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Abstract

In this paper, the closed-form expressions for the coefficients of x2
r

x2
s

and x2
r

xsxt
in the

Dyson product are found by applying an extension of Good’s idea. As consequences,
we find several interesting Dyson style constant term identities.

1 Introduction

For nonnegative integers a1, a2, . . . , an, define

Dn(x, a) :=
∏

1≤i6=j≤n

(

1 −
xi

xj

)ai

, (Dyson product)

where x := (x1, . . . , xn) and a := (a1, . . . , an).

Dyson [2] conjectured the following constant term identity in 1962.

Theorem 1.1 (Dyson’s Conjecture).

CT
x

Dn(x, a) =
(a1 + a2 + · · · + an)!

a1! a2! · · · an!
.

where CT
x
f(x) means to take the constant term in the x’s of the series f(x).

Dyson’s conjecture was first proved independently by Gunson [5] and by Wilson [10].
Later an elegant recursive proof was published by Good [4], and a combinatorial proof was
given by Zeilberger [11]. Andrews [1] conjectured the q-analog of the Dyson conjecture

the electronic journal of combinatorics 15 (2008), #R36 1



which was first proved, combinatorially, by Zeilberger and Bressoud [12] in 1985. Recently,
Gessel and Xin [3] gave a very different proof by using properties of formal Laurent series
and of polynomials.

Good’s idea has been extended by several authors. The current interest is to evaluate
the coefficients of monomials M : =

∏n

i=0 xbi

i , where
∑n

i=0 bi = 0, in the Dyson product.
Kadell [6] outlined the use of Good’s idea for M to be x1

xn
, x1x2

xn−1xn
and x1x2

x2
n

. Along this line,

Zeilberger and Sills [9] presented a case study in experimental yet rigorous mathematics
by describing an algorithm that automatically conjectures and proves closed-form. Using
this algorithm, Sills [8] guessed and proved closed-form expressions for M to be xs

xr
, xsxt

x2
r

and xtxu

xrxs
. These results and their q-analogs were recently generalized for M with a square

free numerator by Lv, Xin and Zhou [7] by extending Gessel-Xin’s Laurent series method
[3] for proving the q-Dyson Theorem.

The cases for M having a square in the numerator are much more complicated. By

extending Good’s idea, we obtain closed forms for the simplest cases M = x2
r

x2
s

and M =
x2

r

xsxt
. In doing so, we guess these two formulas simultaneously, written as a sum instead

of a single product. Our main results are stated as follows.

Theorem 1.2. Let r and s be distinct integers with 1 ≤ r, s ≤ n. Then

CT
x

x2
s

x2
r

Dn(x,a) =
ar

(1 + a(r))(2 + a(r))

[

(ar − 1) −

n
∑

i=1
i6=r,s

ai(1 + a)

(1 + a(r) − ai)

]

Cn(a), (1.1)

where a := a1 + a2 + · · · + an, a(j) := a − aj and Cn(a) := (a1+a2+···+an)!
a1! a2! ···an!

.

Theorem 1.3. Let r, s and t be distinct integers with 1 ≤ r, s, t ≤ n. Then

CT
x

xsxt

x2
r

Dn(x,a) =
ar

(1 + a(r))(2 + a(r))

[

(a + ar) −

n
∑

i=1
i6=r,s,t

ai(1 + a)

(1 + a(r) − ai)

]

Cn(a), (1.2)

where a, a(r) and Cn(a) are defined as Theorem 1.2.

The proofs will be given in Section 2. In Section 3, we construct several interesting
Dyson style constant term identities.

2 Proof of Theorem 1.2 and Theorem 1.3

Good’s proof [4] of the Dyson conjecture uses the recurrence

Dn(x, a) =

n
∑

k=1

Dn(x, a − ek),
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where ek := (0, . . . , 0, 1, 0, . . . , 0) is the kth unit coordinate n-vector. It follows that the
following recurrence holds for any monomial M of degree 0.

CT
x

1

M
Dn(x,a) =

n
∑

k=1

CT
x

1

M
Dn(x,a − ek).

Thus if we can guess a formula, then we can prove it by checking the initial condition,
the recurrence and the boundary conditions. This is the so called Good-style proof.

Our basic tool for guessing is Zeilberger and Sills’ Maple package GoodDyson. For the
cases M = x2

r/x
2
s and M = x2

r/(xsxt), the package can guess the formulas for n = 2, 3, 4,
but not for n ≥ 5. However, the results seem chaotic. Surprisingly, the formulas become
nice when converted into partial fractions (by Maple). This leads us to come up with
Theorems 1.2 and 1.3.

To prove our theorems, we denote by FL(r, s, a) (resp. GL(r, s, t, a)) the left-hand
side of (1.1) (resp. (1.2)), and by FR(r, s, a) (resp. GR(r, s, t, a)) the right-hand side of
(1.1) (resp. (1.2)). Without loss of generality, we may assume r = 1, s = 2 and t = 3 in
Theorems 1.2 and 1.3, i.e., we need to prove that

FL(a) = FR(a), GL(a) = GR(a),

where FL(a) := F (1, 2, a) and we use similar notations for FR(a), GL(a) and GR(a).

2.1 Initial Condition

We can easily verify that

FL(0) = FR(0) = 0, GL(0) = GR(0) = 0.

2.2 Recurrence

We need to show that FR(a) and GR(a) satisfy the recurrences

FR(a) =

n
∑

k=1

FR(a− ek), (2.1)

GR(a) =

n
∑

k=1

GR(a− ek). (2.2)

In order to do so, we define

H1(a) :=
a1(a1 − 1)

(1 + a(1))(2 + a(1))
Cn(a),

H2(a) :=
a1(a + a1)

(1 + a(1))(2 + a(1))
Cn(a),

Hi(a) :=
a1ai(1 + a)

(1 + a(1))(2 + a(1))(1 + a(1) − ai)
Cn(a), i = 3, 4, . . . , n.
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Then FR(a) = H1(a)+
∑n

i=3 Hi(a) and GR(a) = H2(a)+
∑n

i=4 Hi(a). Therefore to prove
(2.1) and (2.2), it suffices to show the following:

Lemma 2.1. For each i = 1, 2, . . . , n, we have the recurrence Hi(a) =
∑n

k=1 Hi(a − ek).

Proof. 1. For H1(a),
n

∑

k=1

H1(a− ek) =
(a1 − 1)(a1 − 2)

(1 + a(1))(2 + a(1))
Cn(a − e1) +

n
∑

k=2

a1(a1 − 1)

a(1)(1 + a(1))
Cn(a− ek)

=

[

a1(a1 − 1)(a1 − 2)

a(1 + a(1))(2 + a(1))
+

n
∑

k=2

aka1(a1 − 1)

aa(1)(1 + a(1))

]

Cn(a)

=

[

a1(a1 − 1)(a1 − 2)

a(1 + a(1))(2 + a(1))
+

a1(a1 − 1)

a(1 + a(1))

]

Cn(a)

=
a1(a1 − 1)

(1 + a(1))(2 + a(1))
Cn(a) = H1(a).

2. For H2(a),
n

∑

k=1

H2(a − ek) =
(a1 − 1)(a + a1 − 2)

(1 + a(1))(2 + a(1))
Cn(a − e1) +

n
∑

k=2

a1(a + a1 − 1)

a(1)(1 + a(1))
Cn(a− ek)

=

[

a1(a1 − 1)(a + a1 − 2)

a(1 + a(1))(2 + a(1))
+

n
∑

k=2

aka1(a + a1 − 1)

aa(1)(1 + a(1))

]

Cn(a)

=

[

a1(a1 − 1)(a + a1 − 2)

a(1 + a(1))(2 + a(1))
+

a1(a + a1 − 1)

a(1 + a(1))

]

Cn(a)

=
a1(a + a1)

(1 + a(1))(2 + a(1))
Cn(a) = H2(a).

3. For Hi(a) with i = 3, . . . , n, without loss of generality, we may assume i = 3.
n

∑

k=1

H3(a − ek)

=
aa3(a1 − 1)

(1 + a(1))(2 + a(1))(1 + a(1) − a3)
Cn(a − e1) +

aa1a3

a(1)(1 + a(1))(a(1) − a3)
Cn(a − e2)

+
aa1(a3 − 1)

a(1)(1 + a(1))(1 + a(1) − a3)
Cn(a − e3) +

n
∑

k=4

aa1a3

a(1)(1 + a(1))(a(1) − a3)
Cn(a − ek)

=
a1a3(a1 − 1)

(1 + a(1))(2 + a(1))(1 + a(1) − a3)
Cn(a) +

a1a2a3

a(1)(1 + a(1))(a(1) − a3)
Cn(a)

+
a1a3(a3 − 1)

a(1)(1 + a(1))(1 + a(1) − a3)
Cn(a) +

a1a3(a − a1 − a2 − a3)

a(1)(1 + a(1))(a(1) − a3)
Cn(a)

=
a1a3

(1 + a(1))(1 + a(1) − a3)

[

a1 − 1

2 + a(1)
+

a3 − 1

a(1)
+

(a − a1 − a3)(1 + a(1) − a3)

a(1)(a(1) − a3)

]

Cn(a)

=
a1a3(1 + a)

(1 + a(1))(2 + a(1))(1 + a(1) − a3)
Cn(a) = H3(a).

This completes the proof.
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2.3 Boundary Conditions

Now we consider the boundary conditions. For any k with 1 ≤ k ≤ n,

Dn

(

x, (a1, . . . , ak−1, 0, ak+1, . . . , an)
)

= Dn−1(x
〈k〉,a〈k〉) ×

n
∏

i=1
i6=k

(

1 −
xi

xk

)ai

,

where x〈k〉 := (x1, . . . , xk−1, xk+1, . . . , xn). Thus we have

CT
x

x2
2

x2
1

Dn

(

x, (a1, . . . , ak−1, 0, ak+1, . . . , an)
)

= CT
x
〈k〉

Pk · Dn−1(x
〈k〉,a〈k〉), (2.3)

where Pk is given by

Pk : = CT
xk

x2
2

x2
1

n
∏

i=1
i6=k

(

1 −
xi

xk

)ai

=



















0, k = 1;
(

a1

2

)

+ a1
∑n

i=3 ai
xi

x1
+

∑n
i=3

(

ai

2

)x2
i

x2
1

+
∑

3≤i<j≤n

aiaj
xixj

x2
1

, k = 2;

x2
2

x2
1
, otherwise.

Taking the constant term in the x’s of (2.3), we obtain

FL(a1, . . . , ak−1, 0, ak+1, . . . , an)

=



















0, k = 1;

CT
x
〈2〉

(

(

a1

2

)

+ a1

n
∑

i=3
ai

xi

x1
+

n
∑

i=3

(

ai

2

)x2
i

x2
1

+
∑

3≤i<j≤n

aiaj
xixj

x2
1

)

Dn−1(x
〈2〉,a〈2〉), k = 2;

CT
x
〈k〉

x2
2

x2
1
Dn−1(x

〈k〉,a〈k〉), otherwise.

By Theorem 1.1 and [8, Theorem 1.1], we have

CT
x
〈2〉

(

a1

2

)

Dn−1(x
〈2〉,a〈2〉) =

a1(a1 − 1)

2
Cn−1(a

〈2〉),

CT
x
〈2〉

a1

n
∑

i=3

ai

xi

x1
Dn−1(x

〈2〉,a〈2〉) = −
a2

1 (a(1) − a2)

1 + a(1) − a2
Cn−1(a

〈2〉).

So we obtain the following boundary conditions (also recurrences)

FL(a1, . . . , ak−1, 0, ak+1, . . . , an)

=



























0, k = 1;
(

a1(a1−1)
2 −

a2
1 a(1)

1+a(1)

)

Cn−1(a
〈2〉)

+
n
∑

i=3

(

ai

2

)

FL(1, i,a〈2〉) +
∑

3≤i<j≤n

aiajGL(1, i, j,a〈2〉), k = 2;

FL(a〈k〉), otherwise.
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We need to show that FR(a1, . . . , ak−1, 0, ak+1, . . . , an) satisfies the same boundary
conditions, i.e., the boundary conditions by replacing all FL by FR and all GL by GR:

FR(a1, . . . , ak−1, 0, ak+1, . . . , an)

=



























0, k = 1;
(

a1(a1−1)
2

−
a2
1 a(1)

1+a(1)

)

Cn−1(a
〈2〉)

+
n
∑

i=3

(

ai

2

)

FR(1, i, a〈2〉) +
∑

3≤i<j≤n

aiajGR(1, i, j, a〈2〉), k = 2;

FR(a〈k〉), otherwise.

(2.4)

For GL(a1, . . . , ak−1, 0, ak+1, . . . , an), similar computation for 1
M

= x2x3

x2
1

yields the

boundary conditions:

GL(a1, . . . , ak−1, 0, ak+1, . . . , an)

=



















0, k = 1;
a2
1

1+a(1) Cn−1(a
〈2〉) − a3FL(1, 3, a〈2〉) −

∑n

i=4 aiGL(1, 3, i, a〈2〉), k = 2;
a2
1

1+a(1) Cn−1(a
〈3〉) − a2FL(1, 2, a〈3〉) −

∑n

i=4 aiGL(1, 2, i, a〈3〉), k = 3;

GL(a〈k〉), otherwise,

so we need to prove that GR(a1, . . . , ak−1, 0, ak+1, . . . , an) satisfies the following boundary
conditions:

GR(a1, . . . , ak−1, 0, ak+1, . . . , an)

=



















0, k = 1;
a2
1

1+a(1) Cn−1(a
〈2〉) − a3FR(1, 3, a〈2〉) −

∑n

i=4 aiGR(1, 3, i, a〈2〉), k = 2;
a2
1

1+a(1) Cn−1(a
〈3〉) − a2FR(1, 2, a〈3〉) −

∑n

i=4 aiGR(1, 2, i, a〈3〉), k = 3;

GR(a〈k〉), otherwise.

(2.5)

These are summarized by the following lemma.

Lemma 2.2. If ak = 0 with k = 1, 2, . . . , n, then FR(a1, . . . , ak−1, 0, ak+1, . . . , an) satisfies
the boundary conditions (2.4) and GR(a1, . . . , ak−1, 0, ak+1, . . . , an) satisfies the boundary
conditions (2.5).

Proof. We only prove the first part for brevity and similarity.

Since the cases k = 1, 3, . . . , n are straightforward, we only prove the case k = 2. Note
that during the proof of this lemma, we have a(1) = a2 + a3 + · · · + an = a3 + · · · + an

because a2 = 0.
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Since
n

∑

i=3

(

ai

2

) n
∑

j=3
j 6=i

aj

1 + a(1) − aj

=

n
∑

i=3

ai(ai − 1)

2

n
∑

j=3

( aj

1 + a(1) − aj

−
ai

1 + a(1) − ai

)

=
1

2

( n
∑

i=3

(a2
i − ai)

n
∑

j=3

aj

1 + a(1) − aj

−

n
∑

i=3

a3
i − a2

i

1 + a(1) − ai

)

=
1

2

( n
∑

j=3

aj

1 + a(1) − aj

n
∑

i=3

a2
i − a(1)

n
∑

j=3

aj

1 + a(1) − aj

−

n
∑

i=3

a3
i − a2

i

1 + a(1) − ai

)

, (2.6)

we have
n

∑

i=3

(

ai

2

)

FR(1, i, a〈2〉)

=
a1

(1 + a(1))(2 + a(1))

n
∑

i=3

(

ai

2

)[

(a1 − 1) −
n

∑

j=3
j 6=i

aj(1 + a)

1 + a(1) − aj

]

Cn−1(a
〈2〉)

= −
a1(1 + a)

2(1 + a(1))(2 + a(1))

[ n
∑

j=3

aj

1 + a(1) − aj

n
∑

i=3

a2
i − a(1)

n
∑

j=3

aj

1 + a(1) − aj

−
n

∑

i=3

a3
i − a2

i

1 + a(1) − ai

]

Cn−1(a
〈2〉) +

a1(a1 − 1)

2(1 + a(1))(2 + a(1))

( n
∑

i=3

a2
i − a(1)

)

Cn−1(a
〈2〉) by (2.6)

= −
a1a

(1)(a1 − 1)

2(1 + a(1))(2 + a(1))
Cn−1(a

〈2〉) − λ

[

(1 + a)

n
∑

j=3

aj

1 + a(1) − aj

n
∑

i=3

a2
i

− (1 + a)

n
∑

j=3

a3
j − a2

j + aja
(1)

1 + a(1) − aj

− (a1 − 1)

n
∑

i=3

a2
i

]

, (2.7)

where λ := a1

2(1+a(1))(2+a(1))
Cn−1(a

〈2〉).

Observe that

∑

3≤i<j≤n

aiaj =
1

2

[

(a(1))2 −

n
∑

k=3

a2
k

]

(2.8)

and

∑

3≤i<j≤n

aiaj

n
∑

k=3
k 6=i,j

ak

1 + a(1) − ak

=
∑

3≤i<j≤n

aiaj

n
∑

k=3

( ak

1 + a(1) − ak

−
ai

1 + a(1) − ai

−
aj

1 + a(1) − aj

)

=
∑

3≤i<j≤n

aiaj

n
∑

k=3

ak

1 + a(1) − ak

−
∑

3≤i<j≤n

a2
i aj

1 + a(1) − ai

−
∑

3≤i<j≤n

aia
2
j

1 + a(1) − aj

=
1

2

n
∑

k=3

ak

1 + a(1) − ak

[

(

a(1)
)2

−

n
∑

i=3

a2
i

]

−

n
∑

i=3

n
∑

j=3
j 6=i

a2
i aj

1 + a(1) − ai

by (2.8)

=
1

2

n
∑

k=3

ak

1 + a(1) − ak

[

(

a(1)
)2

−

n
∑

i=3

a2
i

]

−

n
∑

i=3

a2
i (a

(1) − ai)

1 + a(1) − ai

. (2.9)
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Thus we obtain that
∑

3≤i<j≤n

aiajGR(1, i, j, a〈2〉)

=
a1

(1 + a(1))(2 + a(1))

∑

3≤i<j≤n

aiaj

[

(a + a1) −
n

∑

k=3
k 6=i,j

ak(1 + a)

1 + a(1) − ak

]

Cn−1(a
〈2〉)

=
a1(a + a1)

(1 + a(1))(2 + a(1))

∑

3≤i<j≤n

aiajCn−1(a
〈2〉)

−
a1(1 + a)

(1 + a(1))(2 + a(1))

∑

3≤i<j≤n

aiaj

n
∑

k=3
k 6=i,j

ak

1 + a(1) − ak

Cn−1(a
〈2〉)

=
a1(a + a1)

2(1 + a(1))(2 + a(1))

[

(a(1))2 −

n
∑

k=3

a2
k

]

Cn−1(a
〈2〉) +

a1(1 + a)

2(1 + a(1))(2 + a(1))

×

[ n
∑

k=3

ak

1 + a(1) − ak

(

n
∑

i=3

a2
i −

(

a(1)
)2

)

+ 2

n
∑

i=3

a2
i (a

(1) − ai)

1 + a(1) − ai

]

Cn−1(a
〈2〉) by (2.9)

=
a1(a + a1)(a

(1))2

2(1 + a(1))(2 + a(1))
Cn−1(a

〈2〉) + λ

[

(1 + a)

n
∑

k=3

ak

1 + a(1) − ak

n
∑

i=3

a2
i

− (a + a1)

n
∑

k=3

a2
k − (1 + a)

n
∑

k=3

ak(a(1))2 − 2a2
ka(1) + 2a3

k

1 + a(1) − ak

]

. (2.10)

Observe that

(1 + a)

n
∑

j=3

a3
j − a2

j + aja
(1)

1 + a(1) − aj

+ (a1 − 1)

n
∑

i=3

a2
i

− (a + a1)
n

∑

k=3

a2
k − (1 + a)

n
∑

k=3

ak(a
(1))2 − 2a2

ka
(1) + 2a3

k

1 + a(1) − ak

=(1 + a)
n

∑

i=3

−a3
i − a2

i + aia
(1) − ai(a

(1))2 + 2a2
i a

(1)

1 + a(1) − ai

− (1 + a)
n

∑

i=3

a2
i

=(1 + a)

n
∑

i=3

(1 + a(1) − ai)(a
2
i + 2ai − aia

(1)) − 2ai

1 + a(1) − ai

− (1 + a)

n
∑

i=3

a2
i

=(1 + a)

n
∑

i=3

(2ai − aia
(1)) − (1 + a)

n
∑

i=3

2ai

1 + a(1) − ai

=a(1)(1 + a)(2 − a(1)) − (1 + a)
n

∑

i=3

2ai

1 + a(1) − ai

(2.11)

and

a1a
(1)(1 + a)(2 − a(1))

2(1 + a(1))(2 + a(1))
−

a1a
(1)(a1 − 1)

2(1 + a(1))(2 + a(1))
+

a1(a + a1)(a
(1))2

2(1 + a(1))(2 + a(1))
+

a1(a1 − 1)

2
−

a2
1a

(1)

1 + a(1)

=
a1(a1 − 1)

(1 + a(1))(2 + a(1))
. (2.12)
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Therefore by (2.7), (2.10), (2.11) and (2.12), we have
[

a1(a1 − 1)

2
−

a2
1 a(1)

1 + a(1)

]

Cn−1(a
〈2〉) +

n
∑

i=3

(

ai

2

)

FR(1, i,a〈2〉) +
∑

3≤i<j≤n

aiajGR(1, i, j,a〈2〉)

= FR(a1, 0, a3, . . . , an).

That is to say FR(a1, 0, a3, . . . , an) satisfies boundary conditions (2.4).

2.4 The Proof

Now we can prove Theorems 1.2 and 1.3. Without loss of generality, we may assume
r = 1, s = 2 and t = 3 in Theorems 1.2 and 1.3.

Proof of Theorems 1.2 and 1.3. We prove by induction on n for the two theorems simul-
taneously. Clearly, (1.1) and (1.2) hold when n = 2, 3. Assume they hold if n is replaced
by n − 1. Then for k = 1, 2, . . . , n, (1.1) and (1.2) give

FL(r, s, a〈k〉) = FR(r, s, a〈k〉),

GL(r, s, t, a〈k〉) = GR(r, s, t, a〈k〉).

That is to say FL(a1, . . . , ak−1, 0, ak+1, . . . , an) and FR(a1, . . . , ak−1, 0, ak+1, . . . , an) ( resp.
GL(a1, . . . , ak−1, 0, ak+1, . . . , an) and GR(a1, . . . , ak−1, 0, ak+1, . . . , an) ) satisfy the same
boundary conditions. Additionally FL(a) and FR(a) ( resp. GL(a) and GR(a) ) have the
same initial condition and recurrence. It follows that FL(a) = FR(a) ( resp. GL(a) =
GR(a) ).

3 Several Dyson Style Constant Term Identities

By linearly combining Theorems 1.2 and 1.3, we obtain simple formulas.

Proposition 3.1. Let r, s, t, u, and v be distinct integers in {1, 2, . . . , n}. Then

CT
x

(xs − xt)(xu − xv)

x2
r

Dn(x, a) = 0, (3.1)

CT
x

(xs − xu)(xs − xv)

x2
r

Dn(x, a) = −
ar(1 + a)

(2 + a(r))(1 + a(r) − as)
Cn(a), (3.2)

CT
x

(xs − xt)
2

x2
r

Dn(x, a) = −
ar(1 + a)

2 + a(r)

∑

i=s,t

1

1 + a(r) − ai

Cn(a). (3.3)

It is worth mentioning that (3.3) follows from (3.1) and (3.2), since

(xs−xu)(xs−xv)+(xt−xu)(xt −xv) = (xs−xt)
2 +(xs−xu)(xt −xv)+(xs−xv)(xt −xu).

A consequence of Proposition 3.1 is the following:
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Corollary 3.2. Let I:={i1, i2, . . . , i2m} be a 2m-element subset of {1, 2, . . . , n} and let
r ≤ n be a positive integer with r 6∈ I. Then we have

CT
x

(
∑2m

j=1(−1)jxij

)2

x2
r

Dn(x, a) = −
ar(1 + a)

2 + a(r)

∑

j∈I

1

1 + a(r) − aj

Cn(a).

Proof. Observe that

( 2m
∑

j=1

(−1)jxij

)2

=
[

(xi2 − xi1) + (xi4 − xi3) + · · ·+ (xi2m
− xi2m−1)

]2

= (xi2 − xi1)
2 + · · · + (xi2m

− xi2m−1)
2 +

m
∑

k=1

m
∑

l=1
l 6=k

(xi2k
− xi2k−1

)(xi2l
− xi2l−1

).

The corollary then follows by (3.1) and (3.3).

Discussions: As we have seen in the proof, we need to guess the formulas of FR and GR

simultaneously. This is unlike the coefficients for M = xsxt/x
2
u and M = xsxt/(xuxv),

which have reasonable product formulas and are equal!

The cubic cases are M with x2
rxs or x3

r in the numerator. In both cases, we have three
sub-cases for the denominator, and need to guess three coefficients simultaneously. The
current difficulty is that we can not obtain enough data: the GoodDyson package is no
longer effective for n ≥ 5.

Our next project, suggested by the referee, will be to find Zeilberger-style combinato-
rial proofs as in [11], at least of formula (3.1), and hope such proofs may lead the way for
the cubic cases.

The study of the q-analogs of these formulas will follow a completely different route
and will not be discussed in this paper.
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