 2 centered at points a, b; see Figure 5. Let
C ′′ = C ′ \ {a}. If |C ′′| ≤ 1, then C ′ contains at most two points and can be covered
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Figure 5: Case 2, discs Da and Db cover all the points from C ′.

by at most two closed unit discs. For the rest of this case suppose that |C ′′| ≥ 2. By
(4, 3)-property, for every two points c1, c2 ∈ C ′′ there exists either a closed unit disc
containing points a, c1, c2 or a closed unit disc containing points b, c1, c2. Moreover,
we can suppose that this disc has the point a (or b) on its boundary:

Since r >
√

8, for every point c ∈ L the sizes of the angles bac and abc are less than
π
4
. Thus for every two points c1, c2 ∈ L the angles c1ac2 and c1bc2 are acute. The

rest follows from the following fact.

Lemma 6. Let D be the smallest disc containing a triangle xyz. If the angle xyz
is acute, then y lies on the boundary of D.

Proof. Clearly, if T = xyz is an obtuse or a right triangle with the longest side xy,
then D has the segment xy as its diameter. If T is acute, then D is the disc whose
boundary is the circumcircle of T .

Consider the same coordinate system as in case 1 and denote by l1, l2 the points
of L with the largest and the least y-coordinate. We define two discs, Da and Db,
which cover all the points from C ′. The discs Da and Db will be determined by their
diameters aa′ and bb′.

Let D be a closed unit disc with diameter aa1, such that D has a non-empty inter-
section with L. Then a1 lies on the semicircle Sa = {z = (zx, zy) ∈ R

2; |z − a| =
2, zx > − r

2
}. If a1 ∈ L\{l1, l2}, then the set L\D consists of two connected regions:

the upper region D and the lower region D.

In the other case L \ D consists of a single connected region: either D, if a1 has a
negative y-coordinate, or D otherwise. We define an upper boundary of D as an arc,
which is a common boundary of D and D (in case that a1 = l1 we define the upper
boundary as {l1}). Similarly we define a lower boundary of D. For the points of the
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semicircle Sa we consider a “vertical” linear ordering: if u = (ux, uy), v = (vx, vy) ∈
Sa and uy < vy, we write u ≺ v and say that u is lower than v, or equivalently, that
v is higher than u. We make similar definitions also for the discs having point b on
the boundary.

Suppose that no closed unit disc with a or b on its boundary covers all the points
from C ′′. Consider the set Ma of all closed unit discs D with diameter aa1 such that
a1 lies on the semicircle Sa and the boundary of D contains at least one point from
C ′′. Symmetrically we define the set Mb. Let

M = {(D′
a, D

′
b) ∈ Ma × Mb; D′

a ∩ (C ′′ \ D′
b) = ∅ ∧ (C ′′ \ D′

a) ∩ D′
b = ∅}}.

Clearly, M is a non-empty finite set. We choose the pair (Da, Db) as a maximal
element of M according to the following partial order:

For the discs D1

a, D
1

b , D
2

a, D
2

b with the diameters aa1, aa2, bb1, bb2, we put (D1

a, D
1

b ) �
(D2

a, D
2

b ) if and only if

(a1 � a2 ∧ b1 ≺ b2) ∨ (a1 � a2 ∧ b1 � b2).

The discs Da and Db cover C ′′ if and only if (Da ∪ Da) ∩ (Db ∪ Db) ∩ C ′′ = ∅. By

the definition of M , it suffices to prove that Da ∩ Db ∩ C ′′ = ∅.
From the maximality of (Da, Db) it follows that there exists a point ca ∈ C ′′ \ Db

on the upper boundary of Da and a point cb ∈ C ′′ \ Da on the lower boundary of
Db. It cannot happen both ca ∈ Db and cb ∈ Da, since in this case there exists no
closed unit disc with a or b on its boundary covering both points ca and cb. Thus,
without loss of generality, we can suppose that ca ∈ Db.

For contradiction, suppose that Da and Db have a non-empty intersection. Let
ua and va be the intersections of the boundary of Da with the semicircle Sb, such
that ua is higher than va. Similarly we define ub and vb as the intersections of the
boundary of Db with the semicircle Sa, so that ub is higher than vb. The region Da

is bounded by three arcs vaa
′, a′l2, l2va, and Db is bounded by the arcs ubb

′, b′l1,
l1ub. If b′ were higher than va and ub higher than a′, the regions Da and Db would
be disjoint (they would be separated by the line vaa

′, for example). Since there is
a point ca ∈ Db on the upper boundary of Da, either b′ is higher than ua or vb is
higher than a′. In the first of these two cases, a′ must be higher than ub, in the
second case b′ must be lower than va. Since these cases are symmetric, it suffices to
consider only the first case.

We observe that ua has larger y-coordinate than a′: consider a horizontal line xa′

going through the point a′. It crosses the boundary of Da at the point ta with the
x-coordinate equal to − r

2
(the angle a′taa is right). It implies that ta lies outside

the region L and that the line xa′ crosses Sb (the left part of the boundary of L) at
a point which lies inside Da, thus lower than ua. Similarly we get that ub has larger
y-coordinate than b′, which contradicts the assumptions that b′ is higher than ua

and a′ higher than ub.
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3. 2 < r ≤
√

8.

See Figure 6.

As in case 2, let A, B ∈ S be the discs with the centers a, b such that |a − b| = r
and all the discs from S except of A intersect B. Let C ′ = C \ {a}. All the points
from C ′ lie in the area Lr = {z ∈ R

2; |z − a| ≤ r, |z − b| ≤ 2}. Hence it is sufficient
to cover the set Lr ∪ Sr, where Sr is the segment ab, with three closed unit discs.
Consider a Cartesian coordinate system such that b = (1, 0), and a = (1− r, 0). By
Lemma 2, every two discs from S \{A} have a non-empty intersection, so every two
points from C ′ have a vertical distance at most 2. Thus, without loss of generality,
all the points from C ′ have y-coordinate at least −1. So it suffices to cover the
set L′′

r = L′
r ∪ Sr, where L′

r = {z = (xz, yz); z ∈ Lr, yz ≥ −1}. Without loss of
generality, we can assume r =

√
8. It is easy to see that L′′√

8
covers every set L′

r

defined in case 1 (r ≤ 2).

We will divide L′′
r into three sets Z1, Z2, Z3 and we cover each of them by one unit

disc. Let u = (2−
√

2

2
,
√

14

2
), v = (1 −

√
8 +

√
7,−1), w = (1 −

√
3,−1) (u, v and

w are the boundary vertices of the region L′
r), o = (0, 0), c = (−1, 0), d = (1 −√

8+
√

8 − 0.432, 0.43), e = (1−
√

4 − 0.752, 0.75), and f = (−0.35,−1). The points
d, e, f lie on the boundary of L′

r and the segments od, oe, of divide L′′
r into three

parts Z1 = odue, Z2 = ofvd, and Z3 = oewf ∪ ac. For i = 1, 2, 3, part Zi is covered
by the closed unit disc Di centered at ci, where c1 = (0.1, 0.9), c2 = (0.3,−0.3), and
c3 = (−0.9,−0.2): it is straightforward to check that o, d, u, e ∈ D1, o, f, v, d ∈ D2

and o, e, w, f, a, c ∈ D3, which implies Zi ⊆ Di for i = 1, 2, 3 (the boundary curves
of the sets Zi consist of segments or arcs which have less curvature than the unit
circle).

The lower bound is established by the example of Grünbaum [5], who constructed nine
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pairwise intersecting unit discs that cannot be pierced by two points. For completeness,
we describe the construction here (at least we need to show that the (4, 3)-property is
satisfied). We construct a nine-point set S = {a, b, c, a1, a2, b1, b2, c1, c2} in the plane,
which cannot be covered by two closed unit discs and satisfies the dual version of (4, 3)-
property. See Figure 7.

Let a, b, c be the vertices of an equilateral triangle with side of length 2. Let Aa be
the arc of the circle with center a and radius 2, with endpoints b, c and central angle
π
3
. Similarly arcs Ab and Ac are defined. In other words, the points a, b, c and the arcs

Aa, Ab, Ac form the vertices and edges of a Reuleaux triangle of width 2. Let ε > 0
be sufficiently small. Let a1, c2 ∈ Ab, b1, a2 ∈ Ac, c1, b2 ∈ Aa be such points, that
|a1 − a| = |a2 − a| = |b1 − b| = |b2 − b| = |c1 − c| = |c2 − c| = ε.

Now we verify that both required conditions are satisfied:

• Suppose that S can be covered by two closed unit discs. Then one of them, D1,
must cover two points from the set {a, b, c}, say a and b. The distance between a
and b is equal to the length of the diameter of the unit disc. Hence, D1 is centered
at the center of the segment ab. Arcs Aa and Ab intersect D1 only at points a and
b, so D1 covers only points a, b, a2 and b1. But points c, a1 and b2 obviously cannot
be covered by a closed unit disc (the circle circumscribed to the acute triangle ca1b2

has radius almost 2
√

3

3
), which is a contradiction.

• Let Q ⊂ S be a four-point set. Without loss of generality, suppose that Q contains
at least two points from the set {a, a1, a2}. If Q contains all these three points,
then {a, a1, a2} ⊂ Q is a triple which is covered by a closed unit disc centered at
a. Otherwise, Q contains exactly two of the points a, a1, a2. By symmetry, we can
suppose that a1 ∈ Q.

Suppose that a ∈ Q. The quadruple Q contains at least one point from the set
R = {c2, c, c1, b2, b1}. Hence it suffices to prove that every triple {a1, a, x},
where x ∈ R, can be covered with a closed unit disc. If x ∈ {c2, c, c1, b2}, then
{a1,a,x} is covered by the disc with the diameter ax, since |a−x| ≤ 2 and the angle
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aa1x is obtuse. The remaining triple {a1, a, b1} is covered by the disc D with the
diameter a1b1: let o be the circumcenter of the triangle abc. Then triangles oa1b1

and oab are similar and |o − b1| < |o − b|, which implies |a1 − b1| < 2, so D has a
radius less than 1. The disc D covers also the point a, since a1ab1 is a right triangle:
|^b1aa1| = |^baa1|+|^b1ab| = |^cbb1|+|^b1ab| = π

3
+|^abb1|+|^b1ab| = π

3
+ π

6
= π

2
.

Suppose that a2 ∈ Q. Then all the triples {a1,a2,x}, where x ∈ {c2, c, c1, b2, b, b1},
can be covered by a closed unit disc: by symmetry, it suffices to prove that only for
x ∈ {c2, c, c1}. In that case, {a1, a2, x} is covered by the disc with the diameter a2x,
since |a2 − x| ≤ 1 and the angle a2a1x is obtuse.

5 Triangles

In this section we analyze the collections of positively homothetic triangles.
By applying an appropriate affine transformation, we can assume without loss of

generality that all the considered triangles are equilateral. Let Tλ ⊂ R
2 be an equilateral

triangle defined as a convex hull of points (0, 0), (λ, 0) and
(

λ
2
,
√

3λ
2

)

. Let T be a collection

of all triangles Tλ + v, where λ > 0 and v ∈ R
2 is an arbitrary vector. Let T1 ⊂ T be a

collection of all unit triangles from T , i. e., the triangles with λ = 1. Our aim is to show
that MT = MT1

= 3.
For T = Tλ + v ∈ T , the line determined by points (0, 0) + v and (λ, 0) + v is

called the bottom line of T . Similarly, the right line is determined by points (λ, 0)+v and
(

λ
2
,
√

3λ
2

)

+v and (0, 0)+v, and the left line is determined by points (λ, 0)+v,
(

λ
2
,
√

3λ
2

)

+v

and (0, 0)+v,
(

λ
2
,
√

3λ
2

)

+v. The point
(

λ
2
,
√

3λ
2

)

+v is called the top of the triangle Tλ +v.

Now we present the upper and the lower bound for the maximum piercing number of
positively homothetic triangles.

Theorem 7. MT ≤ 3.

Proof. As usual, let S be a finite subcollection of T satisfying (4, 3)-property. We will
show that P (S) ≤ 3.

Let T ∈ S be the triangle which has the largest y-coordinate of its bottom line. If T
is not unique, pick one such triangle arbitrarily. Denote by a, b, c the vertices of T so
that ab is the bottom line of T . Without loss of generality, we may assume that T = T1,
i. e., a = (0, 0) and b = (1, 0). If S ∈ S and S ∩ T is non-empty, then the intersection of
the segment ab and T is a non-empty segment (which may be degenerate). Let lS and rS

be the x-coordinates of the left and the right endpoint of this segment.
Consider several cases:

1. The triangle T does not intersect any other triangle.

Let U , V , W be different elements of S\{T}. Then, according to the (4, 3)-property
for the quadruple T , U , V , W , the triple U , V , W has a non-empty intersection.
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x1 x2
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V

S

Figure 8: Subcases 2.1 and 2.2.

The assumption |T | ≥ 4 implies that |S \{T}| ≥ 3. Hence, by Helly’s Theorem, the
intersection of S \ {T} is non-empty. Then arbitrary two points x1 ∈ ⋂

(S \ {T})
and x2 ∈ T pierce S.

2. The triangle T intersects some other triangle.

Let U ∈ S be the triangle such that rU is the smallest possible. Similarly, let V ∈ S
be the triangle such that lV is the largest possible. We distinguish three subcases.
See Figure 8 for the first two of these subcases.

2.1. rU ≥ lV .

Let x1 = (rU , 0). If S ∈ S is a triangle intersecting T , then rS ≥ rU and
lS ≤ lV ≤ rU , hence x1 ∈ S. As in case 1, there exists a point x2 which is in
the intersection of triangles not intersecting T (if there are at most two such
triangles, they can be pierced by two points x2 and x3).

2.2. rU < lV and U ∩ V is empty.

Let x1 = (rU , 0) and x2 = (lV , 0). We will show that {x1, x2} pierces S. Clearly,
T and U are pierced by x1 and V is pierced by x2. Let S ∈ S \ {T, U, V }. We
will use (4, 3)-property for the triangles S, T , U , V . Since U ∩ V = ∅, we have
S ∩ T ∩ U 6= ∅ or S ∩ T ∩ V 6= ∅. It means that S ∩ T 6= ∅ and lS ≤ rU ≤ rS

or rS ≥ lV ≥ lS, which implies that x1 ∈ S or x2 ∈ S.

2.3. rU < lV and U ∩ V is non-empty.

Let x1 = (rU , 0) and x2 = (lV , 0). We will find a point x3 ∈ U ∩ V such that
{x1, x2, x3} pierces S. Let M = {S ∈ S|S ∩ T = ∅} and Z = M ∪ {U, V }.
First, we establish that

⋂Z 6= ∅. If Z = {U, V }, then
⋂Z 6= ∅ from the

assumption of this subcase. If |Z| ≥ 3, then it is sufficient to show that Helly’s
property from Theorem 1 is satisfied. Let X, Y , Z ∈ Z. According to the
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Figure 9: Sub-subcases 2.3.1 and 2.3.2.

(4, 3)-property for the quadruple X, Y , Z, T we obtain that X ∩ Y ∩ Z is
non-empty (by an easy discussion of three cases according to the cardinality
of {X, Y, Z} ∩ {U, V }). Hence Helly’s property is satisfied. It is easy to see
that

⋂Z is a triangle or a point. In the first case pick x3 as the top of that
triangle, in the second case pick x3 such that {x3} =

⋂Z. It remains to show
that every triangle S ∈ S is pierced by some of the points x1, x2, x3. We know
this for S ∈ {T, U, V } and for every triangle S ∈ S disjoint with T . Now, let
S 6= T, U, V be a triangle from S intersecting T . If lS ≤ rU , then x1 ∈ S. If
rS ≥ lV , then x2 ∈ S.

Suppose that rU < lS ≤ rS < lV . We will show that x3 ∈ S. We have
T ∩ U ∩ S = ∅ and T ∩ V ∩ S = ∅. Now, distinguish two sub-subcases.

2.3.1. There exists P ∈ Z such that x3 is a top of P .
Then P 6= U, V , since the tops of U and V are above the bottom line of
T . Use the (4, 3)-property for the quadruple S, T , U , P . We know that
T ∩ P = ∅ and S ∩ T ∩ U = ∅, hence S ∩ U ∩ P 6= ∅. In particular,
S ∩ P 6= ∅. On the other hand, x3 is below the left line of V , which is
below the left line of S (lS < lV ). Similarly, x3 is below the right line of S.
Thus S ∩ P 6= ∅ implies that x3 ∈ S.

2.3.2. There are two distinct triangles L, R ∈ Z such that x3 is on the left line
of R and on the right line of L.
Then the statement easily follows from the (4, 3)-property for the triangles
S, T , L and R.

We have discussed all the cases so the proof is finished.
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b2a1
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c
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Figure 10: Nine points of S and the triangle −T1 + c1.

Theorem 8. MT1
≥ 3.

Proof. Similarly as in the case of unit discs, we construct a nine-point set S = {a, b, c,
a1, a2, b1, b2, c1, c2} which cannot be covered by two translated copies of −T1 and satisfies
a dual version of the (4, 3)-property: among every four points from S some three can be
covered by a translated copy of −T1. See Figure 10.

Let a = (0, 0), b = (1, 0), c =
(

1

2
,
√

3

2

)

be the vertices of the equilateral triangle T1.

We put the remaining six points on the sides ab, bc, ca of this triangle: let a1, c2 ∈ ca,
b1, a2 ∈ ab, c1, b2 ∈ bc be such points, that |a1 − a| = |a2 − a| = |b1 − b| = |b2 − b| =
|c1 − c| = |c2 − c| = ε, where ε > 0 is sufficiently small.

Suppose that S can be covered by two translated copies of −T1. Then one of these two
copies, T ′, covers two of the points a, b, c. By symmetry, we can assume that a, b ∈ T ′.
Then a and b are two vertices of T ′ and T ′ ∩ T = ab, so the triangle T ′ covers only those
four points from S lying on ab. The remaining points have to be covered by the second
translated copy of −T1, but it is obviously impossible even for the three points c, a1, b2.

It remains to verify that S satisfies the dual (4, 3)-property. Let Q be a four-point
subset of S. Without loss of generality, we can assume that Q contains exactly two points
from the set {c, c1, c2} and that c2 ∈ Q. If a1 ∈ Q or a2 ∈ Q, then the triangle −T1 +c+a2

(a translated copy of −T1 with the bottom vertex at a2) contains at least three points
from Q, since it covers points c, c1, c2, a1 and a2. The case when b1 ∈ Q or b2 ∈ Q is
symmetric. We are left with the case when Q contains points a, b, c2 and one of the points
c, c1. If Q = {a, b, c2, c}, then points a, c2, c are covered by the triangle −T1 + c with
the bottom vertex at a. If Q = {a, b, c2, c1}, then the points a, c2, c1 are covered by the
triangle −T1 + c1 with the upper right vertex at c1.

According to the inequality MT ≥ MT1
, the previous two results imply the following

corollary.

Theorem 9. MT = MT1
= 3.
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[8] H. Hadwiger, H. Debrunner add V. Klee, Combinatorial geometry in the plane, Holt,
Rinehart and Winston, New York (1964).
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[11] D. J. Kleitman, A. Gyárfás and G. Tóth, Convex sets in the plane with three of every
four meeting, Combinatorica 21(2) (2001), 221–232.
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