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Abstract

In this paper we prove several new lower bounds on the maximum number of
leaves of a spanning tree of a graph related to its order, independence number, local
independence number, and the maximum order of a bipartite subgraph. These new
lower bounds were conjectured by the program Graffiti.pc, a variant of the program
Graffiti. We use two of these results to give two partial resolutions of conjecture
747 of Graffiti (circa 1992), which states that the average distance of a graph is not
more than half the maximum order of an induced bipartite subgraph. If correct, this
conjecture would generalize conjecture number 2 of Graffiti, which states that the
average distance is not more than the independence number. Conjecture number
2 was first proved by F. Chung. In particular, we show that the average distance
is less than half the maximum order of a bipartite subgraph, plus one-half; we also
show that if the local independence number is at least five, then the average distance
is less than half the maximum order of a bipartite subgraph. In conclusion, we give
some open problems related to average distance or the maximum number of leaves
of a spanning tree.

Introduction and Key Definitions

Graffiti, a computer program that makes conjectures, was written by S. Fajtlowicz and
dates from the mid-1980’s. Graffiti.pc, a program that makes graph theoretical conjectures
utilizing conjecture making strategies similar to those found in Graffiti, was written by E.
DeLaViña. The operation of Graffiti.pc and its similarities to Graffiti are described in [10]
and [11]; its conjectures can be found in [13]. A numbered, annotated listing of several
hundred of Graffiti’s conjectures can be found in [19]. Both Graffiti and Graffiti.pc have
correctly conjectured a number of new bounds for several well studied graph invariants;
bibliographical information on resulting papers can be found in [12].
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We limit our discussion to graphs that are simple, connected and finite of order n.
Although we often identify a graph G with its set of vertices, in cases where we need to be
explicit we write V (G). We let α = α(G) denote the independence number of G. If u, v
are vertices of G, then σG(u, v) denotes the distance between u and v in G. This is the
length of a shortest path in G connecting u and v. The Wiener index or total distance
of G, denoted by W = W (G), is the sum of all distances between unordered pairs of
distinct vertices of G [16]. Then the average distance of G, denoted by D = D(G), is
2W (G)/[n(n−1)]. Put another way, D(G) is the average distance between pairs of distinct
vertices of G. (In the degenerate case n = 1, we set W (G) = D(G) = 0.) Unless stated
otherwise, when we refer to a subgraph of a graph G, we mean an induced subgraph.

Theorem 1 shown here is the first published result [20] concerning one of the earliest
and best known of Graffiti’s conjectures, which states that the average distance of a graph
is not more than its independence number. This conjecture is listed as number 2 in [19].

Theorem 1 ([20]). Let G be a graph. Then

D < α + 1.

Graffiti’s conjecture number 2 was then completely settled by F. Chung in [5], where
the following theorem is proved.

Theorem 2 ([5]). Let G be a graph. Then

D ≤ α,

with equality holding if and only if G is complete.

In his Ph.D. dissertation [28], the second author generalized Theorem 2 somewhat by
characterizing those graphs with order n and independence number α that have maximum
average distance, for all possible values of n and α. A different, much shorter proof of
this result was later discovered independently by P. Dankelmann [6]. In 1992, Graffiti
formulated a new generalization of its own conjecture number 2. This conjecture, stated
here as Conjecture 1, is listed as number 747 in [19]. For a graph G, we call the bipartite
number of G the maximum order of an (induced) bipartite subgraph. We denote this
invariant by b = b(G). (There are many bounds for the maximum number of edges in a
bipartite subgraph; for such results, see [1], [3] and [22]. Some results on the bipartite
number as we define it can be found in [15].)

Conjecture 1 (Graffiti 747). Let G be a graph. Then

D ≤
b

2
.

This conjecture has been one of the most circulated of Graffiti’s open conjectures (see
[29]). Fajtlowicz was interested in this conjecture in the hope that its proof might result
in a more elegant proof of Theorem 2 (the current proofs are rather unwieldy). Note that
the following Conjecture 2, which is slightly weaker than Conjecture 1, also generalizes
conjecture number 2 of Graffiti. The main results of this paper are some partial resolutions
of Conjecture 1 and a near resolution of Conjecture 2.
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Conjecture 2. Let G be a graph. Then

D ≤
⌈ b

2

⌉

.

A set of vertices M of a graph G is said to dominate G provided each vertex of the
graph is either in M or adjacent to a vertex in M . The minimum order of a connected
dominating set, called the connected domination number of G, is denoted by γc = γc(G).
The maximum number of leaves contained on a spanning tree of G, called the leaf number,
is denoted by L = L(G). The problem of finding a spanning tree with a prescribed number
of leaves has been shown to be NP-complete [24]; other computational aspects of L have
also been considered (see [23]). Graffiti.pc recently conjectured various apparently new
lower bounds for the leaf number L, two of which have implications for Conjecture 1.
Lower bounds on L have received a lot of attention in the literature, partly because they
imply upper bounds on the connected domination number γc, which has also received a
lot of attention (note that L = n− γc). See [4], [26] for some references. The domination
number and the k-distance domination number have moreover been related to the average
distance of graphs in the recent papers [7], [8] and [9].

Theorem 3 (Graffiti.pc 177). Let G be a graph. Then

L ≥ 2α − b + 1.

Theorem 3 is actually weaker than the conjecture made by Graffiti.pc (number 177
in [13]), which replaces the constant 1 with the second smallest degree in the ordered
degree sequence (this is sometimes the minimum degree and sometimes the second smallest
degree). Conjecture 177 remains open. The proof of Theorem 3 is not difficult, but we
defer all proofs to a later section. The next theorem is the basis for our main results.

Theorem 4 (Graffiti.pc 173). Let G be a graph. Then

L ≥ n − b + 1.

Odd paths show that Theorem 3 is sharp, while odd cycles show that Theorem 4 is
sharp. The proof of Theorem 4 is really just a by-product of the greedy algorithm for
building a maximal connected bipartite subgraph, carried a little further. Theorem 4 can
be combined with the Lemma 5 stated below to give a partial resolution of Conjecture 1
(Theorem 8). The local independence of a vertex v, denoted by µ(v), is the independence
number of the subgraph induced by its neighborhood. The local independence number
of a graph G, denoted µ = µ(G), is the maximum of local independence taken over all
vertices of G.

Conjecture 3 (Graffiti.pc 174). Let G be a graph. Then

L ≥ n − b + µ − 1.
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Theorem 5. Let G be a graph. Then

L ≥ n − b +
⌈µ

2

⌉

.

Conjecture 3, which generalizes Theorem 4 for graphs that are not complete, remains
open; however, the similar but weaker statement proven in Theorem 5 combined with
Lemma 5 gives a another partial resolution of Conjecture 1 (see Theorem 10).

The following lower bounds for L are shown in [14].

Theorem 6 ([14]). Let G be a graph. Then

L ≥ n − 2α + 1.

Theorem 7 ([14]). Let G be a graph. Then

L ≥ n − 2α + µ − 1.

Since 2α ≥ b, Theorem 4 provides an improvement to Theorem 6, which was motivated
as a conjecture of J. R. Griggs [14]. (We recently discovered Griggs’ conjecture is a result
of P. Duchet and H. Meyniel [17].) If Graffiti.pc’s conjecture 174 (listed here as Conjecture
3) is correct, it would provide an improvement to Theorem 7.

A trunk for a graph G is a sub-tree (not necessarily induced) that contains a dom-
inating set of G. Hence, every spanning tree of G is likewise a trunk for G, and every
connected dominating set is the vertex set of some trunk. Therefore, if G contains a trunk
of order t, then t ≥ γc.

Lemma 5. Let G be a graph with a trunk of order t ≥ 1. Then

D(G) <
t + 3

2
.

Theorem 8. Let G be a graph. Then

D <
b

2
+ 1.

Upon considering the proof of Theorem 1, we can use an additional lemma (Lemma
7) to give an improvement on Theorem 8 and a near resolution of Conjecture 2 (Theorem
9). Let G be a graph with v a vertex of G. Then the total distance from v in G, denoted
by wG(v), is the sum of all distances from v to the remaining vertices of G.

Lemma 7. Let G be a graph with a trunk M of order more than one, and let m be a
vertex with maximum total distance in G. Then if m ∈ M , there exists a graph F with
V (F ) = V (G) and a vertex x ∈ M , such that D(F ) ≥ D(G), and moreover such that
M − {x} is a trunk for F .
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Figure 1: R(k, t, l)

Theorem 9 (Main Theorem). Let G be a graph. Then

D <
b

2
+

1

2
.

Thus if b is odd,

D <
⌈ b

2

⌉

.

Theorem 10. Let G be a graph. If µ ≥ 5, then

D <
b

2
.

Let R(k, t, l) denote the binary star on k + t + l vertices, where the maximal interior
path has order t and there are k leaves on one side of the binary star and l on the other.
See Figure 1. Let R(n, t) denote the binary star of order n where the maximal interior
path has order t and the leaves are balanced as best possible on each side of the binary
star.

One more piece of terminology is needed. Let S be any subset of vertices of a graph G.
Then the open neighborhood of S, denoted by N(S), is the set of neighbors of all vertices
in S, less S itself. Any other more specialized definitions will be introduced immediately
prior to their first appearance. Standard graph theoretical terms not defined in this paper
can be found in [30].

A Few Lemmas

Lemma 1 provides a useful method for comparing the total or average distance between
two graphs with the same vertex sets.

Lemma 1. Let G be a graph and A ⊂ V (G). Let B = V (G)− A. Suppose G ′ is a graph
such that V (G ′) = V (G), and also such that:

1)
∑

u∈A

∑

v∈A σG ′(u, v) ≤
∑

u∈A

∑

v∈A σG(u, v)
2)

∑

u∈B

∑

v∈B σG ′(u, v) ≥
∑

u∈B

∑

v∈B σG(u, v)
3)

∑

u∈A wG ′(u) ≥
∑

u∈A wG(u)
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Then W (G ′) ≥ W (G). Moreover, if any of these inequalities is strict, then W (G ′) >
W (G).

The proof of Lemma 2 involves only elementary algebra, counting, and limit argu-
ments; we therefore omit it.

Lemma 2. For integers k ≥ 0 and t ≥ 1,

W (R(k, t, k)) = (t + 3)k2 + (t + 2)(t − 1)k +
t(t + 1)(t − 1)

6
, and

W (R(k, t, k + 1)) = (t + 3)k2 + k(t + 1)2 +
t(t + 1)(t + 2)

6
.

Moreover,

W (R(k, t, k)) ≤ W (R(k, t, k + 1)) ≤ W (R(k + 1, t, k + 1)), and

lim
k→∞

D(R(k, t, k)) =
t + 3

2
.

The following Lemma 3 can be immediately deduced from Lemma 2.

Lemma 3. For integers t ≥ 1 and n ≥ t,

D(R(n, t)) <
t + 3

2
.

The next lemma is essentially Theorem 2 from [20], although the proof given here
is somewhat different. This lemma implies one of the most basic results about distance
in graphs: Among all graphs of order n, the path on n vertices has the maximum total
distance (and thus maximum average distance) [18].

Lemma 4. Let G be a graph with a trunk of order t ≥ 1. Then

W (G) ≤ W (R(n, t)),

with equality holding if and only if G = R(n, t).

To deduce the corollary that among all graphs of order n, the path on n vertices has
the maximum total distance, let T be a spanning tree of G. Then |T | = |G| = n. So by
Lemma 4, W (G) ≤ W (R(n, n)), with equality holding if and only if G = R(n, n). But
R(n, n) is the path on n vertices.

Combining Lemmas 3 and 4 gives the following Lemma 5, which provides an upper
bound on the average distance in graphs with a trunk of order t.

Lemma 5. Let G be a graph with a trunk of order t ≥ 1. Then

D(G) <
t + 3

2
.
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The following lemma, which we state without proof, is an immediate consequence of
results found in [18], Theorem 3.3].

Lemma 6. Let T be a tree and let P be a path contained in T . Then if v is a vertex of
P , there exists a leaf x of P such that wT (x) ≥ wT (v).

Lemma 7. Let G be a graph with a trunk M of order more than one, and let m be a
vertex with maximum total distance in G. Then if m ∈ M , there exists a graph F with
V (F ) = V (G) and a vertex x ∈ M , such that D(F ) ≥ D(G), and moreover such that
M − {x} is a trunk for F .

Proofs

Lemma 1. Let G be a graph and A ⊂ V (G). Let B = V (G)− A. Suppose G ′ is a graph
such that V (G ′) = V (G), and also such that:

1)
∑

u∈A

∑

v∈A σG ′(u, v) ≤
∑

u∈A

∑

v∈A σG(u, v)
2)

∑

u∈B

∑

v∈B σG ′(u, v) ≥
∑

u∈B

∑

v∈B σG(u, v)
3)

∑

u∈A wG ′(u) ≥
∑

u∈A wG(u)

Then W (G ′) ≥ W (G). Moreover, if any of these inequalities is strict, then W (G ′) >
W (G).

Proof. It is enough to prove 2W (G ′) ≥ 2W (G), from which the conclusion follows. Now,

2W (G ′) − 2W (G)
=

∑

u∈V

∑

v∈V σG ′(u, v) −
∑

u∈V

∑

v∈V σG(u, v)
=

∑

u∈V

∑

v∈V [ σG ′(u, v) − σG(u, v) ]
= 2

∑

u∈A

∑

v∈B [ σG ′(u, v) − σG(u, v) ]

+
∑

u∈A

∑

v∈A[ σG ′(u, v) − σG(u, v) ] +
∑

u∈B

∑

v∈B [ σG ′(u, v) − σG(u, v) ].

By 2) the last term is non-negative, hence

2W (G ′) − 2W (G)

≥ 2
∑

u∈A

∑

v∈B [ σG ′(u, v) − σG(u, v) ] +
∑

u∈A

∑

v∈A[ σG ′(u, v) − σG(u, v) ].

By 1) the second term is non-positive, hence

2W (G ′) − 2W (G)
≥ 2

∑

u∈A

∑

v∈B [ σG ′(u, v) − σG(u, v) ] + 2
∑

u∈A

∑

v∈A[ σG ′(u, v)− σG(u, v) ]
= 2

∑

u∈A

∑

v∈V [ σG ′(u, v) − σG(u, v) ]
= 2

∑

u∈A [ wG ′(u) − wG(u) ].
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Figure 2: G and G′

By 3) the last term is non-negative, hence

2W (G ′) − 2W (G) ≥ 0.

Condition 1 may seem superfluous in light of Condition 3; nevertheless, it is sometimes
necessary, as the two graphs G and G ′ in Figure 2 illustrate. Here we take A = {a, b}. It
is easy to see wG(a) = wG(b) = wG ′(a) = wG ′(b) = 4, and σG(c, d) = σG ′(c, d) = 1. But
W (G) = 8 > W (G ′) = 7.

Lemma 4. Let G be a graph with a trunk of order t ≥ 1. Then

W (G) ≤ W (R(n, t)),

with equality holding if and only if G = R(n, t).

Proof. Suppose G is chosen so that its total distance is maximum. It suffices to show
G = R(n, t). Let M be the given trunk for G of order t. We may assume G is a tree,
since M can easily be extended to a spanning tree T of G with trunk M . We can dismiss
the case t = 1 out of hand; for if t = 1, then G is a star, i.e. G = R(n, 1).

Assume t ≥ 2. Let L be a longest path in M , and suppose |L| = λ. Label the
leaves of L, x and y. In addition, enumerate the non-trunk neighbors of x and y as
X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}, respectively. Thus both X, Y ⊂ G − M .
Let us assume p ≥ q. Let z be the closest vertex to y on L other than y with degree
greater than 2 in G.

Claim: Either no such vertex z exists, or z = x.
Proof of claim. By way of contradiction, suppose z exists and z 6= x. Moreover,

suppose σM (y, z) = δ. Since z is neither x nor y, δ ≥ 1 and λ > δ + 1. Let Z =
{z1, z2, . . . , zj} denote the non-trunk neighbors of z, and let F = {f1, f2, . . . , fi} denote
the neighbors of z with respect to M not on L. Finally, let A denote the union of the
components of G − {z} which contain some vertex in Z ∪ F . We derive a graph G ′ by
first deleting from G all edges emanating from z which are sent to vertices in Z ∪ F . In
turn we add enough edges so that y is adjacent to each vertex in Z ∪F. This amounts to
“transplanting” each of the components of A from z to y. See Figures 3 and 4.
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Figure 3: A hypothetical graph.

Figure 4: The graph G′.

We now apply Lemma 1 to G and G ′. Clearly the first two conditions of the lemma
are satisfied. By putting C = G − {X ∪ Y ∪ L}, it can be seen that for a ∈ A:

i)
∑

u∈X∪Y σG ′(a, u) =
(

∑

u∈X∪Y σG(a, u)
)

+ δ(p − q),

ii)
∑

u∈L σG ′(a, u) =
(

∑

u∈L σG(a, u)
)

+ δ[λ − (δ − 1)], and

iii) for u ∈ C, σG ′(a, u) ≥ σG(a, u).
Hence wG ′(a) ≥ wG(a), which implies the third condition holds as well. There-

fore W (G ′) ≥ W (G). It is easy to see that we can form a trunk of order t for G ′ by
first deleting the edges {z, f1}, {z, f2}, . . . , {z, fi} from M , and in turn adding the edges
{y, f1}, {y, f2}, . . . , {y, fi}. But this contradicts our choice of G.

Now the claim implies G = R(p, t, q). If p ≤ q + 1, then G = R(n, t). So suppose
p > q + 1. We derive a graph G ′ by fist deleting the edge {x1, x}, and in turn adding the
edge {x1, y}. Applying Lemma 1 to G and G ′ with A = {x1}, we have W (G ′) > W (G).
This follows from the supposition p > q + 1. But again we have a contradiction. Hence
G = R(n, t).

Lemma 7. Let G be a graph with a trunk M of order more than one, and let m be a
vertex with maximum total distance in G. Then if m ∈ M , there exists a graph F with
V (F ) = V (G) and a vertex x ∈ M , such that D(F ) ≥ D(G), and moreover such that
M − {x} is a trunk for F .

Proof. Since M is a trunk for G, M can easily be extended to a spanning tree T for G
with trunk M . Clearly V (T ) = V (G) and D(T ) ≥ D(G), and also wT (m) ≥ wG(m). Let
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L be the longest path in M containing m. Then by Lemma 6, there exists a leaf x of
L such that wT (x) ≥ wT (m). If x is a leaf of T , then M − {x} is a trunk for T , hence
by putting F = T we are done. Otherwise, let Z denote the set of neighbors of x with
respect to T that are leaves of T . Let y denote the unique neighbor of x with respect to
M . We derive a graph F by adding enough edges to T so that Z∪{x, y} induces a clique.
We now apply Lemma 1 to G and F with A = Z and G ′ = F . The first two conditions
of the lemma clearly hold. Because for z ∈ Z,

wF (z) = wF (x) = wT (x) ≥ wT (m) ≥ wG(m) ≥ wG(z), the third condition holds also.
Thus D(F ) ≥ D(G). But M − {x} is a trunk for F , so we are finished.

Theorem 3 (Graffiti.pc). Let G be a graph. Then

L ≥ 2α − b + 1.

Proof. Let A be a maximum independent set, and let B be the complement of A. Suppose
F is the subgraph induced by B. Moreover, suppose C1, C2, . . . , Cm are the connected
components of F . If we color each of the vertices of A red, and color one vertex out
of each of the components Cj green, it is easy to see that the colored vertices induce a
bipartite subgraph. Thus b ≥ α+m. Since G is connected, then each vertex of A must be
adjacent to a vertex of B. Thus B is a dominating set, but may not induce a connected
subgraph, in particular when m > 1. However, again since G is connected, there exist
vertices a1, a2, . . . , ak ∈ A where k < m such that M = B ∪ {a1, a2, . . . , ak} induces a
connected subgraph. So M is contained in a trunk T ′ for G. We can now use T ′ to create
a spanning tree T for G, where each of the vertices in A − {a1, a2, . . . , ak} is a leaf of T .
Therefore,

L ≥ |A − {a1, a2, . . . , ak}|
= |A|−|{a1, a2, . . . , ak}|
= α − k
≥ α − (m − 1)
= 2α − (α + m) + 1
≥ 2α − b + 1.

Theorem 4 (Graffiti.pc 173). Let G be a graph. Then

L ≥ n − b + 1.

Proof. We will show γc ≤ b − 1, from which the result follows. Choose an arbitrary
vertex x0 of G and color it, say red. If G is not trivial, then we can choose a vertex y
in the open neighborhood N(x0) and color it another color, say green. Next we choose
a vertex z in the open neighborhood of the colored vertices that is not adjacent to both
colors red and green (adjacent to either x0 or y but not both, in the first instance). We
color z the opposite color from its colored neighbors, and we repeat this process until we
can no longer choose such a vertex z. Notice that the set of colored vertices induce a
connected subgraph. We will refer to these colored vertices as the set B0, and suppose T0

is a spanning tree of the subgraph induced by B0.
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Next choose a vertex x1 outside of B0 and its open neighborhood. Since G is connected,
we can assume there exists a vertex c0 in N(B0) such that c0 is adjacent to x1. If no such
vertex x1 exists, then we quit. Otherwise, color x1 red and continue as before. That is,
choose a vertex z in the open neighborhood of either x1 or the vertices colored after x1

that is not adjacent to both colors red and green. We color z the opposite color from
its colored neighbors, and we repeat this process until we can no longer choose such a
vertex z. Notice again that x1 and the set of vertices colored after x1 induce a connected
subgraph. We will refer to these colored vertices as the set B1, and suppose T1 is a
spanning tree of the subgraph induced by B1.

When we reach stage j, we choose a vertex xj outside of B0 ∪ B1 ∪ . . . ∪ Bj−1 and its
open neighborhood. Since G is connected, we can assume there exists a vertex cj−1 in
N(B0 ∪B1 ∪ . . .∪Bj−1) such that cj−1 is adjacent to xj. If no such vertex xj exists, then
we quit. Otherwise, color xj red and continue as before. That is, choose a vertex z in
the open neighborhood of either xj or the vertices colored after xj that is not adjacent to
both colors red and green. We color z the opposite color from its colored neighbors, and
we repeat this process until we can no longer choose such a vertex z. Notice that xj and
the set of vertices colored after xj induce a connected subgraph. We will refer to these
colored vertices as the set Bj, and suppose Tj is a spanning tree of the subgraph induced
by Bj.

Once the algorithm terminates (assume after stage k), note that B0 ∪ B1 ∪ . . . ∪ Bk

induces a bipartite subgraph. Let rj be a leaf of Tj other than xj. If xj is the only vertex
of Tj, then put rj = xj. See Figure 4. Suppose v is an uncolored vertex. Let f(v) be
the minimum integer such that v is adjacent to some vertex of Bf(v). Next we prove the
following claim.

Claim: Let v be an uncolored vertex. Then v is adjacent to both a red vertex and a
green vertex in Bf(v).

Proof of claim. If f(v) is undefined, this implies the algorithm terminated prematurely.
Hence we can assume f(v) exists and v is adjacent to a vertex in Bf(v) colored red. Next
suppose there does not exist a green vertex in Bf(v) to which v is adjacent. But since v
is not adjacent to any vertex in B0 ∪ B1 ∪ . . . ∪ Bf(v)−1, then the algorithm would have
selected v for inclusion in Bf(v), meaning that v is a colored vertex, a contradiction.

For each uncolored vertex v, let av denote the neighbor of v in Bf(v) other than rf(v).
The prior claim guarantees that av exists. We are now in a position to complete the proof.
We will construct a spanning tree T ′ for a dominating set M ′of G with order at most
b − 1. Thus T ′ is the required trunk and we are finished. First, though, we construct a
spanning tree T for a somewhat larger dominating set M . The vertices of M are

B0 ∪B1 ∪ . . .∪Bk ∪{c0, c1, . . . , ck−1}. (Note: The cj’s may not be unique.) The edges
of T are the edges of each tree Tj along with each edge {cj, xj+1} and {cj, acj

}. Since
f(cj) ≤ j and cj is adjacent to xj+1 for each j, this implies there exists a path in T from
each vertex of M to x0. Thus M spans a connected subgraph. Moreover, the claim implies
that M dominates G, so T is a trunk. We now construct M ′ and T ′ by deleting each
rj from M and T along with any incident edges in T . Recall rj 6= av for any uncolored
vertex v. Also, either rj is adjacent to some vertex of Bj or rj is adjacent to cj. Hence
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Figure 5:

M ′ continues to dominate G. We want to show T ′ is a spanning tree for M ′. Choose a
vertex v in M ′. Because rj is a leaf of Tj, then the path in T from v to x0 remains intact
in T ′, unless rp = xp for some integer p and the path from v to x0 in T contains the edges
{cp−1, xp} and {cq, xp}, for some integer q > p. Therefore, f(cq) = p and acq

= xp = rp, a
contradiction to our choice of acq

.
We now know that T ′ is a trunk. But
|M ′| = |B0 ∪ B1 ∪ . . . ∪ Bk ∪ {c0, c1, . . . , ck−1} − {r0, r1, . . . , rk}|

= |B0 ∪ B1 ∪ . . . ∪ Bk|+|{c0, c1, . . . , ck−1}|−|{r0, r1, . . . , rk}|
≤ b + k − (k + 1)
= b − 1.

Theorem 5. Let G be a graph. Then

L ≥ n − b +
⌈µ

2

⌉

.

Proof. We will show γc ≤ b−
⌈

µ

2

⌉

, from which the result follows. The algorithm described

in the proof of Theorem 4 starts with an arbitrary vertex x0, and if G is not trivial, then
x0 is an element of the final trunk T ′ constructed in the proof. Hence, we can run the
algorithm choosing x0 as a vertex of maximum local independence. By our choice of x0,
the spanning tree T0 of the first bipartite component B0 has at least µ leaves, of which
⌈

µ

2

⌉

are in a common color class of B0; let R0 be a set of
⌈

µ

2

⌉

monochromatic leaves of

B0. Since B0 is a maximal bipartite subgraph, every vertex not in B0 but adjacent to a
vertex of B0 must be adjacent to vertices of both color classes. Thus,

B0 ∪ B1 ∪ . . . ∪ Bk ∪ {c0, c1, . . . , ck−1}−(R0 ∪ {r1, . . . , rk}) is a connected dominating
set, and

|M ′| = |B0 ∪ B1 ∪ . . . ∪ Bk ∪ {c0, c1, . . . , ck−1} − (R0 ∪ {r1, . . . , rk})|
= |B0 ∪ B1 ∪ . . . ∪ Bk|+|{c0, c1, . . . , ck−1}|−|R0 ∪ {r1, . . . , rk}|

≤ b + k − (k +
⌈

µ

2

⌉

)

= b −
⌈

µ

2

⌉

.
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Theorem 8. Let G be a graph. Then

D <
b

2
+ 1.

Proof. Combining L ≥ n − b + 1 and L = n − γc gives γc ≤ b − 1. Then by Lemma 5,

D(G) <
γc + 3

2
≤

b − 1 + 3

2
=

b

2
+ 1.

Theorem 9. Let G be a graph. Then

D <
b

2
+

1

2
.

Thus if b is odd,

D <
⌈ b

2

⌉

.

Proof. The algorithm described in the proof of Theorem 4 starts with an arbitrary vertex
x0, and if G is not trivial, then x0 is an element of the final trunk T ′ of order at most
b − 1 constructed in the proof. Hence, we can run the algorithm choosing x0 as a vertex
of maximum total distance. Then by the Lemmas 5 and 7,

D(G) ≤ D(F ) <
γc(F ) + 3

2
≤

b − 2 + 3

2
=

b

2
+

1

2
.

Theorem 10. Let G be a graph. If µ ≥ 5, then

D <
b

2
.

Proof. Combining L ≥ n− b+
⌈

µ

2

⌉

and L = n−γc gives γc ≤ b−
⌈

µ

2

⌉

. Then by Lemma

5, and since µ ≥ 5,

D(G) <
γc + 3

2
≤

b −
⌈

µ

2

⌉

+ 3

2
≤

b

2
.

Some Open Problems

In addition to Conjecture 1 (Graffiti 747), Graffiti.pc 177, and Conjecture 2 (Graffiti.pc
174), all of which remain open, we are aware of numerous other open problems related
to average distance or the leaf number that are worth mentioning. Many, but not all of
these conjectures are due to either Graffiti or Graffiti.pc. The following conjecture (circa
1996) is another long standing open conjecture of Graffiti.
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Conjecture 4 (Graffiti [13], conjecture 2). Let G be a graph. Then

L ≥ 2(average of µ(v) − 1).

Recently, Graffiti.pc made the following conjecture related to L, which is reminiscent
of Dirac’s famous sufficient conditions for a graph to have a Hamiltonian cycle or path.
Let δ = δ(G) be the minimum degree of a graph G.

Conjecture 5 (Graffiti.pc 190). Let G be a graph. If δ ≥
L + 1

2
, then G contains a

Hamiltonian path.

For a graph G, let B be the set of vertices of maximum eccentricity. Then the average
distance from the boundary vertices of G, denoted by D(B, V ), is the average of the
nonzero distances between vertices of B and vertices of V (G). The following conjecture
is sometimes an improvement of Conjecture 1.

Conjecture 6 (Graffiti.pc 21). Let G be a graph. Then

b ≥ 2 · D(B, V ).

Two of the best sources for problems and conjectures related to distance in graphs
are Graffiti (see, for instance, [2]) and the classical 1984 paper by J. Plesnik [27]. For
example, a problem that Plesnik addresses but remains unresolved is the following:

Problem 1. What is the maximum total or average distance among all graphs of order
n with diameter d?

This problem seems to be quite challenging. See [21] or [31] for recent related results.
Conjecture 7 is an attempt to make the problem more tractable, in a special case. Let
C(n) denote the cycle of order n.

Conjecture 7. Let G be a graph with diameter d > 2 and order 2d + 1. Then

W (G) ≤ W (C(2d + 1)).

Analogous to the notion of a trunk, we call a hoop for a graph G a cycle subgraph
(not necessarily induced) that contains a dominating set of G. We know by Lemma 5 an
upper bound on the average distance of graphs with a trunk of order t, in terms of t. This
lemma provides an upper bound on the average distance of graphs with a hoop of order
t as well.

Problem 2. What is a better upper bound on the average distance of graphs with a hoop
of order t, other than that given by Lemma 5?

To close, let’s return to Theorems 3 and 4. We already observed that odd paths and
cycles imply the lower bounds for L contained in these theorems are sharp. It would be
an interesting (if perhaps formidable) undertaking to characterize the case of equality for
these two theorems.

Nota bene: P. Hansen et al. have now shown in [25] that the average distance of a
simple, connected graph is at most half the maximum order of an induced forest, using
strategies different than our own. This settles Conjecture 1 (Graffiti 747).
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