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Abstract

In the paper “Broersma and Hoede, Path graphs, J. Graph Theory 13 (1989)
427-444”, the authors asked a problem whether there is a triple of mutually noni-
somorphic connected graphs which have an isomorphic connected P3-graph. In this
paper, we show that there is no such triple, and thus completely solve this problem.
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1 Introduction

Broersma and Hoede [3] generalized the concept of line graphs to that of path graphs
by defining adjacency as follows. Let k be a positive integer, and Pk and Ck denote a
path and a cycle with k vertices, respectively. Let Πk(G) be the set of all Pk’s in G. The
path graph Pk(G) of G is a graph with vertex set Πk(G) in which two Pk’s are adjacent
whenever their union is a path Pk+1 or a cycle Ck. Broersma and Hoede got many results
on P3-graphs and, in particular, described two infinite classes of pairs of nonisomorphic
connected graphs which have isomorphic connected P3-graphs. They also raised a num-
ber of unsolved problems or questions, most of which have been solved in the intervening
years. Only the following one remains unanswered.

Problem. Does there exist a triple of mutually nonisomorphic connected graphs which
have an isomorphic connected P3-graph ?
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For k = 2, i.e., line graphs, from Whitney’s result (see [4]) it is not difficult to see that
the problem has a negative answer. In [5] the authors showed that for k ≥ 4 there are not
only triples of but also arbitrarily many mutually nonisomorphic connected graphs with
isomorphic connected Pk-graphs. Interestingly, however, we will show in this paper that
for k = 3 there does not exist any triple of mutually nonisomorphic connected graphs
with an isomorphic connected P3-graph; just like the case for k = 2 but very different
from the case for k ≥ 4. Note that if one drops the connectedness of the original graph
or its P3-graph, then it is easy to find arbitrarily many mutually nonisomorphic graphs
with an isomorphic P3-graph.

2 Preliminaries

All graphs in this paper are undirected, finite and simple. We follow the terminol-
ogy and notations used in [1, 2]. If σ is an isomorphism from G to H, then σ induces
a Pk-isomorphism σ∗ from G to H, where σ∗(a1a2 · · ·ak) = σ(a1)σ(a2) · · ·σ(ak) for all
a1a2 · · ·ak ∈ Πk(G). A Pk-isomorphism τ is induced if τ = σ∗ for some isomorphism σ.
If τi is a Pk-isomorphism from Gi to Hi for i = 1 and 2, then we say that τ1 and τ2 are
equivalent if there are isomorphisms σ and ρ from G1 to G2 and H1 to H2, respectively,
such that τ1 = (ρ∗)−1 ◦ τ2 ◦ σ∗.

A vertex of degree 1 is called terminal, and an edge is terminal if it has a terminal end.
Define an i-thorn to be a P3 with exactly i (i = 1 or 2) terminal ends in G. Let Ti(G) be
the set of i-thorns in G. A P3 in G is called terminal if it has degree 1 in P3(G).

We say that two P3-isomorphisms τi from Gi to Hi for i = 1 and 2, are T -related if (i)
G1 and G2 differ only in their star components, so do H1 and H2; (ii) |T2(G1)| = |T2(G2)|;
and (iii) τ1(α) = τ2(α) for every α ∈ Π3(G1) − T2(G1) = Π3(G2) − T2(G2).

Consider two 1-thorns abc and abd where deg(a) ≥ 2 and deg(c) = deg(d) = 1, then
swapping abc and abd gives a P3-isomorphism, which we call a B-swap.

Suppose abcde is a P5 in G such that both abc and cde are terminal 1-thorns, i.e.,
deg(a) = deg(e) = 1 and deg(c) = 2, then swapping abc and cde gives a P3-isomorphism,
which we call an S-swap.

For distinct a, b ∈ V (G), let Da,b denote the subgraph of G consisting of the union of
all P3’s with ends a and b and with middle vertex of degree 2 in G. If Da,b is nonempty we
call it a diamond with ends a and b. We usually write V (Da,b) − {a, b} as {c1, c2, · · · , ck}
and call k the width of Da,b, and refer to Da,b as a k-diamond. Note that if a and b are
adjacent, the edge ab is not included in Da,b. To distinguish the two possibilities, we say
that the diamond Da,b is braced if a and b are adjacent in G and unbraced otherwise. For
1 ≤ i < j ≤ k, the P3’s acib are called diamond paths while the pair of P3’s ciacj and cibcj

is called a diamond pair. Then swapping ciacj and cibcj gives a P3-isomorphism, which
we call a D-swap.

Suppose τ1 and τ2 are P3-isomorphisms from G to H. We say that τ1 and τ2 are B-
related if τ−1

2 ◦τ1 is the identity or a composition of B-swaps. The S-related and D-related
are defined similarly. We use joins of these four equivalence relations: for example, two
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P3-isomorphisms are TBSD-related if we can get from one to the other by a chain of zero
or more T -, B-, S- and/or D-relations.

The following is the main result of [1], based on which we shall solve our problem by
case analysis.

Theorem 2.1 Let τ be a P3-isomorphism from G to H such that at least one of G or H

is connected. Then τ is one of the following:

(i) T -related to a P3-isomorphism of generalized K3,3 type;

(ii) of special Whitney type;

(iii) D-related to a P3-isomorphism of Whitney type 3, 4, 5 or 6;

(iv) D-related to a P3-isomorphism of bipartite type; or

(v) TBSD-related to an induced P3-isomorphism.

The definition for each of the above types will be given in the successive subsections.

For solving our problem, in Theorem 2.1 we only need to consider that the original
graphs G and H are nonisomorphic connected graphs with T2(G) = T2(H) = ∅. Below,
we will analyze the types in Theorem 2.1 case by case in detail.

2.1 Generalized K3,3 type

First, we introduce the following notation which is used in the definition of generalized
K3,3 type. We write (c, d)ab(e, f) 7→ uvwxu if G contains the edges ab, ac, ad, be, bf , H

contains the C4 uvwxu, and τ maps cab 7→ xuv, dab 7→ vwx, abe 7→ uvw and abf 7→ wxu.
We also write abc(d, e) 7→ uvwxy if G contains the edges ab, bc, cd, ce, H contains the
P5 uvwxy, and τ maps abc 7→ vwx, bcd 7→ uvw and bce 7→ wxy. This notation will be
reversed (e.g., abcda 7→ (w, x)uv(y, z)) as needed. Then, define the generalized K3,3 type
as follows:

Either τ or τ−1 as in the following cases (i) through (vii), or any equivalent P3-
isomorphism, is said to be of generalized K3,3 type.

(i) (c, d)ab(e, f) 7→ u1v1u2v2u1, and cad and ebf map to P3 components of H.

(ii) (c, d)ab(e, f) 7→ u1v1u2v2u1, kebfh 7→ yv3u1(v1, v2), and cad maps to a P3 compo-
nent.

(iii) (c, d)ab(e, f) 7→ u1v1u2v2u1, (k, l)eb(a, f) 7→ u1v1u2v3u1, (h, i)fb(a, e) 7→ u1v2u2v3u1,
and cad, kel and hfi map to P3 components.

(iv) (c, d)ab(e, f) 7→ u1v1u2v2u1, ecadg 7→ xu3v1(u1, u2), and cebfh 7→ yv3u1(v1, v2).
Note that G and H are connected and isomorphic.

(v) (c, d)ab(e, f) 7→ u1v1u2v2u1, ebfhe 7→ (v1, v2)u1v3(y, z), and cad maps to yv3z.
Again G and H are connected and isomorphic.

(vi) (c, d)ab(e, f) 7→ u1v1u2v2u1, (c, d)eb(a, f) 7→ u1v1u2v3u1, (h, i)fb(a, e) 7→ u1v2u2v3u1,
aceda 7→ (w, x)u3v1(u1, u2), and hfi maps to wu3x. Again G and H are connected
and isomorphic.
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(vii) The construction on K3,3; G ∼= H ∼= K3,3.

Remark 1. For generalized K3,3 type, it is easy to get the following results:

1. For cases (i), (ii) and (iii), G and H are nonisomorphic, but H is not connected and
there are isolated vertices in P3(G) and P3(H).

2. For cases (iv) and (vii), G and H are connected with T2(G) = T2(H) = ∅, but G

and H are isomorphic.

3. For cases (v) and (vi), G and H are connected, but are isomorphic and there are
isolated vertices in P3(G) and P3(H).

Thus there is no pair of nonisomorphic connected graphs with isomorphic connected P3-
graphs in generalized K3,3 type.

2.2 Special Whitney type

Let SW be the graph obtained by subdividing each edge of K1,3 exactly once, then
P3(SW ) ∼= C6. Rotation of this C6 by one step is a noninduced P3-isomorphism from SW

to itself, then we say this or any equivalent P3-isomorphism is of special Whitney type.
Hence there is also no pair of nonisomorphic connected graphs with isomorphic con-

nected P3-graphs by the definition of special Whitney type.

2.3 Whitney type 3, 4, 5 or 6

In this subsection, we begin with a general idea which will be used here and in the
next subsection. Suppose F is a graph. A diamond inflation of F is a graph obtained by
replacing each edge ab ∈ E(F ) by an unbraced sab-diamond Da,b (sab ≥ 1), and adding ta
terminal edges incident with each a ∈ V (F ) (ta ≥ 0). Suppose ϕ is an edge-isomorphism
between graphs F and F

′

, and suppose I and I
′

are diamond inflations of F and F
′

,
respectively, with the following property: for every ab ∈ E(F ), if ϕ(ab) = uv then (i)
suv = sab and (ii) tu + tv = ta + tb. Obtain G and H from I and I

′

, respectively, by
adding star components to one of them (if necessary) to make the numbers of 2-thorns
equal. Then we can define a P3-isomorphism τ from G to H and say that τ is a diamond
inflation of ϕ.
Remark 2. If Da,b is a nontrivial diamond (i.e., sab > 1) in G, then there exists a unique
and nontrivial diamond Du,v in H (see the proof in [1]).

The type in this subsection is related to Whitney’s exceptional edge-isomorphisms
which is stated as follows:

Theorem 2.2 (Whitney [6]) Suppose that ϕ is an edge-isomorphism from G to H

where G and H are both connected. If ϕ is not induced, then i = |E(G)| = |E(H)| ∈
{3, 4, 5, 6}, G and H are isomorphic to Wi and W

′

i in some order, and ϕ is equivalent to
ϕi or ϕ−1

i , where
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(i) W6
∼= W

′

6
∼= K4, with V (W6) = {a, b, c, d}, V (W

′

6) = {u, v, w, x}, and ϕ6 maps
ab 7→ uv, ac 7→ uw, ad 7→ vw, bc 7→ ux, bd 7→ vx and cd 7→ wx;

(ii) W5 = W6 − cd, W
′

5 = W
′

6 − wx and ϕ5 = ϕ6|E(W5);

(iii) W4 = W6 − {bd, cd}, W
′

4 = W
′

6 − {vx, wx} and ϕ4 = ϕ6|E(W4); and

(iv) W3 = W6 − {bc, bd, cd} ∼= K1,3, W
′

3 = W
′

6 − x ∼= K3, and ϕ3 = ϕ6|E(W3).

Then a P3-isomorphism τ is said to be of Whitney type i if τ or τ−1 is equivalent to a
diamond inflation of ϕi as above for i = 3, 4, 5, 6.

Denote by tz the number of terminal edges incident with z for z in {a, b, c, d} or
{u, v, w, x}. Whitney type P3-isomorphisms, according to condition (ii) of Diamond In-
flation, give one equation from each pair of corresponding edges of the original Whitney
graphs. In all four types, the corresponding edges ab and uv, ac and uw, ad and vw give
that ta + tb = tu + tv, ta + tc = tu + tw, ta + td = tv + tw, respectively. Solving for tu, tv,
tw in terms of ta, tb, tc, td we get















tu = 1

2
(ta + tb + tc − td)

tv = 1

2
(ta + tb − tc + td) (1)

tw = 1

2
(ta − tb + tc + td)

In Whitney type 4, 5 or 6 the corresponding edges bc and ux give that tb + tc = tu + tx.
Combining Equ.(1), we obtain

tx =
1

2
(−ta + tb + tc + td) (2)

We assume that tx = 0 in Whitney type 3 as x 6∈ V (W
′

3). Because we require connected
P3-graphs, in the above Equ.(1) and Equ.(2) we must have tz = 0 or 1 for every z ∈
{a, b, c, d} ∪ {u, v, w, x}. We write (ta, tb, tc, td) 7→ (tu, tv, tw, tx) if ta, tb, tc, td = 0 or
1, the corresponding solutions for tu, tv, tw, tx by Equ.(1) and Equ.(2). For example:
(1, 0, 0, 1) 7→ (0, 1, 1, 0) denotes that ta = 1, tb = tc = 0 and td = 1 correspond to
solutions tu = 0 and tv = tw = 1 by Equ.(1) and tx = 0 by Equ.(2). So it is easy
to check that there are only the following eight cases satisfying tz = 0 or 1 for every
z ∈ {a, b, c, d} ∪ {u, v, w, x}:

(i) (0, 0, 0, 0) 7→ (0, 0, 0, 0) for all four types.

(ii) (1, 1, 0, 0) 7→ (1, 1, 0, 0) for all four types.

(iii) (1, 0, 1, 0) 7→ (1, 0, 1, 0) for all four types.

(iv) (1, 0, 0, 1) 7→ (0, 1, 1, 0) for all four types.

(v) (0, 1, 1, 0) 7→ (1, 0, 0, 0) for type 3 and (0, 1, 1, 0) 7→ (1, 0, 0, 1) for type 4, 5 or 6.

(vi) (0, 1, 0, 1) 7→ (0, 1, 0, 0) for type 3 and (0, 1, 0, 1) 7→ (0, 1, 0, 1) for type 4, 5 or 6.

(vii) (0, 0, 1, 1) 7→ (0, 0, 1, 0) for type 3 and (0, 0, 1, 1) 7→ (0, 0, 1, 1) for type 4, 5 or 6.

(viii) (1, 1, 1, 1) 7→ (1, 1, 1, 0) for type 3 and (1, 1, 1, 1) 7→ (1, 1, 1, 1) for type 4, 5 or 6.
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If a P3-isomorphism τ or τ−1 is equivalent to a diamond inflation of ϕi as above, and
falls into one of the above cases (i) through (viii), then τ is said to be of special Whitney
type i for i = 3, 4, 5 or 6.

Let τ be a P3-isomorphism from G to H. It is well-known that K1,3 and K3 are the
only pair of nonisomorphic connected graphs with the same line graph. So, if τ is of
special Whitney type 3, then G 6∼= H. If τ is of special Whitney type i (i = 4, 5 or 6),
in order to find pairs of nonisomorphic connected graphs with isomorphic P3-graphs, we
should choose suitable widths of each corresponding diamonds. Otherwise, for example,
let G and H be diamond inflations of W4 and W

′

4, respectively, with se = 2 and tz = 1
for every e ∈ E(W4) ∪ E(W

′

4) and every z ∈ {a, b, c, d} ∪ {u, v, w, x}. Obviously, G ∼= H.

2.4 Bipartite type

First, we also introduce the definition of bipartite type. Start with a positive integer k

and an arbitrary bipartite graph F with at least one edge and with a bipartition (A, B).
Let I and I

′

be different diamond inflations of F , where each edge e is inflated to a diamond
of the same width se both times, but in producing I each vertex v has tv terminal edges
added, while in producing I

′

it has t
′

v terminal edges added. where

t
′

v =

{

tv − k if v ∈ A

tv + k if v ∈ B
(3)

Thus, we need tv ≥ k for all v ∈ A. Let ϕ be the identity edge-isomorphism from F

to itself. Clearly ϕ, I and I
′

satisfy condition (i) of Diamond Inflation, and condition
(ii) is satisfied because each edge of F has the form ab with a ∈ A and b ∈ B, so that
t
′

a + t
′

b = (ta − k) + (tb + k) = ta + tb. We can therefore obtain a P3-isomorphism τ

by diamond inflation; τ is in general not induced. We say τ and τ−1, or any equivalent
P3-isomorphisms, are of bipartite type.

This case is similar to the above Whitney type. Because we require that the P3-graphs
of I and I

′

are connected, we must have tv, t
′

v = 0 or 1 for every v ∈ A ∪ B. Since
k ≤ tv(v ∈ A), we have k = 0 or 1. If k = 0, then I ∼= I

′

. If k = 1, then tu = 1 for
all u ∈ A and tv = 0 for all v ∈ B. Otherwise, if there is a vertex u0 ∈ A with tu0

= 0
or a vertex v0 ∈ B with tv0

= 1, then t
′

u0
= −1 or t

′

v0
= 2 by Equ.(3). Therefore we

have a P3-isomorphism τ0 from I to I
′

, where tu = 1 and t
′

u = 0 for all u ∈ A, tv = 0
and t

′

v = 1 for all v ∈ B, respectively. Then we say that τ0 and τ−1

0 , or any equivalent
P3-isomorphism, are of special bipartite type. Therefore, this is the only case to find pairs
of nonisomorphic connected graphs which have isomorphic connected P3-graphs in the
bipartite type.

2.5 TBSD-related to an induced P3-isomorphism

In this subsection, we require that there are no isolated vertices in P3-graphs. Then all
P3-isomorphisms are BSD-related to an induced one. It is clear that if two original graphs
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G and H are connected with an isomorphic P3-graph, then G ∼= H by the definition of
BSD-related. Thus in this type, if we require connected P3-graphs, then the original
graph and its P3-graph are one to one.

From the arguments in the above five subsections, we get the following corollary which
is essential to the solution of our problem.

Corollary 2.3 Let τ be a P3-isomorphism from G to H, where G and H are noniso-
morphic connected graphs with an isomorphic connected P3-graph. Then τ is one of the
following:

(i) D-related to a P3-isomorphism of special Whitney type 3, 4, 5 or 6; or

(ii) D-related to a P3-isomorphism of special bipartite type.

3 Main result

Now we can state and show the main result of this paper.

Theorem 3.1 There is no triple of mutually nonisomorphic connected graphs with an
isomorphic connected P3-graph.

Proof. Assume, to the contrary, that there exists a triple of mutually nonisomorphic
connected graphs G1, G2 and G3 which have an isomorphic connected P3-graph. Let τi

be a P3-isomorphism from Gi to Gi+1, then τi will be one of two types in Corollary 2.3
for i = 1, 2.

Case 1. τ1 and τ2 are of the same type.
Subcase 1.1 τ1 and τ2 are both of D-related to a P3-isomorphism of special Whitney

type i for i = 3, 4, 5 or 6.
By the definition of τ1, let G1 and G2 be diamond inflations of Wi and W

′

i , respectively,
with one of the eight cases in subsection 2.3. For i = 3, without loss of generality, suppose
that ta = 1, tb = tc = 0, td = 1, tu = 0, tv = tw = 1 and tx = 0. Since τ1 and τ2 are of
the same type, G3 is also a diamond inflation of W3, and ta = 1, tb = tc = 0, td = 1 by
Equ.(1). Hence G1

∼= G3, a contradiction. For i = 4, 5 or 6, by a similar argument as the
case for i = 3, we also get G1

∼= G3, a contradiction.
Subcase 1.2 τ1 and τ2 are both of D-related to a P3-isomorphism of special bipartite

type.
This subcase is similar to Subcase 1.1. Denote by F an arbitrary bipartite graph with

a bipartition (A, B). Then assume that G1 and G2 are different diamond inflations of F ,
respectively, where tu = 1 for all u ∈ A and tv = 0 for all v ∈ B in G1; tu = 0 for all u ∈ A

and tv = 1 for all v ∈ B in G2. Thus we can easily obtain that G3 is also a diamond
inflation of F with tu = 1 for all u ∈ A and tv = 0 for all v ∈ B in G3 by the definition of
τ2. Then G1

∼= G3, contrary to the assumption.
Case 2. τ1 and τ2 are of different types.
Let τ1 be D-related to a P3-isomorphism of special Whitney type i for i = 3, 4, 5 or 6

and τ2 be D-related to a P3-isomorphism of special bipartite type.
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For i = 4, 5 or 6, by the definition of τ1, G1 and G2 are diamond inflations of Wi and
W

′

i which have odd cycles; and also by τ2, G2 and G3 are different diamond inflations of
some bipartite graph. Then τ1 must be D-related to a P3-isomorphism of special Whitney
type 3. Thus there is only one possibility: G2 is a diamond inflation of K1,3, where K1,3

has a bipartition A = {a}, B = {b, c, d}. By the definition of special Whitney type 3, τ1

falls into one of the following eight cases: (0, 0, 0, 0) 7→ (0, 0, 0, 0), (1, 1, 0, 0) 7→ (1, 1, 0, 0),
(1, 0, 1, 0) 7→ (1, 0, 1, 0), (1, 0, 0, 1) 7→ (0, 1, 1, 0), (0, 1, 1, 0) 7→ (1, 0, 0, 0), (0, 1, 0, 1) 7→
(0, 1, 0, 0), (0, 0, 1, 1) 7→ (0, 0, 1, 0), or (1, 1, 1, 1) 7→ (1, 1, 1, 0). However, by the definition
of special bipartite type, there are only two choices: either ta = 0, tb = tc = td = 1, or
ta = 1, tb = tc = td = 0. Finally, there does not exist any graph G2 that has common
property of two different types at the same time. So τ1 and τ2 must be of the same type,
a contradiction. The proof is thus complete.

Acknowledgement. The authors are very grateful to the referees for their valuable
suggestions and comments, which helped to improve the presentation of the paper.
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