
Dominating sets of random 2-in 2-out directed graphs

Stephen Howe∗

Department of Mathematics and Statistics
University of New South Wales
Sydney, NSW 2052, Australia
stephenh@maths.unsw.edu.au

Submitted: Aug 8, 2007; Accepted: Jan 30, 2008; Published: Feb 11, 2008

Mathematics Subject Classifications: 05C80, 05C69, 05C20

Abstract

We analyse an algorithm for finding small dominating sets of 2-in 2-out directed
graphs using a deprioritised algorithm and differential equations. This deprioritised
approach determines an a.a.s. upper bound of 0.39856n on the size of the smallest
dominating set of a random 2-in 2-out digraph on n vertices. Direct expectation
arguments determine a corresponding lower bound of 0.3495n.

1 Introduction

A directed multigraph G is a set V = V (G) of vertices with a multiset E = E(G) ⊆ V ×V
of (directed) edges. When E contains no repeated edges and no loops (edges of the form
(v, v) for some v ∈ V) we say that G is simple and call G a directed graph or digraph.
The in-degree of a vertex u ∈ V is the number of edges of the form (v, u) for some v ∈ V ;
the out-degree of u is the number of edges of the form (u, v) for some v ∈ V . We consider
only directed multigraphs (simple or otherwise) for which every vertex has in-degree 2
and out-degree 2. Such graphs are called 2-in 2-out or 2-regular.

A random 2-in 2-out digraph (on n vertices) is a digraph chosen uniformly at random
from the set of all 2-in 2-out digraphs on n vertices. Often the probability of a random
graph having a certain property, such as being connected, tends to 1 as n tends to infinity.
In this case we say that a random graph has such a property asymptotically almost surely
(a.a.s.). For example, a.a.s. a random 2-in 2-out digraph is connected [3].

In [5] Duckworth and Wormald determined a.a.s. upper and lower bounds for domi-
nating sets of random cubic graphs. We determine similar bounds for random 2-in 2-out
digraphs.

∗Research supported by the ARC Centre of Excellence for Mathematics and Statistics of Complex
Systems (MASCOS).

the electronic journal of combinatorics 15 (2008), #R29 1

A dominating set of a digraph G is a subset D ⊆ V (G) of the vertices such that for
every vertex v ∈ V (G), either v ∈ D or for some u ∈ D the edge (u, v) is present in G.
If we change (u, v) to (v, u) in the above definition, then we define an absorbent set of G.
The results of this paper, stated in Theorem 1.3, also hold for absorbent sets.

Dominating sets of small cardinality are the most interesting. For a general digraph,
finding a minimum dominating set is NP-hard (which follows from a simple reduction
from the undirected case). Some approximation results can be found in [2]. For example,
for digraphs with in-degree bounded by a constant B, it is NP-hard to approximate the
size of the minimum dominating set to within a constant less than B − 1 for B ≥ 3 and
1.36 for B = 2 ([2] Theorem 10).

Other results about domination in digraphs can be found in [8] and [10]. Of particular
interest are the following bounds on the minimum size of a dominating set of an arbitrary
digraph on n vertices.

Theorem 1.1 ([8, 10]). Let G be a digraph on n vertices.

(i) If G has minimum in-degree δ ≥ 1 then the minimum size of a dominating set in G
is less than

δ + 1

2δ + 1
n + 1.

(ii) If G has maximum out-degree ∆ then the minimum size of a dominating set in G
is greater than

1

1 + ∆
n.

Theorem 1.1 can be found in [8] as Theorem 15.49 and Theorem 15.57; part (i) is
originally from [10].

By Theorem 1.1, for 2-in 2-out digraphs the minimum size of a dominating set is
bounded below by n/3 and above by 3n/5. We will significantly improve these bounds
for random 2-in 2-out digraphs (see Theorem 1.3).

As far as we are aware, dominating sets of random regular digraphs have not been
studied. However domination has been studied in other models of random digraphs.
Consider the following model: start with n vertices and for each pair of vertices (u, v)
independently include (u, v) as an edge with probability p (for some p ∈ [0, 1]). We denote
this model by DGn,p. Lee obtained the following result.

Theorem 1.2 ([10]). Fix p with 0 < p < 1 and let k = log n−2 log log n+log log e where
log denotes the logarithm to base 1/(1 − p). Then the minimum size of a dominating set
of a random digraph G ∈ DGn,p is a.a.s. bk + 1c or bk + 2c.

We study dominating sets in random 2-in 2-out digraphs using two techniques: by
considering an algorithm for finding dominating sets of small cardinality and using direct
expectation arguments. The algorithm, called DominatingSet, is described in Section 2.
In Sections 3, 4, and 5 we approximate DominatingSet by another algorithm, known as
a deprioritised algorithm. The behaviour of the deprioritised algorithm is then described

the electronic journal of combinatorics 15 (2008), #R29 2

by solutions to a certain system of differential equations. This analysis, which we call
the deprioritised approach, was initially introduced by Wormald in [15]. The deprioritised
approach determines the upper bound of the next theorem; the lower bound comes from
the direct expectation arguments which are described in Section 6.

Theorem 1.3. Asymptotically almost surely the minimum size of a dominating set of a
random 2-in 2-out digraph is less than 0.39856n and greater than 0.3495n.

Previously, similar work has found bounds for independent dominating sets [6] and
vertex and edge packing [1] on random regular graphs. We are not aware of any previous
work applying the deprioritised approach to directed graphs. In [6] and [1] Theorem 2
of [15] was used. However this theorem cannot be applied for all algorithms on random
regular graphs, for example [12] and [4]. Nor is it applicable for DominatingSet (and
many other algorithms on random regular digraphs). A justification of this is given just
before Section 3.1.

Further useful definitions and results about random graphs in general can be found in
[9]. When working with probabilities, we use P(A) to denote the probability of the event
A occurring and E(X) to denote the expected value of a random variable X.

2 Finding Small Dominating Sets

We start with some useful notations and definitions. An edge (u, v) ∈ E(G) is called
an edge from u to v; we also say that u dominates v. Given a vertex u, vertices v such
that (v, u) ∈ E(G) are called in-neighbours of u. Thus the in-degree of a vertex u is the
number of in-neighbours of u. Out-neighbours are defined similarly.

The pair (p, q) where p is the in-degree of u and q is the out-degree of u is called the
degree pair of u. A vertex with degree pair (0, 0) is called isolated while a vertex with
degree pair (2, 2) is called saturated. Finally let V(i,j) = V(i,j)(G) be the set of vertices of
G with degree pair (i, j).

Now a dominating set for a given 2-in 2-out digraph G can be found by the following
algorithm. We set H := G and let D be empty. While D is empty or there are vertices of
degree pair (0, 1), (0, 2), or (1, 2) in H: select a vertex v uniformly at random from V(p,q)

where

(p, q) = min{(i, j) : (i, j) ∈ {(0, 1), (0, 2), (1, 2), (2, 2)} and V(i,j)(H) 6= ∅}.

Here degree pairs are ordered lexicographically. After selecting v, remove the edges of H
incident with vertices dominated by v (in H) and then remove the edges incident with v.
Then add v to D as well as any newly isolated vertices of H that are not dominated by
v in G. When D 6= ∅ and there are no more edges of degree pairs (0, 1), (0, 2), and (1, 2),
add any remaining non-isolated vertices to D. Then D is a dominating set for G.

the electronic journal of combinatorics 15 (2008), #R29 3

In order to obtain results about 2-in 2-out digraphs we analyse the algorithm Dom-
inatingSet given below. DominatingSet is based on the algorithm described above but,
instead of taking a random 2-in 2-out digraph as input, DominatingSet constructs a ran-
dom 2-in 2-out digraph along with a dominating set. To do so we use the pairing or
configuration model which we describe next.

2.1 Generating Random 2-in 2-out Digraphs Uniformly

We generate a random 2-in 2-out directed multigraph (on the n vertices v1, . . . , vn) with
the pairing model as follows. For each vertex vi we associate two in-points and two out-
points. A bijection P from the set of 2n in-points to the set of 2n out-points is called
a pairing. If P is only a partial function (from the in-points to the out-points) but still
one-to-one then we call P a partial pairing. In both cases, a pair of P is an in-point a
and an out-point b such that P (a) = b.

Now, from a given pairing P we construct a directed multigraph G(P) (on v1, . . . , vn);
for each in-point a in a pair of P we add to (the multiset) E(G(P)) the edge (vi, vj) such
that the out-point P (a) is associated with vi and the in-point a is associated with vj. By
construction G(P) will be 2-in 2-out.

Selecting a pairing P uniformly at random we obtain a random directed multigraph
G(P). Although G(P) is not distributed uniformly, by conditioning on G(P) having no
loops or repeated edges, we obtain a simple 2-in 2-out digraph uniformly at random. The
probability that G(P) is simple is bounded below by a constant, see Theorem 4.6 of [11].
Thus a property holding a.a.s. for random directed multigraphs generated by the pairing
model, also holds a.a.s. for random 2-in 2-out digraphs.

The pairing model also allows us to use a random process to generate random 2-in
2-out directed multigraphs. Start with an empty partial pairing P where no in-point is
mapped to any out-point. At each step of the process we extend the definition of P by
one pair in the following way: select an in-point a, from the in-points not in the domain of
P , and an out-point b, from the out-points not in the range of P , where a or b is selected
uniformly at random; then extend the definition of P so that P maps a to b. The point
not selected uniformly at random may be selected in any way we like. The process stops
when P becomes a pairing. We call such a process a random partial pairing process and
the resulting random pairing is distributed uniformly.

When we extend a partial pairing to map a to b we say we are exposing a pair (in
particular, the pair corresponding to a and b), or exposing an in-point, or just exposing
a point (when the pair corresponding to the in-point or point is clear from the context).
Points that are not in the domain and not in the range of P are called free.

DominatingSet will expose pairs one at a time by determining one point of the next
pair to be exposed. At the same time, vertices are added to a set D which will be a
dominating set when the algorithm finishes. In this way DominatingSet generates a 2-in
2-out directed multigraph G(P) (for some pairing P) and a dominating set for G(P).

the electronic journal of combinatorics 15 (2008), #R29 4

2.2 The Algorithm DominatingSet

Algorithms 1 and 2 define DominatingSet and its auxiliary algorithm Saturate. We will
view DominatingSet as a sequence of operations where each operation involves selecting
the vertex u, adding u to D, and then calling Saturate with u. Let

P0 ⊂ P1 ⊂ · · · ⊂ PF

be the subsequence of the random partial pairing process defined by DominatingSet such
that P0 is the empty partial pairing, PF is a pairing, and Pt+1 is obtained from Pt by
performing an operation. From this sequence we obtain a corresponding sequence {Gt}

F
t=0

of directed multigraphs where Gt = G(Pt). We analyse DominatingSet using the random
variables Y(i,j)(Gt) =

∣∣V(i,j)(Gt)
∣∣ and D(Gt) = |D(Gt)|.

During each operation, some vertex v is added to D and the free points associated
with v, and the free points associated with the out-neighbours of v are exposed by a call
to Saturate. When all the in-points and out-points associated with a vertex v are exposed
then v has been saturated. Any vertices other than v and its out-neighbours that become
saturated are called accidental saturates. By adding accidental saturates to D, after each
operation, all saturated vertices are either in D or are dominated by a vertex in D.

DominatingSet finishes when there are no vertices of degree pairs (1, 0), (2, 0), or (2, 1).
By equating the sum of the in-degrees with the sum of the out-degrees, every vertex in
the final graph GF has degree pair (0, 0), (1, 1), or (2, 2). We complete the graph GF

to a 2-in 2-out digraph by calling Saturate on the remaining unsaturated vertices. This
will add a subset of V(1,1)(GF) ∪ V(0,0)(GF) to D. So D(GF) + Y(0,0)(GF) + Y(1,1)(GF) will
be an upper bound on the smallest size of a dominating set for any 2-in 2-out digraph
containing GF as a subgraph. Note though, that we expect (but don’t prove) that a.a.s.
GF has no vertices of degree pair (0, 0) or (1, 1).

3 The Differential Equations Method

As mentioned above, we view DominatingSet as a sequence of operations. Each operation
involves selecting a vertex u uniformly at random from the vertices of a given degree pair,
adding u to the dominating set, and then saturating u and its out-neighbours. We say
that the operation processes the vertex u. There are four types of operations, given in
Table 1, and the types depend solely on the degree pair of u. We also say that vertex v
is of type k if the degree pair of v is associated with an operation of type k.

DominatingSet is a prioritised algorithm in the sense that the type of each operation
is chosen deterministically. Such algorithms on undirected graphs have been analysed in
[13] and [5]. Analysing prioritised algorithms on graphs is difficult and remains so for
algorithms on digraphs. Wormald in [15] introduced the idea of deprioritised algorithms
which are easier to analyse. These algorithms use the same operations as the prioritised
algorithm but choose the type of operation to perform according to a probability dis-
tribution. We are free to choose this probability distribution however we like. With an
appropriate choice the deprioritised algorithm will approximate the prioritised algorithm.

the electronic journal of combinatorics 15 (2008), #R29 5

Algorithm 1 DominatingSet

Recall that V(i,j) = V(i,j)(G(P)) and Y(i,j) =
∣∣V(i,j)

∣∣
Set P to be the empty partial pairing;
Pick u uniformly at random from V(0,0);
D := {u};
Saturate(u);
while Y(1,0) + Y(2,0) + Y(2,1) 6= 0 do

if Y(2,1) 6= 0 then
Pick u uniformly at random from V(2,1);

else if Y(2,0) 6= 0 then
Pick u uniformly at random from V(2,0);

else
Pick u uniformly at random from V(1,0);

end if
D := D ∪ {u};
Saturate(u);

end while
return D and P ;

Algorithm 2 Saturate(u)

Expose the free points associated with u;
Expose the free points associated with each out-neighbour of u in G(P);
Add accidental saturates to D;

Degree pair Type
(0, 0) 0
(1, 0) 1
(2, 0) 2
(2, 1) 3

Table 1: Types of operations and vertices.

the electronic journal of combinatorics 15 (2008), #R29 6

Algorithm 3 The deprioritised version of DominatingSet

Require: : ε > 0 is given and sufficiently small.
Set P to be the empty partial pairing;
D := ∅;
for i = 1, . . . , bεnc do

Pick u uniformly at random from V(0,0);
D := D ∪ {u};
Saturate(u);

end for
while Y(1,0) + Y(2,0) + Y(2,1) 6= 0 do

Set pi for i = 1, 2, 3 as defined in Section 4.6;
Choose a operation type k according to the distribution P(k = i) = pi;
Choose u uniformly at random from the vertices of type k in G(P);
D := D ∪ {u};
Saturate(u);

end while
return D and P ;

The deprioritised version of DominatingSet is given in Algorithm 3. The for loop is
called the preprocessing phase; it is required for reasons explained in Section 5. The
probabilities p1, p2, and p3 are derived in Section 4.6. Here we note the main difference
between using the deprioritised approach on directed and undirected graphs and why the
theorems of [15] are not applicable. For most of the algorithms that have been studied
on undirected graphs, the type of operation to perform (except during the preprocessing
phase) has been randomly selected from two possible types while we select from three
possible types.

3.1 The Differential Equations Theorem

We analyse the deprioritised version of DominatingSet with Theorem 3.1 given below. A
detailed introduction to this theorem can be found in [14]. Using Theorem 3.1 we show
that, until near the very end of the algorithm, a.a.s. the scaled variables Y(i,j)(Gt)/n and
D(Gt)/n are approximated by the solutions z(i,j)(t/n) and z(t/n) to some set of differential
equations. The differential equations will be determined, in the next section, using the
expected change in Y(i,j) and D due to an operation.

Before stating the theorem we need a few definitions. Let S(n) be the set of all possible
partial and complete pairings for a 2-in 2-out digraph on n vertices. A history h

(n)
t of

the process after t time units is a sequence h
(n)
t = (q

(n)
0 , . . . , q

(n)
t) where q

(n)
i ∈ S(n) for all

i = 0, 1, . . . , t. Let S(n)+ denote all the possible histories of the process after t time units
for t = 0, 1, . . . and let H

(n)
t be the history of a given run of the process over t time units.

Since we are interested in the asymptotic behaviour of the process as n tends to infinity,
we often drop n from the notation.

the electronic journal of combinatorics 15 (2008), #R29 7

Let Y1, . . . , Ya be random variables defined on a random process G0, . . . , GT . Given a
domain W ⊆ R

a+1, we define the stopping time TW to be the minimum t such that

(t/n, Y1(t)/n, . . . , Ya(t)/n) /∈ W.

A function f : R
m → R is Lipschitz on W (for W ⊆ R

m) with Lipschitz constant L
if, for L a positive constant, for all x and y in W ,

|f(x) − f(y)| ≤ L max
1≤i≤m

|xi − yi|.

The function ‖ · ‖ defined by ‖x‖ = max1≤i≤n |xi| is the `∞ norm.
Finally, a sequence of functions fn uniformly converges to a function f for x ∈ X if,

for every ε > 0, there exists an N such that

|f(x) − fn(x)| < ε

for all x ∈ X and all n > N . Now we are ready to state Theorem 3.1 (which appears as
Theorem 5.1 in [14]).

Theorem 3.1 ([14]). For 1 ≤ ` ≤ a with a fixed, let y` : S(n)+ → R and f` : R
a+1 → R,

such that for some constant C0 and all `, we have |y`(h`)| < C0n for all h` ∈ S(n)+ and
for all n. Let Y`(t) denote the random counterpart of y`(h`). Assume the following three
conditions hold where W is a bounded connected open set containing the closure of

{(0, z1, . . . , za) | P(Y`(0) = zln, 1 ≤ ` ≤ a) 6= 0 for some n}.

(i) (Boundedness Hypothesis) For some functions β = β(n) ≥ 1 and γ = γ(n), the
probability that

max
1≤`≤a

|Y`(t + 1) − Y`(t)| ≤ β

conditional upon Hl, is at least 1 − γ for t < TW .

(ii) (Trend Hypothesis) For some function λ1 = λ1(n) = o(1), for all 1 ≤ ` ≤ a,

|E(Y`(t + 1) − Y`(t) |H`) − f`(t/n, Y1(t)/n, . . . , Ya(t)/n)| ≤ λ1

for t < TW .

(iii) (Lipschitz Hypothesis) Each function f` is continuous and satisfies a Lipschitz con-
dition on

W ∩ {(t, z1, . . . , za) | t ≥ 0}

with the same Lipschitz constant for each `.

Then the following are true:

the electronic journal of combinatorics 15 (2008), #R29 8

(a) For (0, ẑ1, . . . , ẑa) ∈ W the system of differential equations

dz`

dx
= f`(x, z1, . . . , za) for ` = 1, . . . , a

has a unique solution in W for z` : R → R such that z`(0) = ẑ` for 1 ≤ ` ≤ a and
which extends to points arbitrarily close to the boundary of W .

(b) Let λ > λ1+C0nγ with λ = o(1). For a sufficiently large constant C, with probability
1 − O(nγ + β

λ
exp(−nλ3

β3)) we have

Y`(t) = nz`(t/n) + O(λn)

uniformly for 0 ≤ t ≤ σn, for each `, where z`(x) is the solution in (a) with
ẑ` = Y`(0)/n and σ = σ(n) is the supremum of those x to which the solution can be
extended before reaching within `∞-distance Cλ of the boundary of W .

4 Determining the Differential Equations

First we determine functions f
(r)
(i,j) and f (r) such that, for 0 ≤ i, j ≤ 2 and r ∈ {0, 1, 2, 3},

f
(r)
(i,j)(t/n, Y(0,0)(t)/n, . . . , Y(2,2)(t)/n, D(t)/n) + o(1)

is the expected change in Y(i,j) due to an operation of type r at time t and

f (r)(t/n, Y(0,0)(t)/n, . . . , Y(2,2)(t)/n, D(t)/n) + o(1)

is the expected change in D due to an operation of type r at time t.
During an operation there are five sorts of vertices:

• vertices that have none of their associated free points exposed,

• the vertex u chosen at the start of the operation and added to the dominating set,

• the out-neighbours of u from exposing the free out-points associated with u, called
rems,

• vertices, other than u and its out-neighbours, that have an associated in-point ex-
posed, called in-incs, and

• vertices, other than u and its out-neighbours, that have an associated out-point
exposed, called out-incs.

We determine the expected change in the random variables (and thus the differential
equations) by considering the contribution from the different sorts of vertices. Since more
than one edge may be exposed during an operation, the random variables Y(i,j) change
during an operation. However they will only change by a constant amount (since only a

the electronic journal of combinatorics 15 (2008), #R29 9

constant number of edges are exposed); so if the number of free in-points ρ is at least a
constant times n, the value of Y(i,j)/ρ for each (i, j) during an operation will be within
o(1) of its value at the start of the operation. Thus we will assume that ρ is Ω(n) and
treat each Y(i,j) as a constant throughout each operation.

First let Pin(w ∈ V(i,j)) be the probability that a vertex w, selected via a free in-point
chosen uniformly at random, has degree pair (i, j). And similarly for Pout(w ∈ V(i,j)).
Then

Pin(w ∈ V(i,j)) = (2 − i)Y(i,j)/ρ and Pout(w ∈ V(i,j)) = (2 − j)Y(i,j)/ρ

where ρ =
∑2

p=0

∑2
q=0(2 − p)Y(p,q) =

∑2
p=0

∑2
q=0(2 − q)Y(p,q).

In-incs and Out-incs

The expected change in Y(i,j) due to an in-inc w is In(i,j) + o(1) where

In(i,j) = Pin(w ∈ V(i−1,j)) − Pin(w ∈ V(i,j)) = ((3 − i)Y(i−1,j) − (2 − i)Y(i,j))/ρ

and taking Y(i,j) = 0 if i < 0 or j < 0. Similarly, the expected change in Y(i,j) due to an
out-inc w is Out(i,j) + o(1) where

Out(i,j) = Pout(w ∈ V(i,j−1)) − Pout(w ∈ V(i,j)) = ((3 − j)Y(i,j−1) − (2 − j)Y(i,j))/ρ.

Rems

A rem is a vertex that is a new out-neighbour of u. Let w be a rem. Contributions
to the expected change in Y(i,j) from saturating w come from three sources: w moving
to V(2,2), in-incs from exposing the free out-points associated with w, and out-incs from
exposing the free in-points associated with w. Let Fin and Fout be the number of free
in-points and out-points associated with w (respectively) before the edge (u, w) is added.
Then the expected change in Y(i,j) due to a rem is Rem(i,j) + o(1) where

Rem(i,j) = δ(i,j)=(2,2) − Pin(w ∈ V(i,j)) + E(Fin − 1) Out(i,j) + E(Fout) In(i,j)

= δ(i,j)=(2,2) − (2 − i)Y(i,j)/ρ + (2/ρ)(Y(0,0) + Y(0,1) + Y(0,2))Out(i,j)

+ (1/ρ)(4Y(0,0) + 2Y(1,0) + 2Y(0,1) + Y(1,1))In(i,j)

and δb = 1 if b is true and 0 otherwise.

Operations

There are 4 operation types as displayed in Figure 1. The black circles represent
vertices that are saturated prior to the operation. The empty circles represent vertices
which are not saturated prior to the operation. Similarly, the black edges are edges present
at the start of the operation and dashed edges are edges added during the operation.

the electronic journal of combinatorics 15 (2008), #R29 10

u u u u

Type 0
u ∈ V(0,0)

Type 1
u ∈ V(1,0)

Type 2
u ∈ V(2,0)

Type 3
u ∈ V(2,1)

Figure 1: The four types of operations.

From Figure 1 we can see that for an operation processing a vertex u of degree pair
(p, q) there are 2 − q rems and 2 − p out-incs from exposing the free points associated
with u. Also u moves from V(p,q) to V(2,2). Therefore the expected change in Y(i,j) due to
an operation of type r is Opr(i,j) + o(1) where

Opr(i,j) = δ(i,j)=(2,2) − δ(i,j)=(p,q) + (2 − q)Rem(i,j) + (2 − p)Out(i,j)

and (p, q) is the degree pair of a vertex of type r (see Table 1).

Changes in the Size of the Dominating Set

The expected change in the size of the dominating set due to a type r operation is 1
plus the expected number of accidental saturates. Accidental saturates are either in-incs
or out-incs; they are never rems. Thus the expected change in D due to a type r operation
is domr +o(1) where

domr = 1 + (2 − q)(Rem(2,2) − 1) + (2 − p)Out(2,2)

and (p, q) is the degree pair of a vertex of type r.

The Functions f
(r)
(i,j) and f (r)

To obtain the functions f
(r)
(i,j) and f (r) we set Y(i,j)(t) = nz(i,j)(t/n) and D(t) = nz(t/n)

and write Opr(i,j) and domr in terms of z(i,j) (for 0 ≤ i, j ≤ 2) and z. For example

In(i,j) =
(3 − i)z(i−1,j) − (2 − i)z(i,j)

s
,

Out(i,j) =
(3 − j)z(i,j−1) − (2 − j)z(i,j)

s
, and

Rem(i,j) = δi,2δ2,j − (2 − j)z(i,j)/s + (2/s)(z(0,0) + z(1,0) + z(2,0))In(i,j)

+ (1/s)(4z(0,0) + 2z(1,0) + 2z(0,1) + z(1,1))Out(i,j)

the electronic journal of combinatorics 15 (2008), #R29 11

where s =
∑2

p=0

∑2
q=0(2 − p)z(p,q). The other equations follow from those above.

Next we determine the probability distribution that will approximate the prioritised
algorithm.

Probabilities for Operation Types

Let pr be the probability of choosing an operation of type r. For the deprioritised
algorithm to approximate DominatingSet we want pr to be approximately the proportion
of operations of type r performed by DominatingSet.

In the prioritised algorithm the only Type 0 operation occurs as the first operation,
so we set p0 = 0. Asymptotically almost surely the second operation of DominatingSet is
of type 1. Between any two type 1 operations there is a sequence of operations of type 2
and of type 3. We define a (1, 3)-clutch to be an operation of type 1 and all operations
of types 2 or 3 that follow until the next type 1 operation (or the algorithm ends). Then
DominatingSet can be viewed as a sequence of (1, 3)-clutches. Let Mr be the expected
number of type r operations in a (1, 3)-clutch. Then we set pr = Mr/(M1 + M2 + M3).

Let
G0 ⊂ G1 ⊂ · · · ⊂ GL (1)

be a (1, 3)-clutch and let
H0 ⊂ H1 ⊂ · · · ⊂ HL′

be the subsequence of (1) of digraphs with no vertices of type 3. Thus H1 is obtained from
H0 via a type 1 operation followed by a sequence of type 3 operations and, for t > 1, Ht

is obtained from Ht−1 via a type 2 operation followed by a sequence of type 3 operations.
Now consider

G0 ⊂ G1 ⊂ · · · ⊂ GK

where GK = H1. Let N3(t) be the number of type 3 vertices in Gt for t = 0, . . . , K
(note that K is a random variable). Then we have E(N3(0)) = 0, E(N3(K + 1)) = 0 and
E(N3(t)) = Op1(2,1) + (t − 1)Op3(2,1). Thus

0 = E(N3(K + 1)) = E(E(N3(K + 1) |K = k)) = Op1(2,1) + E(K)Op3(2,1)

and so E(K) = Op1(2,1)/(−Op3(2,1)). In a similar fashion we can show that the expected
number of type 3 operations following a type 2 operation until the next type 1 or type 2
operation is Op2(2,1)/(−Op3(2,1)).

Applying the same argument to H0 ⊂ · · · ⊂ HL′ we can show that

M2 =
−Op1(2,0)Op3(2,1) + Op1(2,1)Op3(2,0)

Op2(2,0)Op3(2,1) − Op2(2,1)Op3(2,0)
.

Therefore pr = qr/(q1 + q2 + q3) where

q1 = Op2(2,0)Op3(2,1) − Op2(2,1)Op3(2,0),

q2 = −Op1(2,0)Op3(2,1) + Op1(2,1)Op3(2,0), and

q3 = −Op1(2,1)Op2(2,0) + Op1(2,0)Op2(2,1).

the electronic journal of combinatorics 15 (2008), #R29 12

For pi (i = 1, 2, 3) to approximate the proportion of operations in a (1, 3)-clutch we
must have −Op3(2,1) and q1 bounded above zero. Thus the differential equations (which
involve each pi) will be solved on a domain where −Op3(2,1) and q1 (written in terms of the
variables z(i,j) for 0 ≤ i, j ≤ 2) are bounded above zero. It turns out that pi (i = 1, 2, 3)
as given above approximate the proportion of operations during the entire algorithm.

The Differential Equations

The differential equations we use when applying Theorem 3.1 are a combination of
the work in this section. We use the differential equation

dz(i,j)

dx
=

3∑

r=1

pr · f
(r)
(i,j) (2)

to approximate E(Y(i,j)(t + 1) − Y(i,j)(t) |G0, . . . , Gt) for 0 ≤ i, j ≤ 2 and the differential
equation

dz

dx
=

3∑

r=1

prf
(r) (3)

to approximate E(D(t + 1) − D(t) |G0, . . . , Gt).

5 Analysing the Deprioritised Algorithm

Before applying Theorem 3.1 we consider how to satisfy hypotheses (i), (ii), and (iii).
Since each step of the algorithm is one operation, and each operation exposes only a
bounded (independently of n) number of edges, the Boundedness Hypothesis is satisfied.

The algorithm chooses the type of operation to perform using pi (for i = 1, 2, 3) as
a probability distribution. So the Trend Hypothesis will be satisfied when each pi ≥ 0,
p1 + p2 + p3 = 1, when an operation of the type chosen is able to be performed (that is,
if pr > 0 then there is at least one vertex of type r), and when ρ > cn for some constant

c > 0 (as this was assumed when deriving f
(r)
(i,j)).

Notice that at the start of the algorithm there are no vertices of types 1, 2, or 3; so
the Trend hypothesis is not satisfied. Thus we start the deprioritised algorithm with a
preprocessing phase where only type 0 operations are performed. During the preprocessing
phase vertices of types 1, 2, and 3 build up.

We run the preprocessing phase for bεnc steps for some ε = o(1). This ensures that
the number of vertices of types 1, 2, and 3 are sufficient to satisfy the Trend Hypothesis
and that the contribution to Y(i,j) (0 ≤ i, j ≤ 2) during the preprocessing phase is o(n).

The functions dz(i,j)/dx, dz/dx, and their first order partial derivatives (with respect
to z(0,0) etc) all have a similar form: a polynomial in the variables z(i,j) (0 ≤ i, j ≤ 2)
divided by a polynomial in s and q1 +q2 +q3. So these functions are Lipschitz on a domain
where each z(i,j) (for 0 ≤ i, j ≤ 2) is bounded and s and q1 + q2 + q3 are bounded above
zero.

the electronic journal of combinatorics 15 (2008), #R29 13

For any δ > 0, let Dδ be the domain

Dδ = {(x, z(0,0), . . . , z(2,2), z) : −δ < x < 4, −δ < z < 1 + δ,

− δ < z(i,j) < 1 + δ for 0 ≤ i, j ≤ 2,

z(0,0) > δ, q1 > δ, −f
(3)
(2,1) > δ,

q2 > 0, q3 > 0, z(1,0) > 0}.

Define z
(δ)
(i,j) and z(δ) to be the solutions on the closure of Dδ to the differential equations (2)

and (3) with initial conditions z(δ)(0) = 0, z
(δ)
(i,j)(0) = 0 for (i, j) 6= (0, 0), and z

(δ)
(0,0)(0) = 1.

Let z(δ) = (x, z
(δ)
(0,0)(x), . . . , z

(δ)
(2,2)(x), z(x)). Then we have the following theorem.

Theorem 5.1. For any fixed δ > 0, let xf (δ) be the infimum of all x > 0 for which
z(δ) /∈ Dδ. Then the minimum size of a dominating set of a random 2-in 2-out digraph is
a.a.s. less than

z(δ)(xf (δ))n + (1 − z
(δ)
(2,2)(xf(δ)))n + o(n).

To prove this theorem we apply Theorem 3.1 twice: first to the preprocessing phase
and then to rest of the deprioritised algorithm.

Now let
D̂δ = Dδ ∩ {(x, z(0,0), . . . , z(2,2), z) : z(2,0) > 0, z(2,1) > 0}

and Y(t) = (t, Y(0,0)(t), . . . , Y(2,2)(t), D(t)). The next lemma allows us to apply Theorem

3.1 on the domain D̂δ after the preprocessing phase.

Lemma 5.2. For all sufficiently small ε > 0 and δ > 0, asymptotically almost surely
Y(bεnc)/n ∈ D̂δ. Moreover, Y(bεnc)/n is at least some distance κ = κ(ε) > 0 from the

boundary of D̂δ.

Proof. Before the algorithm starts we have Y(0,0)(0) = n, Y(i,j)(0) = 0 for (i, j) 6= (0, 0),
and D(0) = 0. Each operation during the preprocessing phase is of type 0. So we apply
Theorem 3.1 with the differential equations

dz(i,j)

dx
= Op0(i,j) and

dz

dx
= dom0 (4)

(written in terms of the z(i,j)’s) on the domain

Wδ,ε = {(x, z(0,0), . . . , z(2,2), z) : −δ < x < ε,

− δ < z(i,j) < 1 + δ for 0 ≤ i, j ≤ 2,

− δ < z < 1 + δ, z(0,0) > δ}.

Let z
(p)
(i,j) and z(p) be the solutions to the system of differential equations (4) in Wδ,ε

with initial conditions z
(p)
(0,0)(0) = 1, z

(p)
(i,j)(0) = 0 for (i, j) 6= (0, 0), and z(p)(0) = 0. Also

the electronic journal of combinatorics 15 (2008), #R29 14

let z(p)(x) = (x, z
(p)
(0,0)(x), . . . , z

(p)
(2,2)(x), z(p)(x)). The conditions of Theorem 3.1 are easily

seen to be satisfied, so we conclude that a.a.s.

Y(i,j)(t) = nz
(p)
(i,j)(t/n) + o(n) (0 ≤ i, j ≤ 2) and D(t) = nz(p)(t/n) + o(n)

for 0 ≤ t ≤ σn where σ is the supremum of those x to which the solutions z
(p)
(i,j) and z(p)

can be extended before z(p)(x) is within some distance o(1) of the boundary of Wδ,ε.
First we show that z(p)(x) approaches the boundary x = ε of Wδ,ε for all sufficiently

small positive ε. From the definitions of Y(i,j) and D we have

−δ < 0 ≤ Y(i,j)(t)/n ≤ 1 < 1 + δ

and similarly for D(t)/n for t = 0, . . . , TW . So Y(t)/n approaches the boundary x = ε
or z(0,0) = δ. In bεnc operations Y(0,0) changes by O(bεnc) and so, for ε and δ sufficiently
small, Y(0,0)(t)/n = 1 + O(ε) is bounded away from δ for t = 0, . . . , bεnc. Therefore, for ε
and δ sufficiently small, Y(t)/n approaches the boundary x = ε of Wδ,ε, while remaining
at least a constant distance from the other boundaries.

Now assume that z(p)(x) approaches a boundary of Wδ,ε other than x = ε, for example,
the z(0,0) = δ boundary. Then a.a.s.

Y(0,0)(σn)/n = z
(p)
(0,0)(σ) + o(1) = δ + o(1).

Therefore Y(t)/n approaches arbitrarily close to the boundary z(0,0) = δ of Wδ,ε. This
contradicts the conclusion of the previous paragraph.

Hence z(p)(x) approaches the boundary x = ε of Wδ,ε while being bounded away from
the others. Since bεnc = σn + o(n) (as σ(n) → ε) we have a.a.s.

Y(i,j)(bεnc)/n = z
(p)
(i,j)(σ) + o(1) and D(bεnc)/n = z(p)(σ) + o(1) (5)

for 0 ≤ i, j ≤ 2.
By definition, Y(i,j)(bεnc)/n and D(bεnc)/n are bounded away from the boundaries

z(i,j) = 1 + δ, z(i,j) = −δ, z = 1 + δ, and z = −δ (for 0 ≤ i, j ≤ 2) of D̂δ. Ear-
lier we showed that Y(0,0)(bεnc) is bounded above δn (for sufficiently small ε and δ), so
Y(0,0)(bεnc)/n is bounded above δ. In a similar way we can show that q1(Y(bεnc)/n) and

−f
(3)
(2,1)(Y(bεnc)/n) are also bounded above δ.
Now consider the boundary q3 > 0. We want to show a.a.s.

q3(Y(bεnc)/n) > κ

for some κ > 0. By (5) we have a.a.s.

q3(Y(bεnc)/n) = q3(σ, z
(p)
(0,0)(σ) + o(1), . . . , z

(p)
(0,0)(σ) + o(1), z(p)(σ) + o(1))

= q3(z
(p)(σ)) + o(1)

the electronic journal of combinatorics 15 (2008), #R29 15

where the last step holds since q3 is Lipschitz. Now at x = 0 we have

q3(z
(p)(0)) = 0,

d

dx

(
q3(z(p)(x))

)
|x=0 = 0, and

d2

dx2

(
q3(z(p)(x))

)
|x=0 = 88.

Note that during the preprocessing phase, the derivative of a function φ with respect to
x is calculated via

dφ

dx
=

∑

0≤i,j≤2

∂φ

∂z(i,j)

Op0(i,j).

The derivative of φ can then be easily computed using the techniques of automatic dif-
ferentiation, see [7].

Since the second derivative of q3 is continuous it must remain positive on [0, ε] for
some sufficiently small ε > 0. Thus q3(z

(p)(σ)) > κ > 0 for some κ and so a.a.s. we
have q3(Y(bεnc)/n) > κ > 0. The remaining boundaries, q2 > 0 and z(i,j) > 0 for
(i, j) = (1, 0), (2, 0), (2, 1) are dealt with similarly.

We now define functions ẑ(i,j) and ẑ by applying Theorem 3.1 to the deprioritised
algorithm after the preprocessing phase. Hypotheses (i) and (iii) of Theorem 3.1 are
satisfied as explained at the beginning of this section. For Hypothesis (ii) we note that,
for t < T bDδ

, we have Y(1,0), Y(2,0), and Y(2,1) all greater than zero; thus an operation of
each type may be performed. Also q1 + q2 + q3 > δ and qi > 0 (for i = 1, 2, 3) ensure
that p1, p2, and p3 define a probability distribution. Together with Section 4, this shows
that the Trend Hypothesis is satisfied. Finally, Lemma 5.2 allows us to apply Theorem
3.1 with initial conditions given below.

So let ẑ(x) = (x, ẑ(0,0)(x), . . . , ẑ(2,2)(x), ẑ(x)) where ẑ(i,j) and ẑ are the solutions to
the differential equations (2) and (3) with initial conditions ẑ(i,j)(0) = Y(i,j)(bεnc)/n and
ẑ(0) = D(bεnc)/n. Then applying Theorem 3.1 we obtain a.a.s.

Y(i,j)(t) = nẑ(i,j)(t/n) + o(n) (0 ≤ i, j ≤ 2) and D(t) = nẑ(t/n) + o(n) (6)

for 0 ≤ t ≤ σn where σ is now the supremum of all x to which the solutions ẑ(i,j) and ẑ

can be extended before ẑ(x) is within some distance d(n) = o(1) of the boundary of D̂δ.
Here σ depends on ε.

Note that
dẑ(2,0)

dx
= 0 and

dẑ(2,1)

dx
= 0

for all x. Since Y(i,j)(bεnc)/n is bounded away from zero for (i, j) = (2, 0) and (2, 1), the
solution ẑ(x) cannot approach the boundaries z(2,0) > 0 and z(2,1) > 0. Hence ẑ approaches

a boundary of Dδ. This boundary will depend on z
(δ)
(i,j) and z(δ).

To finish the proof of Theorem 5.1 we need the following standard lemma (which
appears in [15] as Lemma 1).

the electronic journal of combinatorics 15 (2008), #R29 16

Lemma 5.3 ([15]). Let W be a bounded and open set. Suppose that (x,yn(x)) and
(x, zn(x)) satisfy the same differential equations on W with differing initial conditions
(0,yn(0)) and (0, zn(0)), respectively. If the differential equations are Lipschitz on W and
|yn(0) − zn(0)| → 0 as n → ∞, then

|yn(x) − zn(x)| → 0

uniformly for x ∈ [0, x?
n) where x?

n is the infimum of those x > 0 for which (x,yn(x)) /∈ W
or (x, zn(x)) /∈ W .

In particular we use Lemma 5.3 to show that ẑ(i,j) and ẑ approach z
(δ)
(i,j) and z(δ) as

n tends to infinity, as described by Lemma 5.4. Recall that z
(δ)
(i,j) and z(δ) are defined

immediately before Theorem 5.1, x
(δ)
f is defined in Theorem 5.1, and that ẑ(i,j), ẑ, and

σ(n) are defined before and after (6).

Lemma 5.4. There exists sequences ε(n) = o(1) and κ(n) = o(1) such that a.a.s.

(i) σ(n) ≥ xf (δ) − κ(n) > 0 and

(ii) ∣∣∣ẑ(i,j)(x) − z
(δ)
(i,j)(x)

∣∣∣→ 0

uniformly for x ∈ [0, xf (δ) − κ(n)].

Proof. We start by showing that xf(δ) is at least a positive constant (for sufficiently
small δ). At x = 0 we have z(δ) bounded away from all the boundaries of Dδ except
q2 = 0, q3 = 0, and z(1,0) = 0 (for sufficiently small δ). Thus by continuity z(δ)(x) remains
bounded away from the same boundaries for x ∈ [0, c] for some c > 0. For the boundaries
q2 = 0, q3 = 0, and z(1,0) = 0 we need to consider the derivatives of q2, q3, and z(1,0). Since
we are no longer in the preprocessing phase, the derivative of a function φ (w.r.t. x) is
calculated via

dφ

dx
=

∑

0≤i,j≤2

∂φ

∂z(i,j)

dz(i,j)

dx

where dz(i,j)/dx is given by (2).
The derivatives of q2, q3, and z(1,0) at x = 0 are as follows:

dq2

dx

(
z(δ)(0)

)
= 6,

dq3

dx

(
z(δ)(0)

)
= 0,

d2q3

dx2

(
z(δ)(0)

)
= 42, and

dz(1,0)

dx

(
z(δ)(0)

)
= 3.

Hence for sufficiently small c > 0, we have that q2(x), q3(x), and z(1,0)(x) are greater
then zero for x ∈ (0, c). Therefore xf (δ) > c for some sufficiently small constant c > 0.
We also note that the derivatives considered above are all Lipschitz on Dδ.

the electronic journal of combinatorics 15 (2008), #R29 17

Next we show that a.a.s. σ(n) > C for some constant C > 0 for all ε sufficiently small.
Since |Y(bεnc) − Y(0)| = O(εn) we have

∣∣∣ẑ(i,j)(0) − z
(δ)
(i,j)(0)

∣∣∣ = O(ε).

Arguments similar to the above show that a.a.s. ẑ(x) is bounded from the boundaries of
Dδ other than q3 = 0 for x ∈ [0, C] (for C sufficiently small). Note that for the boundaries
q2 = 0 and z(1,0) = 0 we need to use the Lipschitz property of the derivatives of q2 and
z(1,0), and to assume that ε is sufficiently small.

For the boundary q3 = 0 it is sufficient to show that

dq3

dx
(ẑ(0)) > 0. (7)

So we consider

φ(x) =
dq3

dx
(x) =

∑

0≤i,j≤2

∂q3

∂z(i,j)

(x)
dz(i,j)

dx
(x)

during the preprocessing phase. At the start of the preprocessing phase we have φ(0) = 0
but the derivative of φ (calculated as in the proof of Lemma 5.2) is 56. Thus a.a.s. (7)
holds and so a.a.s. q3(ẑ(x)) > 0 for x ∈ [0, C] (redefining C if necessary). Therefore a.a.s.
σ(n) > C for some sufficiently small C and for all sufficiently small ε.

Now taking ε = ε(n) = o(1), from Lemma 5.3, for some function g(x) with g(x) → 0
as x → 0, we obtain ∣∣∣ẑ(i,j)(x) − z

(δ)
(i,j)(x)

∣∣∣ = g(ε) = o(1) (8)

uniformly for x ∈ [0, min{xf(δ), x?(n)}) where x?(n) is the infimum of those x for which
ẑ(x) /∈ Dδ. Note that σ(n) < x?(n) by definition.

We complete the proof by showing that there exists a sequence κ(n) tending to 0
such that a.a.s. σ(n) ≥ xf (δ) − κ(n). Fix κ > 0 and assume that σ(n) < xf (δ) − κ for
infinitely many n. By the definition of xf (δ), for all x ∈ [C, xf(δ) − κ], the distance from
z(δ)(x) to the boundary of Dδ is bounded below by a constant. But we can also write this
distance (at x = σ) as z(δ)(σ) − ẑ(σ) plus the distance from ẑ(σ) to the boundary of Dδ.
However, both these values tend to zero (from (8) and the definition of σ). Thus we have
a contradiction (using σ(n) ∈ [C, xf(δ) − κ]) and so

σ(n) ≥ xf (δ) − κ (9)

for sufficiently large n.
Now, given a decreasing sequence {κi}i≥0 tending to zero, we use the argument of the

previous paragraph to construct a sequence κ(n) such that (i) holds.

Now we finish the proof of Theorem 5.1. At every stage of the algorithm, the set
D∪

(
V (G)\V(2,2)(G)

)
is a dominating set for the final graph G. Thus D(t)+(n−Y(2,2)(t))

the electronic journal of combinatorics 15 (2008), #R29 18

is an upper bound on the minimal size of a dominating set of a random 2-in 2-out digraph
for any t. In particular, taking

t = t? = bn
(
xf (δ) − κ(n)

)
c,

by (6) and Lemma 5.4 (i), we have a.a.s.

D(t?) + (n − Y(2,2)(t
?)) = nẑ(t?/n) + n(1 − ẑ(2,2)(t

?/n)) + o(n).

Then using Lemma 5.4 (ii) we have a.a.s.

D(t?) + (n − Y(2,2)(t
?)) = nz(δ)

(
xf (δ) − κ(n) + o(1)

)

+ n
[
1 − z

(δ)
(2,2)

(
xf (δ) − κ(n) + o(1)

)]
+ o(n)

= nz(δ)(xf(δ)) + n(1 − z
(δ)
(2,2)(xf (δ))) + o(n)

since z
(δ)
(i,j) and z(δ) are Lipschitz (on the closure of Dδ) and κ(n) = o(1).

A non-rigorous numerical analysis of the differential equations gives us the upper
bound of Theorem 1.3. We also note that the numerical analysis suggests that at the end
of the algorithm we have z(0,0) = z(1,1) = 0. So it seems reasonable to conjecture that
DominatingSet and the deprioritised version of DominatingSet a.a.s. return 2-in 2-out
digraphs.

6 Proving the Lower Bound

Let P be a pairing selected uniformly at random from the pairings on some set V of
vertices. We will determine an a.a.s. lower bound on the minimum size of a dominating
set of the directed multigraph G(P) obtained from P . The lower bound will hold for
random simple 2-in 2-out digraphs just as the upper bound did.

Let N(k) be the number of dominating sets of size k in G(P). Note that for any
two integers k and k? with k < k?, a dominating set of size k can be extended to a
dominating set of size k?. Thus, using Markov’s inequality, the probability that G(P) has
a dominating set of size less than or equal to k? is

P

(
∑

k≤k?

N(k) ≥ 1

)
= P(N(k?) ≥ 1) ≤ E(N(k?)).

So if E(N(k?)) = o(1) then k? is an a.a.s. lower bound on the minimum size of a dominating
set of G(P).

Now consider a 2-in 2-out digraph D and a dominating set X of D. Each vertex of D
not in X has either one or two out-edges to a vertex in X. With this in mind, for any two
subsets Σ and A of V , the pair (Σ, A) is called a domination pair if Σ is a dominating set
for G(P), Σ ∩ A = ∅, and each vertex of A has exactly one out-edge to a vertex in Σ.

the electronic journal of combinatorics 15 (2008), #R29 19

Now let N(k, a) be the number of domination pairs (Σ, A) of G(P) such that |Σ| = k
and |A| = a. Then

E(N(k)) =

n−k∑

a=0

E(N(k, a)). (10)

To calculate E(N(k, a)) we write N(k, a) as a sum of indicator variables I(Σ,A), where
I(Σ,A) = 1 if (Σ, A) is a domination pair and 0 otherwise, for all subsets Σ and A of V
such that

Σ ∩ A = ∅, |Σ| = k, and |A| = a. (11)

So choose a pair of sets Σ and A such that (11) holds; there are
(

n

k

)(
n−k

a

)
ways to do

so. Each of the 2k in-points associated with the vertices of Σ must be mapped to an out-
point. Of these out-points, a + 2(n− k − a) are associated with vertices in V (G(P)))\Σ;
so the remaining 4k + a− 2n out-points are associated with vertices in Σ. Thus there are
2a
(

2k

4k+a−2n

)
ways to choose which out-points will be the images of the in-points associated

with vertices in Σ, and there are (2k)! ways to map the out-points to the in-points. We
still have 2n− 2k in-points left, so we can complete the pairing in (2n− 2k)! ways. Thus

E(N(k, a)) = 2a

(
n

k

)(
n − k

a

)(
2k

4k + a − 2n

)(
2n

2k

)−1

.

We also obtain the following bounds on a and k:

max{0, 2n − 4k} ≤ a ≤ n − k and n/3 ≤ k ≤ n.

By (10) if max{E(N(k, a)) : a = 0, . . . , n − k} tends to zero exponentially quickly (as
n → ∞) then E(N(k)) = o(1). Let k = κn, a = αn, and φ(x) = xx (with φ(0) = 1).
Then using Stirling’s approximation we have

E(N(P, k, a))
1

n v

2α−2φ(2κ)2φ(2 − 2κ)

φ(κ)φ(α)φ(1 − κ − α)φ(4κ + α − 2)φ(2 − 2κ − α)
(12)

for 1/3 ≤ κ ≤ 1 and max{0, 2 − 4κ} ≤ α ≤ 1 − κ.
Denote the right hand side of (12) by f(κ, α). Then

∂

∂α
(ln f(κ, α)) = ln

(
2(2 − 2κ − α)(1 − κ − α)

α(4κ + α − 2)

)
.

Thus ∂
∂α

(ln f(κ, α)) = 0 when 2(2 − 2κ − α)(1 − κ − α) = α(4κ + α − 2). Solving for α

gives α = 2 − κ ±
√

κ(4 − 3κ). The only solution lying in the domain arising from the

constraints on k and a given above is α = 2 − κ −
√

κ(4 − 3κ).
Therefore, for a given κ, the maximum value of f(κ, α) will occur at α = 1 − κ,

α = max{0, 2 − 4κ}, or α = 2 − κ −
√

κ(4 − 3κ). For κ = 0.3495 we have f(κ, 1 − κ),

f(κ, 2 − 4κ), and f(κ, 2 − κ −
√

κ(4 − 3κ)) all less than 1. This proves the lower bound
of Theorem 1.3.

the electronic journal of combinatorics 15 (2008), #R29 20

References

[1] M. Beis, W. Duckworth, and M. Zito. Packing vertices and edges in random regular
graphs. Random Structures and Algorithms, 32(1):20–37, 2008.

[2] M. Chleb́ık and J. Chleb́ıková. Approximation hardness of dominating set problems.
In Proc. of 12th European Symposium on Algorithms (ESA 2004), volume 3221 of
Lecture Notes in Computer Science, pages 192–203. Springer Verlag, 2004.

[3] C. Cooper. A note on the connectivity of 2-regular digraphs. Random Structures
Algorithms, 4(4):469–472, 1993.

[4] J. Diaz, M.J. Serna, and N.C. Wormald. Computation of the bisection width for
random d-regular graphs. Theoretical Computer Science, 382(2):120–130, 2007.

[5] W. Duckworth and N.C. Wormald. Minimum independent dominating sets of random
cubic graphs. Random Structures Algorithms, 21(2):147–161, 2002.

[6] W. Duckworth and N.C. Wormald. On the independent domination number of ran-
dom regular graphs. Combinatorics, Probability and Computing, 15(4):513–522, 2006.

[7] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Frontiers in Appl. Math. SIAM, Philadelphia, PA, 2000.

[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Domination In Graphs: Advanced
Topics. Monographs and textbooks in pure and applied mathematics, 209. Marcel
Dekker, Inc., New York, 1998.

[9] S. Janson, T. Luczak, and A. Ruciński. Random Graphs. John Wiley and Sons, New
York, 2000.

[10] C. Lee. On the domination number of a digraph. PhD thesis, Department of Mathe-
matics, Michigan State University, 1994.

[11] B.D. McKay. Asymptotics for 0-1 matrices with prescribed line sums. In Enumeration
and design (Waterloo, Ont., 1982), pages 225–238. Academic Press, Toronto, ON,
1984.

[12] L. Shi and N.C. Wormald. Colouring random regular graphs. Combinatorics, Prob-
ability and Computing, 16(3):459–494, 2007.

[13] N.C. Wormald. Differential equations for random processes and random graphs. The
Annals of Applied Probability, 5(4):1217–1235, Nov. 1995.

[14] N.C. Wormald. The differential equation method for random graph process and
greedy algorithms. In M. Karoński and H. Prömel, editors, Lectures in Approximation
and Randomized Algorithms, pages 73–155. PWN, Warsaw, 1999.

[15] N.C. Wormald. Analysis of greedy algorithms on graphs with bounded degree. Dis-
crete Mathematics, 273:235–260, 2003.

the electronic journal of combinatorics 15 (2008), #R29 21

