
Using algebraic properties of minimal idempotents for

exhaustive computer generation of association schemes

K. Coolsaet, J. Degraer,
Department of Applied Mathematics and Computer Science,

Ghent University,
Krijgslaan 281–S9, B–9000 Gent, Belgium

Kris.Coolsaet@UGent.be, Jan.Degraer@UGent.be

Submitted: Nov 10, 2007; Accepted: Feb 4, 2008; Published: Feb 11, 2008

Mathematics Subject Classification: 05E30, 05–04

Abstract

During the past few years we have obtained several new computer classification
results on association schemes and in particular distance regular and strongly regular
graphs. Central to our success is the use of two algebraic constraints based on
properties of the minimal idempotents Ei of these association schemes : the fact
that they are positive semidefinite and that they have known rank.

Incorporating these constraints into an actual isomorph-free exhaustive genera-
tion algorithm turns out to be somewhat complicated in practice. The main problem
to be solved is that of numerical inaccuracy: we do not want to discard a potential
solution because a value which is close to zero is misinterpreted as being negative
(in the first case) or nonzero (in the second).

In this paper we give details on how this can be accomplished and also list some
new classification results that have been recently obtained using this technique: the
uniqueness of the strongly regular (126, 50, 13, 24) graph and some new examples of
antipodal distance regular graphs. We give an explicit description of a new antipodal
distance regular 3-cover of K14, with vertices that can be represented as ordered
triples of collinear points of the Fano plane.

1 Introduction and overview

Association schemes are combinatorial objects that satisfy very strong regularity condi-
tions and as a consequence of this, have applications in many branches of combinatorial
mathematics : in coding theory, design theory, graph theory and group theory, to name
but a few.

the electronic journal of combinatorics 15 (2008), #R30 1

The regularity properties of an association scheme are parametrized by a set of integers
pk

ij which are called the intersection numbers of that scheme. A lot of research has been
devoted to classifying association schemes in the following sense : given a specific set of
intersection numbers, does a corresponding scheme exist, or can we on the other hand
prove nonexistence ? If several schemes exist with the same intersection numbers, are
they essentially different ? In other words, what can we tell about isomorphism classes of
such schemes ?

Quite a bit of work on this subject has already been done and several tables of ‘feasible’
intersection numbers and related existence information have been published, especially for
the better-known special cases of distance regular and strongly regular graphs [2, 3, 10].
During the past few years also the present authors have made several contributions to
this subject [5, 6, 7, 8, 9, 11, 12].

In our case most results were obtained by computer. We have developed special purpose
programs to tackle several cases for which a full classification did not yet exist. These
programs use standard backtracking methods for exhaustive enumeration, in combination
with several special purpose techniques to obtain the necessary efficiency.

On many of the techniques and ‘tricks’ we use in these programs we have already reported
elsewhere [8, 9, 11, 12]. In this paper we will describe the use of two constraints (which
haven’t been discussed in detail before) that are based on algebraic properties of associa-
tion schemes. They allow us to prune the search tree extensively and turn out to be very
powerful.

Both constraints are based on properties of the minimal idempotents Ei associated with a
given scheme : the minimal idempotents are always positive semidefinite, and they have a
known rank (which can be computed from the intersection numbers). As a consequence,
if we generate the association schemes by building their relation matrices ‘column by
column’, we can check whether the corresponding principal submatrix of Ei is positive
semidefinite and does not have a rank which is already too large, before proceeding to the
next level.

This is however not so straightforward as it may seem : the standard algorithms from
numerical algebra for checking positive semidefiniteness and computing the rank of a
matrix, suffer from numerical inaccuracy, and we need to take care not to prune a branch
of the search tree because a matrix is mistakenly interpreted as not positive semidefinite
or its rank is incorrectly estimated.

In Section 2 we give definitions of the mathematical concepts which are used further on,
and we list some well-known properties. Section 3 gives a short description of the algo-
rithm for isomorph-free exhaustive generation we have used, in so far as it is relevant to
this paper. In Sections 4 and 5 we discuss the algorithms for checking positive semidefi-
niteness and computing the rank. Finally, Section 6 lists some new classification results
we have obtained using this technique. One of the new schemes discovered has a nice
geometrical description which we will discuss in detail.

the electronic journal of combinatorics 15 (2008), #R30 2

2 Definitions and well-known properties

Let V be a finite set of n vertices. A d-class association scheme Ω on V is an ordered
set {R0 , R1 , . . . , Rd } of relations on V satisfying the axioms listed below. We use the
notation x Ri y to indicate that (x, y) ∈ Ri .

1. {R0 , R1 , . . . , Rd } is a partition of V × V .

2. R0 is the identity relation, i.e., x R0 y if and only if x = y, whenever x, y ∈ V .

3. Every relation Ri is symmetric, i.e., if x Ri y then also y Ri x, for every x, y ∈ V .

4. Let x, y ∈ V and let 0 ≤ i, j, k ≤ d such that x Rk y. Then the number

pk
ij

def
= |{z ∈ V : x Ri z and z Rj y}|

only depends on i, j and k.

The numbers pk
ij are called the intersection numbers of Ω. Note that ki = p0

ii denotes the
number of vertices y in relation Ri to a fixed vertex x of V , and does not depend on
the choice of x. It also follows that n = k0 + . . . + kd is completely determined by the
intersection numbers of Ω.

There are several special cases of association schemes that are of independent interest.
For example, a distance regular graph G of diameter d is a connected graph for which the
distance relations form a d-class association scheme. More precisely, a pair of vertices x,
y in G satisfies x Ri y if and only if d(x, y) = i. A strongly regular graph is a distance
regular graph of diameter 2. Strongly regular graphs are essentially equivalent to 2-class
association schemes. Instead of using intersection numbers, it is customary to define
strongly regular graphs in terms of their parameters (v, k, λ, µ), with v = n, k = k1,
λ = p1

11 and µ = p2
11. A strongly regular graph with these parameters is also called a

strongly regular (v, k, λ, µ) graph.

(Several mathematical properties of association schemes are relevant to our generation
algorithms. For actual proofs of the properties listed in this section, and for further
information on the subject of association schemes and distance regular graphs, we refer
to [1, 2, 15].)

With every relation Ri of Ω we may associate a 0–1-matrix Ai of size n× n as follows :
rows and columns of Ai are indexed by the elements of V and the entry at position x, y
of Ai is defined to be 1 if and only if x Ri y, and 0 otherwise. In terms of these matrices
the defining axioms of a d-class association scheme Ω translate to

d
∑

i=0

Ai = J, A0 = I, Ai = AT
i and AiAj =

d
∑

k=0

pk
ijAk,

the electronic journal of combinatorics 15 (2008), #R30 3

where I denotes the n × n identity matrix, J is the all-one matrix of the same size and
AT is the transpose of A.

It follows readily that A0, A1, . . . , Ad form a basis for a (d + 1)-dimensional commutative
algebra A of symmetric matrices with constant diagonal. This algebra A was first studied
by Bose and Mesner [4] and is therefore called the Bose-Mesner algebra of Ω.

It is well known that A has a basis of so-called minimal idempotents E0, . . . , Ed (also
called principal idempotents), satisfying

E0 =
1

n
J, EiEj = δijEi,

d
∑

i=0

Ei = I, for all i, j ∈ {0, . . . , d}.

Since Ei
2 = Ei, it follows easily that each minimal idempotent Ei is positive semidefinite.

i.e., that xEix
T ≥ 0 for all x ∈ R1×n.

Consider the coefficient matrices P and Q that express the relation between the two bases
of A as follows :

Aj =
d
∑

i=0

PijEi, Ej =
1

n

d
∑

i=0

QijAi.

(P and Q are called the eigenmatrix and dual eigenmatrix of Ω, respectively.)

It can be proved that PQ = QP = nI, that Pij is an eigenvalue of Aj, that the columns
of Ei span the corresponding eigenspace, and that Ei has rank Q0i. Let x, y ∈ V , then
the definition of Ej implies that the (x, y)-th entry of Ej is equal to Qkj/n where k is the
unique class to which the pair (x, y) belongs, or equivalently, the unique index such that
x Rk y.

For the purposes of this paper it is important to note that the entries of P and Q can
be computed from the intersection numbers pk

ij of Ω. In other words, we can compute P
and Q for a given set of intersection numbers without the need for an actual example of
a corresponding association scheme.

Two association schemes Ω = {R0 , . . . , Rn } on V and Ω′ = {R′

0 , . . . , R′

n } on V ′ are
called isomorphic if there exists a bijection π : V → V ′ such that for every i ∈ {0, . . . , d}
the following property holds

x Ri y if and only if xπ R′

i y
π, for all x, y ∈ V .

This means that two association schemes Ω and Ω′ are isomorphic if and only if the
vertices of V and V ′ can be numbered in such a way that all corresponding matrices Ai

are identical for both schemes.

The problem of classification of association schemes consists of finding all association
schemes that correspond to a given set of intersection numbers, up to isomorphism, i.e.,
to determine all isomorphism classes and for each class indicate exactly one representative.
In our case we try to classify association schemes by means of a computer using isomorph-
free exhaustive backtracking techniques.

the electronic journal of combinatorics 15 (2008), #R30 4

3 Isomorph-free exhaustive generation

Our programs represent an association scheme Ω internally as an n × n relation matrix
M with rows and columns numbered by the vertices of V . The entry Mxy at position x, y
of M contains the index i of the class to which the pair (x, y) belongs, i.e., the unique i
such that x Ri y. This matrix is symmetric and has zero diagonal.

The exhaustive generation algorithm initially starts with a matrix M where all non-
diagonal entries are still left uninstantiated (i.e., undefined, unknown — we denote an
uninstantiated matrix entry by a question mark). Then each upper diagonal entry Mxy

(and at the same time its symmetric counterpart Myx) is systematically recursively in-
stantiated with each value of the domain {1, . . . , d}.
During this recursive process we use several constraints to prune nodes of the search
tree, either because it can be inferred that the partially instantiated matrix can never be
extended to the relation matrix of an association scheme with the required parameters,
or because every possible extension is known to be necessarily isomorphic to a result we
have already obtained earlier.

In [11, 12] we have described most of the constraints we use that are of a combinatorial
nature. In this paper which shall concentrate on the constraints that were derived from
the algebraic properties of Ω. These constraints are more easily described in terms of the
matrices MEi

, with i ∈ {0, . . . , d}, where matrix entries are defined as follows:

(MEi
)xy =

{

1
n
Qki if Mxy = k ∈ {0, . . . , d}

? if Mxy =?

Essentially MEi
is the minimal idempotent Ei, except that we allow entries to be unin-

stantiated. For ease of notation we shall henceforth simply write Ei instead of MEi
.

As has already been mentioned in the introduction, we use the following constraints :

Algebraic constraints Let i ∈ {0, . . . , d}. Then every completely instantiated leading
principal submatrix of Ei

• must be positive semidefinite, and

• must have rank at most equal to Q0i.

Indeed, any principal submatrix of a positive semidefinite matrix must again be positive
semidefinite, and any principal submatrix of a matrix must have a rank which is at most
the rank of the original matrix.

We only consider leading principle submatrices for reasons of efficiency, and of those, we
only look at the largest one which is fully instantiated, for if that matrix satisfies the
constraint, then it is automatically satisfied for the smaller ones.

For isomorph rejection we have used an orderly approach [14, 17] : of all association
schemes in the same isomorphism class we only generate the relation matrix M which has

the electronic journal of combinatorics 15 (2008), #R30 5

the smallest column order certificate C(M), defined to be the tuple

C(M) = (M1,2, M1,3, M2,3, M1,4,...,M3,4, M1,5 . . .
. . . , Mn−3,n−2, M1,n−1,...,Mn−2,n−1, M1,n,...,Mn−1,n)

of length (n2 − n)/2 obtained by concatenating the upper diagonal entries of M in a
column-by-column order. We order certificates using the standard lexicographical order-
ing. Note that the certificate for a leading principal submatrix of M is a prefix of C(M).

Although other authors seem to favour a row-by-row generation order (see for example
[17] in the context of tournaments), in our case a column-by-column strategy turns out
to yield results faster, because in this way large leading principal submatrices which are
fully instantiated turn up earlier during search and hence the algebraic constraints can be
invoked higher up in the search tree, pruning larger subtrees. However, this speed gain
seems to be only truely effective when combined with other (look-ahead) criteria which
sometimes allow the generation to switch to a row-by-row sequence temporarily.

The unique matrix M which has the smallest certificate in its isomorphism class is said to
be in canonical form. Checking whether M is in canonical form is very time consuming
an therefore we use several additional criteria to speed up this check: lexical ordering of
the rows of M and clique checking [9, 12].

A more extensive discussion of the techniques we use for isomorph-free exhaustive gen-
eration algorithms of association schemes can be found in the PhD thesis of one of the
authors [13].

4 Checking positive semidefiniteness

In the introduction we have already pointed out that it is not possible to use the standard
numerical algorithms for checking positive semidefiniteness in unaltered form. The main
reason is that we must make sure that numerical errors do not invalidate our results.
Moreover, for reasons of efficiency, we should take advantage of the fact that we have to
apply the same algorithm several times to matrices that only differ in the values of a few
entries.

Recall from linear algebra that a real symmetric matrix A ∈ Rm×m is positive semidefinite
if and only if xAxT ≥ 0 for every row vector x ∈ R1×m and its transpose xT ∈ Rm×1.
If the matrix A is not positive semidefinite then we will call any row vector x for which
xAxT < 0 a witness for A.

4.1 The basic algorithm

The following theorem serves as the basis for the algorithm we have used in all our
generation programs.

the electronic journal of combinatorics 15 (2008), #R30 6

Theorem 1 Consider a real symmetric matrix A ∈ Rm×m, where

A =

(

α a
aT A′

)

with α ∈ R, a ∈ R1×m−1 and A′ ∈ Rm−1×m−1. Then we distinguish between the following
cases:

1. If α < 0, then A is not positive semidefinite. Moreover, x = (1 0 . . . 0) ∈ R1×m is
a witness for A.

2. If α > 0, then A is positive semidefinite if and only if

A′ − aT a

α

is positive semidefinite. If y ∈ R1×m−1 is a witness for A′ − aT a/α then x =
(−yaT /α y) is a witness for A.

3. If α = 0, then A is positive semidefinite if and only if A′ is positive semidefinite and
a = 0. If a 6= 0, then we may find y ∈ R1×m−1 such that yaT ≥ 0 and then each
vector x = (λ y) is a witness for A whenever λ < −yA′yT/2yaT . If A′ is not positive
semidefinite, then every witness y for A′ can be extended to a witness x = (0 y) for
A.

Proof : Let λ ∈ R, y ∈ R1×v−1 and set x = (λ y). We have

xAxT = (λ yT)

(

α a
aT A′

)(

λ
y

)

= λ2α + 2λyaT + yA′yT . (1)

We consider the following three different cases:

1. If α < 0, then the right hand side of (1) is less than zero for λ > 0 and y = 0. Hence
A is not positive semidefinite and (1 0 . . . 0) may serve as a corresponding witness.

2. If α > 0, then we may rewrite the right hand side of (1) as

xAxT = α

(

λ +
yaT

α

)2

+ y

(

A′ − aT a

α

)

yT , (2)

using yaT = ayT . This expression is nonnegative for every x if and only if every y satisfies
y
(

A′ − aT a/α
)

yT ≥ 0, i.e., if and only if the matrix A′ − aT a/α ∈ Rm−1×m−1 is positive
semidefinite. If this matrix is not positive semidefinite, and y is a corresponding witness,
then for λ = −yaT /α the vector (λ y) provides a witness for A.

3. Finally if α = 0, then the right hand side of (1) reduces to

xAxT = 2λyaT + yA′yT , (3)

the electronic journal of combinatorics 15 (2008), #R30 7

which is linear in λ. This expression is nonnegative for all λ if and only if the coefficient
2yaT of λ is zero and the constant term yA′yT is nonnegative. Hence the matrix A is
positive semidefinite if and only if yaT = 0 and yA′yT ≥ 0 for all y, or equivalently, if and
only if a = 0 and the matrix A′ is positive semidefinite. As a consequence, if A′ is not
positive semidefinite and y is a witness for A′, then the vector (0 y) provides a witness
for A. Also, if a 6= 0, then we may find y such that yaT > 0 and then any λ satisfying
λ < −yA′yT/2yaT will make (3) less than zero.

This theorem can easily be used as the basis for an algorithm which checks whether a
given real symmetric matrix A ∈ Rm×m is positive semidefinite. As was already explained
in Section 3, we intend to use this algorithm to check positive definiteness of (millions of)
potential leading principal submatrices of minimal idempotents Ei for assocation schemes
with the requested parameters.

For ease of notation we will denote the element on the i-th row and j-th column of a
matrix M by M [i, j] (instead of Mi,j). Submatrices keep the row and column numbering
of the matrices they are part of. For example, the rows and columns of the matrices A
and A′ in Theorem 1 would be numbered from 1 up to m and from 2 up to m respectively.

Using the notations of Theorem 1, we define

A(2) def
=

{

A′, if α = 0,
A′ − aT a/α, otherwise.

The matrix obtained by applying the same process to A(2) shall be denoted by A(3),
and in a similar way we may define A(4), A(5), . . . , A(m). We also write A(1) = A. In
general, the matrix A(k) is a symmetric (m− k + 1)× (m− k + 1) matrix with rows and
columns numbered from k up to m. This yields the following recurrence relation, for all
i, j ∈ {k + 1, . . . , m} :

A(k+1)[i, j] =

A(k)[i, j], if A(k)[k, k] = 0,

A(k)[i, j]− A(k)[i, k]A(k)[k, j]

A(k)[k, k]
, otherwise.

(4)

Theorem 1 leads to Algorithm 1 which takes a real symmetric m×m matrix A as input and
returns true or false depending on whether A is positive semidefinite or not. Algorithm 1
needs O(m3) operations in the worst case. Storage requirements are only O(m2) because
A(k+1)[i, j] can be stored in the same place as A(k)[i, j]. Also note that every A(k) is
symmetric and therefore only about half of each matrix needs to be stored.

4.2 A useful variant of the basic algorithm

Observe that all comparisons in Algorithm 1 are performed on elements A(k)[i, j] with

either k = i or k = j. For i ≤ j define B[i, j]
def
= A(i)[i, j] (and hence B[1, i] = A[1, i]). We

the electronic journal of combinatorics 15 (2008), #R30 8

Algorithm 1 Checks whether A is positive semidefinite.

function isPSD(A : matrix) : boolean

1: for k ← 1 · · ·m do
2: if A(k)[k, k] < 0 then
3: return false
4: else if A(k)[k, k] = 0 then
5: for j ← k + 1 · · ·m do
6: if A(k)[j, k] 6= 0 then
7: return false
8: end if
9: end for

10: end if
11: compute A(k+1) using (4)
12: end for
13: return true

may now reformulate (4) as follows, for all i, j > k :

A(k+1)[i, j] =

A(k)[i, j], if B[k, k] = 0,

A(k)[i, j]− B[k, i]B[k, j]

B[k, k]
, otherwise.

and hence, by repeated application for different k,

A(k+1)[i, j] = A(1)[i, j]− B[1, i]B[1, j]

B[1, 1]
− B[2, i]B[2, j]

B[2, 2]
− · · ·

· · · − B[k − 1, i]B[k − 1, j]

B[k − 1, k − 1]
− B[k, i]B[k, j]

B[k, k]
,

where all fractions with zero denominator B[j, j] should be regarded as equal to zero.
From this we obtain the following recurrence relation for B :

B[i, j] = A[i, j]− B[1, i]B[1, j]

B[1, 1]
− B[2, i]B[2, j]

B[2, 2]
− · · ·

· · · − B[i− 2, i]B[i− 2, j]

B[i− 2, i− 2]
− B[i− 1, i]B[i− 1, j]

B[i− 1, i− 1]
, (5)

again omitting all terms with a zero denominator. We use this relation in Algorithm 2,
which again needs O(m3) operations and O(m2) storage.

It follows from (5) that the value of B[i, j] only depends on the values of A[k, l] with k ≤ i
and l ≤ j. Hence, if we want to apply Algorithm 2 subsequently to two matrices A and Ā
whose entries only differ at positions (k, l) such that k > i or l > j, we can reuse the value
of B[i, j] (and a fortiori, all values of B[x, y] with x ≤ i and y ≤ j) which was obtained
during the call of isPSD(A), while computing isPSD(Ā).

the electronic journal of combinatorics 15 (2008), #R30 9

Algorithm 2 Checks whether A is positive semidefinite.

function isPSD(A : matrix) : boolean

1: for i← 1 · · ·m do
2: B[1, i]← A[1, i]
3: end for
4: for k ← 1 · · ·m do
5: if B[k, k] < 0 then ¶

6: return false
7: else if B[k, k] = 0 then
8: for j ← k + 1 · · ·m do
9: if B[k, j] 6= 0 then ·

10: return false
11: end if
12: end for
13: else
14: for j ← k + 1 · · ·m do
15: compute B[k + 1, j] using (5)
16: end for
17: end if
18: end for
19: return true

Similarly, if A is a leading principal submatrix of Ā, then again all values B[i, j] which
were computed during the call to isPSD(A) can be reused for Ā. (Of course, these values
will only have been calculated completely when A turns out to be positive semidefinite,
but if this is not the case, we may immediatly conclude that also Ā cannot be positive
semidefinite.)

These properties make Algorithm 2 extremely suitable for use with our generation strat-
egy : the column-by-column order for instantiating matrix entries guarantees that sub-
sequent applications to the algorithm will be done for matrices that differ very little
(typically only in their last column). Also recall that we only check leading principle
submatrices for positive semidefiniteness.

In fact, even when the last column of a leading principle submatrix is not yet fully in-
stantiated, we may already be able to decide that the full submatrix cannot possibly be
positive semidefinite. Indeed, consider condition ¶ in Algorithm 2. By (5) we have

B[k, k] = A[k, k]− B[1, k]2

B[1, 1]
− B[2, k]2

B[2, 2]
− · · · − B[k − 1, k]2

B[k − 1, k − 1]
, (6)

again omitting all terms with a zero denominator. Note that statement ¶ will only be
called in those cases where all denominators B[i, i] are nonnegative, and hence that all
except the first term on the right hand side of the expression above are nonpositive.

the electronic journal of combinatorics 15 (2008), #R30 10

Hence, if the leading k − 1× k− 1 principal submatrix of A is already fully instantiated,
and A[k, k] is known (which is always the case in our generation program), then as soon
as the values of A[1, k], . . . , A[i, k] are available, B[1, k], . . . , B[i, k] can be computed and
the right hand side of (6) can already be partially evaluated. If that partial sum turns
out to be negative, B[k, k] will surely be negative and we need not wait to decide that A
is not positive semidefinite until the remaining entries of A are instantiated.

4.3 Coping with numerical errors

The algorithms above use various operations on real numbers which by their nature can
only be implemented using approximate arithmetic and hence give rise to numerical in-
accuracies. It is therefore important to be absolutely certain that any numerical errors
that occur are sufficiently small as not to invalidate classification results obtained by our
generation program.

For this reason we modify Algorithm 2 in the following way : before returning false, we
first compute a witness x for A using the properties of Theorem 1. Then we compute
xAxT and verify whether it is indeed negative, or more exactly, whether it is smaller
than −ε for a suitably small ε > 0. If not, we revoke our decision, and proceed with the
algorithm as before. For condition ¶ we assume that B[k, k] = 0 and for condition ·

we assume that B[k, j] = 0.

Note that the value of λ in case 2 of Theorem 1 was chosen to make xAxT as small as
possible, and hence values of xAxT that are close to zero do not occur very frequently
in practice. It is also important to observe that possible rounding errors for the value of
xAxT can be estimated very accurately.

We have
xAxT =

∑

i,j

xixjA[i, j].

The relative error on each symbol xi, xj and A[i, j] is essentially 2−b, where b denotes
the number of bits used in the mantissa for the floating point representation (we use a
very conservative b = 32 for Java ‘double’ numbers). The relative error ρ on each term
xixjA[i, j] is the sum of the relative errors on each symbol, hence ρ = 3 ·2−b. The absolute
error on each term is equal to ρ|xi||xj||A[i, j]|, which is bounded upwards by ρx2

maxAmax,

where xmax
def
= max |xi| and Amax

def
= max |A[i, j]|. The absolute error on xAxT is the sum

of the absolute errors on each term, and hence at most ε = m2ρx2
maxAmax, a value which

can be easily computed at runtime.

Of course this strategy means that we sometimes falsely assume that a matrix is positive
semidefinite when it is not, but fortunately this is not a problem. Usually when this
happens, the search is pruned when the leading principal submatrix of next higher order
is checked, and ultimately the combinatorial constraints will always ensure that any ma-
trix which is finally generated satisfies the definition of an association scheme with the

the electronic journal of combinatorics 15 (2008), #R30 11

requested parameters. A less accurate implementation of Algorithm 2 simply results in a
less efficient generation program.

Finally, remark that rounding errors can be avoided alltogether by using multiprecision
(algebraic) integer arithmetic. However, as far as we know, the best algorithms for check-
ing whether a k× k matrix A is positive semidefinite, still need a number of digits that is
linear in k. Early experiments have shown that the resulting programs are still markedly
slower than the approximate methods discussed here.

Although Java, the programming language we have used to obtain our results, has a fairly
efficient library for multiprecision integer arithmetic, the reader might wonder whether
using a computer algebra system would not have been to our advantage. It should be
observed that the algorithms are called in the ‘inner loop’ of the generation program,
and therefore it would be important that the computer algebra system would be one
that compiles to machine language. But even then we predict that using floating point
arithmetic would still be faster.

One idea which might be worth considering, is to use floating point calculations to ‘guess’
whether A is positive definite and then in some cases ‘make sure’ by using exact arithmetic
on the same matrix. This extra check could for instance be restricted to those cases where
the floating point value of xAxT is less than some small positive threshold.

4.4 Further improvements

The witness x constructed when A is not positive semidefinite also sometimes allows us
to identify a smaller principal submatrix A′′ of A which is also not positive semidefinite.
This happens when some of the coordinates xi of the witness x are zero, as in that case
the elements on the ith row and column of A are not involved in the value of xAxT . More
precisely, if A′′ denotes the submatrix obtained from A by removing all rows and columns
with indices i for which xi = 0, then also A′′ is not positive semidefinite, and the vector
x′′ obtained from x by removing all zero entries may serve as a witness for A′′.

This observation leads to the following look-back strategy which we can incorporate into
our generation algorithm. Suppose that the instantiation of an entry of A completes
the submatrix A′′ as described above, then this instantiation remains forbidden until a
backtrack occurs to the entry of A′′ which was instantiated second to last.

For this technique to be effective, it is necessary to have witnesses that have many entries
that are zero. To increase the likelyhood of such a witness, we can sometimes ‘improve’
the witness generated in the second case of Theorem 1 : when we obtain the witness y
for A′ − aT a/α, we can simply check whether (0 y) happens to be a witness for A, i.e.,
whether yA′yT < 0. If this is the case we use (0 y) instead of the witness (λ y) of Theorem
1.

A further improvement is possible when the witness x for A turns out to be of the form
x = (x1, . . . , xk, 0, . . . , 0, xm) for some k ∈ {1, . . . , m − 2} such that xk, xm 6= 0. In this

the electronic journal of combinatorics 15 (2008), #R30 12

case, let Ā denote a matrix of size m̄ × m̄ (with k < m̄) which has the same leading
principal k × k submatrix as A and such that the first k elements of the last columns
of both matrices are the same, i.e., such that A[1, m] = Ā[1, m̄], . . . , A[k, m] = Ā[k, m̄].
Then x is also a witness for Ā and Ā is not positive semidefinite either.

This observation leads to the following constraint recording technique. We store the tuple
(A[1, m], . . . , A[k, m]) and use it to forbid similar column prefixes, as long as the entries
of the k × k leading principle submatrix are left unaltered. Because the possible entries
for A[i, j] can only take a few different values, it is advantageous to store these column
prefixes into a trie, which also allows them to be combined to yield even shorter forbidden
column prefixes.

5 Checking the rank

As was pointed out in Section 3 we also need a method for checking whether a square
symmetric matrix A has a rank which does not exceed a given value r. As with posi-
tive semidefiniteness, the standard algorithm for determining the rank (through Gaussian
elimination) suffers from numerical inaccuracy, which is this time an even more danger-
ous problem, because to compute the rank exactly we need to determine with certainty
whether various real numbers are equal to zero or not.

The technique which we have used to surmount these problems, and which we describe
below, is not as efficient as the algorithms from Section 4, but luckily it turns out that
rank checking is not needed as often as checking for positive definiteness. Observe for
instance that the rank of a matrix cannot be larger than its order, and therefore we only
need to check matrices of size at least r+1×r+1. Also, we can sometimes postpone rank
checking even longer, because adding a row (or column) to a matrix can only increase the
rank by 1, and hence the rank of a m×m matrix A can be at most 2(m−m′) larger than
the rank of a principal submatrix A′ of A of order m′×m′. Indeed, if A′ turns out to have
rank equal to only r − e, then rank checking is superfluous until we reach a submatrix of
order larger than m′ + e/2.

We use modular arithmetic to avoid problems of numerical inaccuracy. Recall from linear
algebra that the rank of a matrix A with integral entries is always greater than or equal
to its p-rank, i.e., the rank of the matrix Ā obtained from A by reducing every matrix
entry of A modulo a fixed prime number p. So, if we find that the p-rank of A is larger
than r, we know for sure that also the rank of A itself is larger than r. The p-rank can be
computed exactly, using Gaussian elimination, and if we choose p < 215 (e.g. p = 32749),
then this can be done using standard 32-bit integer arithmetic without the risc of overflow.

In our generation programs, the entries of the matrices A for which we need to compute
the rank are the entries of the dual eigenmatrix Q associated with the association scheme,
divided by n. For most of the actual cases which we have investigated these entries are
rational numbers. If we multiply A with the least common multiple of the denominators

the electronic journal of combinatorics 15 (2008), #R30 13

of these constants, we obtain an integer matrix with the same rank, for which we then
compute the p-rank.

In the general case, the entries of A can also be irrational, but they will always be
algebraic integers. Also then it is still possible to find a suitable p and to transform A
into an appropriate matrix A. For example, the dual eigenmatrix for the Perkel graph [8]
has entries that belong to Q(

√
5). Multiplying A with the appropriate constant yields a

matrix with entries in Z[
√

5]. Choosing p = 30011, we obtain Ā by mapping an entry of
the form x + y

√
5 to x + 6583y mod p. Because 65832 = 5 mod p, we again end up with

a matrix Ā whose rank cannot be larger than the rank of A.

In each of these cases it is of course possible that the rank of Ā is strictly smaller than
that of A, and hence that we fail to recognise a matrix A with a rank that exceeds the
given bound r. As with the algorithm of the previous section, this is not a problem. It
may make the algorithm less efficient, but will never yield results that are not correct.

The remarks of Section 4.3 also hold for computing the rank : using the p-rank as an ap-
proximation appears to be more efficient than computing the exact rank with multipreci-
sion arithmetic. It might however be beneficial to use the following ‘hybrid’ algorithm: if
the p-rank ‘almost’ reaches the bound r, exact arithmetic could be used to compute the
true rank. Although in that case it would probably be faster to simply recompute the
p-rank for a few additional values of p.

6 Classification results

In [8, 9, 11, 12] we have already discussed many of the results which we have obtained by
applying the techniques of the previous sections. In this section we will list some recent
classification results.

As was mentioned before, our programs were written in the Java programming language.
Timings given are for a computer with a single CPU with a clock speed of approximately
1GHz. All timings are approximate.

6.1 A unique strongly regular (126, 50, 13, 24) graph

There exists a strongly regular graph with parameters (v, k, λ, µ) = (126, 50, 13, 24) which
is related to the Hermitian two-graph H(5) and can be constructed from the Hoffman-
Singleton graph [16].

Our generation program proves that this strongly regular graph is uniquely determined
by its parameters (up to isomorphism). This took approximately 5 days of processing
time.

the electronic journal of combinatorics 15 (2008), #R30 14

6.2 Two distance regular antipodal 3-covers of K14

A distance regular graph on 42 vertices with intersection array {13, 8, 1; 1, 4, 13}, i.e., with
n1 = 13, p1

12 = 8, p2
13 = 1, p1

10 = 1, p2
11 = 4, p3

12 = 13, is called an antipodal cover of K14

because the relation of being at maximal distance is an equivalence relation (the graph is
antipodal) and the corresponding quotient (with vertices the 14 equivalence classes of size
3) can be interpreted as a complete graph on 14 vertices (every vertex in every equivalence
class is adjacent to exactly one vertex of every other equivalence class).

There is a well-known construction of a graph with this parameters, based on the finite
field GF(13) (see for instance [2, Proposition 12.5.3]). This scheme has automorphism
group PGL(2, 13) of size 2184.

Our generation program proves that there are exactly 2 isomorphism classes of association
schemes with these parameters (this takes about 20 minutes). The second graph can be
constructed as follows :

• Vertices are the 42 ordered triples of collinear points in the Fano plane PG(2, 2).

• Two triples (x0, x1, x2), (y0, y1, y2) that correspond to different lines of the Fano
plane are adjacent in the graph if and only if either x0 = y0, x1 = y2 or y1 = x2.

• Two triples that correspond to the same line are adjacent if and only if they share
the third coordinate, i.e., if they are of the form (x0, x1, x2) and (x1, x0, x2).

The automorphism group of this graph is PGL(3, 2). The antipodal classes correspond
to the oriented lines {(x0, x1, x2), (x1, x2, x0), (x2, x0, x1)} of the Fano plane. It is fairly
easily seen that every triple is adjacent to exactly one triple for each of the 13 remaining
oriented lines, in other words, that the graph is a cover of K14. We do not know of
an elegant mathematical proof of the fact that the graph is distance regular with the
indicated parameters, but this property is easily checked by computer.

6.3 Four distance regular antipodal 3-covers of K17

A distance regular graph on 51 vertices with intersection array {16, 10, 1; 1, 5, 16}, is an
antipodal cover of K17. Our generation program proves that there are 4 isomorphism
classes of association schemes with these parameters, with automorphism groups of sizes
16320, 240, 192 and 48 respectively (using about 10 hours of time). The first case again
corresponds to the construction of [2, Proposition 12.5.3] with group PΓL(2, 16).

the electronic journal of combinatorics 15 (2008), #R30 15

References

[1] Bailey R.A., Association Schemes, Designed Experiments, Algebra and Combina-
torics, Cambridge studies in advanced mathematics 84 (2004).

[2] Brouwer A.E., Cohen A.M., Neumaier A., Distance-Regular Graphs, Ergeb.
Math. Grenzgeb. (3) 18, Springer-Verlag, Berlin (1989).

[3] Brouwer A. E., Strongly Regular Graphs, Handbook of Combinatorial Designs
second edition, Ch. J. Colbourn, J. H. Dinitz (eds.), Chapman & Hall/CRC (2006),
852–868.

[4] Bose R.C., Mesner D.M., On linear associative algebras corresponding to asso-
ciation schemes of partially balanced designs, Annals of Mathematical Statistics 47
(1952), 151–184.

[5] Coolsaet K., Local structure of graphs with λ = µ = 2, a2 = 4, Combinatorica,
15(04) (1995), 481–488.

[6] Coolsaet K., A distance regular graph with intersection array (21, 16, 8; 1, 4, 14)
does not exist, European Journal of Combinatorics, 26(5) (2005), 709–716.

[7] Coolsaet K., The uniqueness of the strongly regular graph srg(105, 32, 4, 12), Bul-
letin of the Belgian Mathematical Society — Simon Stevin, 12(5) (2005), 707–718.

[8] Coolsaet K., Degraer J., A computer assisted proof of the uniqueness of the
Perkel graph, Designs, Codes and Cryptography 34(2–3) (2005), 155–171.

[9] Coolsaet K., Degraer J., Spence E., The Strongly Regular (45,12,3,3) graphs,
Electronic Journal of Combinatorics 13(1) (2006), R32.

[10] Dam, E.R. van, Three-class association schemes, Journal of Algebraic Combina-
torics, 10(1) (1999), 69–107.

[11] Degraer J., Coolsaet K., Classification of three-class association schemes us-
ing backtracking with dynamical variable ordering, Discrete Mathematics 300(1–3)
(2005), 71–81.

[12] Degraer J., Coolsaet K., Classification of some strongly regular sub-
graphs of the McLaughlin graph, to appear in Discrete Mathematics (2007),
doi:10.1016/j.disc.2006.11.055

[13] Degraer J., Isomorph-free exhaustive generation algorithms for association
schemes (2007), PhD thesis.

[14] Faradžev I.A., Constructive enumeration of combinatorial objects, Problèmes
Combinatoires et Théorie des Graphes Colloque Internat. CNRS, 260 (1978), 131–
135.

[15] Godsil C., Royle G., Algebraic graph theory, Springer-Verlag (2001).

[16] Haemers W.H., Kuijken E., The Hermitian two-graph and its code, Linear Alge-
bra and its Applications, 356(1-3) (2002), 79-93.

[17] Read R.C., Every one a winner, or, how to avoid isomorphism search when cata-
loguing combinatorial configurations, Ann. Discrete Math. 2 (1978), 107–120.

the electronic journal of combinatorics 15 (2008), #R30 16

