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Abstract

A set partition of size n is a collection of disjoint blocks B1, B2, . . . , Bd whose
union is the set [n] = {1, 2, . . . , n}. We choose the ordering of the blocks so that
they satisfy minB1 < minB2 < · · · < minBd. We represent such a set partition by
a canonical sequence π1, π2, . . . , πn, with πi = j if i ∈ Bj. We say that a partition
π contains a partition σ if the canonical sequence of π contains a subsequence that
is order-isomorphic to the canonical sequence of σ. Two partitions σ and σ ′ are
equivalent, if there is a size-preserving bijection between σ-avoiding and σ ′-avoiding
partitions.

We determine all the equivalence classes of partitions of size at most 7. This
extends previous work of Sagan, who described the equivalence classes of partitions
of size at most 3.

Our classification is largely based on several new infinite families of pairs of
equivalent patterns. For instance, we prove that there is a bijection between k-
noncrossing and k-nonnesting partitions, with a notion of crossing and nesting based
on the canonical sequence. Our results also yield new combinatorial interpretations
of the Catalan numbers and the Stirling numbers.

1 Introduction

A partition of size n is a collection B1, B2, . . . , Bd of nonempty disjoint sets, called blocks,
whose union is the set [n] = {1, 2, . . . , n}. We will assume that B1, B2, . . . , Bd are listed
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in increasing order of their minimum elements, that is, min B1 < min B2 < · · · < min Bd.
In this paper, we will represent a partition of size n by its canonical sequence, which is
an integer sequence π = π1π2 · · ·πn such that πi = k if and only if i ∈ Bk. For instance,
1231242 is the canonical sequence of the partition of {1, 2, . . . , 7} with the four blocks
{1, 4}, {2, 5, 7}, {3} and {6}.

Note that a sequence π over the alphabet [d] represents a partition with d blocks if
and only if it has the following properties.

• Each number from the set [d] appears at least once in π.

• For each i, j such that 1 ≤ i < j ≤ d, the first occurrence of i precedes the first
occurrence of j.

We remark that sequences satisfying these properties are also known as restricted growth
functions, and they are often encountered in the study of set partitions [21, 26] as well as
other related topics, such as Davenport-Schinzel sequences [6, 13, 14, 19].

Throughout this paper, we identify a set partition with the corresponding canonical
sequence, and we use this representation to define the notion of pattern avoidance among
set partitions. Let π = π1π2 · · ·πn and σ = σ1σ2 · · ·σm be two partitions represented
by their canonical sequences. We say that π contains σ, if π has a subsequence that is
order-isomorphic to σ; in other words, π has a subsequence πf(1), πf(2), . . . , πf(m), where
1 ≤ f(1) < f(2) < · · · < f(m) ≤ n, and for each i, j ∈ [m], πf(i) < πf(j) if and only if
σi < σj. If π does not contain σ, we say that π avoids σ. Our aim is to study the set of
all the partitions of [n] that avoid a fixed partition σ. In such context, σ is usually called
a pattern.

Let P (n) denote the set of all the partitions of [n], let P (n; σ) denote the set of all
partitions of [n] that avoid σ, and let p(n) and p(n; σ) denote the cardinality of P (n)
and P (n; σ), respectively. We say that two partitions σ and σ ′ are equivalent, denoted by
σ ∼ σ′, if p(n; σ) = p(n; σ′) for each n.

The concept of pattern-avoidance described above has been introduced by Sagan [21],
who considered, among other topics, the enumeration of partitions avoiding patterns of
size three. In our paper, we extend this study to larger patterns. We give new criteria for
proving the equivalence of partition patterns. By computer enumeration, we verify that
our criteria describe all the equivalence classes of patterns of size n ≤ 7.

Most of our results are applicable to patterns of arbitrary length. Some of these results
may be of independent interest. For instance, let us define k-noncrossing and k-nonnesting
partitions as the partitions that avoid the pattern 12 · · ·k12 · · ·k and 12 · · ·kk(k−1) · · ·1,
respectively. We will show that these two patterns are equivalent for every k, by construct-
ing a bijection between k-noncrossing and k-nonnesting partitions. It is noteworthy, that
a different concept of crossings and nestings in partitions has been considered by Chen
et al. [3, 4], and this different notion of crossings and nestings also admits a bijection
between k-noncrossing and k-nonnesting partitions, as has been shown in [4]. There is,
in fact, yet another notion of crossings and nestings in partitions that has been studied
by Klazar [13, 14].
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Several of our results are proved using a correspondence between partitions and 0-1
fillings of polyomino shapes. This correspondence allows us to translate recent results
on fillings of Ferrers shapes [6, 15] and stack polyominoes [20] into the terminology of
pattern-avoiding partitions. The correspondence between fillings of shapes and pattern-
avoiding partitions works in the opposite way as well: some of our theorems, proved in the
context of partitions, imply new results about pattern-avoiding fillings of Ferrers shapes
and pattern-avoiding ordered graphs.

Apart from these results, we also present a class of patterns equivalent to the pattern
12 · · ·k. Notice that the partitions avoiding 12 · · ·k are precisely the partitions with fewer
than k blocks. The number of such partitions can be expressed as a sum of the Stirling
numbers of the second kind. Thus, our result can be viewed as a new combinatorial
interpretation of the Stirling numbers of the second kind. Similarly, by providing patterns
equivalent to 1212, we provide a new combinatorial interpretation of the Catalan numbers.

In Section 2, we present basic facts about pattern-avoiding partitions, and we sum-
marize previously known results. Our main results are collected in Section 3, where we
present several infinite families of classes of equivalent patterns. In Sections 4–7, we
present a systematic classification of patterns of size n = 4, . . . , 7. The classification is
mostly based on the general results from Section 3, except for two isolated cases that need
to be handled separately. In particular, in Section 4, we prove that the pattern 1123 is
equivalent to the pattern 1212, thus completing the characterization of the patterns of
size four and obtaining another new interpretation for the Catalan numbers. In Section 5,
we prove the equivalence 12112 ∼ 12212, and explain its implications for the theory of
pattern-avoiding ordered graphs and polyomino fillings.

2 Basic facts and previous results

Let us first establish some notational conventions that will be applied throughout this
paper. For a finite sequence S = s1s2 · · · sp and an integer k, we let S + k denote the
sequence (s1+k)(s2+k) · · · (sp+k). For a symbol k and an integer d, the constant sequence
(k, k, . . . , k) of length d is denoted by kd. To prevent confusion, we will use capital letters
S, T, . . . to denote arbitrary sequences of positive integers, and we will use lowercase greek
symbols (π, σ, τ, . . . ) to denote canonical sequences representing partitions.

An infinite sequence a0, a1, . . . is often conveniently represented by its exponential gen-
erating function (or EGF for short), which is the formal power series F (x) =

∑
n≥0

anxn

n!
.

We mostly deal with the generating functions of the sequences of the form (p(n; π))n≥0,
where π is a given pattern. We simply call such a generating function the EGF of the
pattern π.

Let us summarize previous results relevant to our topic. Let exp(x) =
∑

n≥0
xn

n!
and

exp<k(x) =
∑k−1

n=0
xn

n!
. We first state two simple propositions, which already appear in

[21].

Proposition 1. A partition avoids the pattern 1k if and only if each of its blocks has size
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less than k. The EGF of the pattern 1k is equal to

exp(exp<k(x) − 1). (1)

Proposition 2. A partition avoids the pattern 12 · · ·k if and only if it has fewer than k

blocks. The corresponding EGF is equal to

exp<k(exp(x) − 1). (2)

We omit the proofs of these two propositions. Let us just remark that the formulas
given above are obtained by standard manipulation of EGFs. A common generalization
of these formulas can be found, e.g., in [9, Proposition II.2].

The enumeration of partitions with fewer than k blocks is closely related to the Stirling
numbers of the second kind S(n, m), defined as the number of partitions of [n] with exactly
m blocks (see sequence A008277 in [22]).

Sagan [21] has described and enumerated the pattern-avoiding classes P (n; π) for the
five patterns π of length three. We summarize the relevant results in Table 1. We again
omit the proofs.

τ p(n; τ)

111 sequence A000085 in [22]
112, 121, 122, 123 2n−1

Table 1: Number of partitions in P (n; τ), where τ ∈ P (3).

3 General classes of equivalent patterns

In this section, we introduce the tools that will be useful in our study of pattern-avoidance,
and we prove our key results. We begin by introducing a general relationship between
pattern-avoidance in partitions and pattern-avoidance in fillings of restricted shapes. This
approach will provide a useful tool for dealing with many pattern problems.

3.1 Pattern-avoiding fillings of diagrams

We will use the term diagram to refer to any finite set of the cells of the two-dimensional
square grid. To fill a diagram means to write a non-negative integer into each cell.

We will number the rows of diagrams from bottom to top, so the “first row” of a
diagram is its bottom row, and we will number the columns from left to right. We will
apply the same convention to matrices and to fillings. We always assume that each row
and each column of a diagram is nonempty. Thus, for example, when we refer to a diagram
with r rows, it is assumed that each of the r rows contains at least one cell of the diagram.
Note that there is a (unique) empty diagram with no rows and no columns. Let r(F ) and
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c(F ) denote, respectively, the number of rows and columns of F , where F is a diagram,
or a matrix, or a filling of a diagram.

We will mostly use diagrams of a special shape, namely Ferrers diagrams and stack
polyominoes. We begin by giving the necessary definitions.

Definition 3. A Ferrers diagram, also called Ferrers shape, is a diagram whose cells are
arranged into contiguous rows and columns satisfying the following rules.

• The length of any row is greater than or equal to the length of any row above it.

• The rows are right-justified, i.e., the rightmost cells of the rows appear in the same
column.

We admit that our convention of drawing Ferrers diagrams as right-justified rather
than left-justified shapes is different from standard practice; however, our definition will
be more intuitive in the context of our applications.

Definition 4. A stack polyomino Π is a collection of finitely many cells of the two-
dimensional rectangular grid, arranged into contiguous rows and columns with the prop-
erty that for any i = 1, . . . , r(Π), every column intersecting the i-th row also intersects
all the rows with index smaller than i.

Clearly, every Ferrers shape is also a stack polyomino. On the other hand, a stack
polyomino can be regarded as a union of a Ferrers shape and a vertically reflected copy
of another Ferrers shape.

Definition 5. A filling of a diagram is an assignment of non-negative integers to the cells
of the diagram. A 0-1 filling is a filling that only uses values 0 and 1. In such filling, a
0-cell of a filling is a cell that is filled with value 0, and a 1-cell is filled with value 1. A
0-1 filling is called semi-standard if each of its columns contains exactly one 1-cell. A 0-1
filling is called sparse if every column has at most one 1-cell. A column of a 0-1 filling is
called zero column if it contains no 1-cell. A zero row is defined analogously.

Among several possibilities to define pattern-avoidance in fillings, the following ap-
proach seems to be the most useful and most common.

Definition 6. Let M = (mij; i ∈ [r], j ∈ [c]) be a matrix with r rows and c columns with
all entries equal to 0 or 1, and let F be a filling of a diagram. We say that F contains M

if F contains r distinct rows i1 < · · · < ir and c distinct columns j1 < · · · < jc with the
following two properties.

• Each of the rows i1, . . . , ir intersects all columns j1, . . . , jc in a cell that belongs to
the underlying diagram of F .

• If mk` = 1 for some k and `, then the cell of F in row ik and column j` has a nonzero
value.
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If F does not contain M , we say that F avoids M . We will say that two matrices M and

M ′ are Ferrers-equivalent (denoted by M
F
∼ M ′) if for every Ferrers shape ∆, the number

of semi-standard fillings of ∆ that avoid M is equal to the number of semi-standard
fillings of ∆ that avoid M ′. We will say that M and M ′ are stack-equivalent (denoted
by M

s
∼ M ′) if the equality holds even for semi-standard fillings of an arbitrary stack

polyomino.

Pattern-avoidance in the fillings of diagrams has received considerable attention lately.
Apart from semi-standard fillings, various authors have considered standard fillings with
exactly one 1-cell in each row and each column (see [2] or [23]), as well as general fillings
with non-negative integers (see [7] or [15]). Also, nontrivial results were obtained for
fillings of more general shapes (e.g. moon polyominoes [20]). These results often consider
the cases when the forbidden pattern M is the identity matrix (i.e., the r × r matrix, Ir,
with mij = 1 if and only if i = j) or the anti-identity matrix (i.e. the r × r matrix, Jr,
with mij = 1 if and only if i + j = r + 1).

Since our next arguments mostly deal with semi-standard fillings, we will drop the
adjective ‘semi-standard’ and simply use the term ‘filling’, when there is no risk of ambi-
guity.

Remark 7. Let M and M ′ be two Ferrers-equivalent 0-1 matrices with a 1-cell in every
column, and let f be a bijection between M -avoiding and M ′-avoiding semi-standard
fillings of Ferrers shapes. There is a natural way to extend f into a bijection between
M -avoiding and M ′-avoiding sparse fillings of Ferrers shapes. Assume that F is a sparse
M -avoiding filling of a Ferrers shape ∆. The non-zero columns of F form a semi-standard
filling of a (not necessarily contiguous) subdiagram of ∆. We apply f to this subfilling to
transform F into a sparse M ′-avoiding filling of ∆.

A completely analogous argument can be made for stack polyominoes instead of Ferrers
shapes.

We now introduce some more notation, which will be useful for translating the language
of partitions to the language of fillings.

Definition 8. Let S = s1s2 · · · sm be a sequence of positive integers, and let k ≥
max{si : i ∈ [m]} be an integer. We let M(S, k) denote the 0-1 matrix with k rows
and m columns which has a 1-cell in row i and column j if and only if sj = i.

We now describe the correspondence between partitions and fillings of Ferrers diagrams
(recall that τ + k denotes the sequence obtained from τ by adding k to every element).

Lemma 9. Let S and S ′ be two nonempty sequences over the alphabet [k], let τ be an
arbitrary partition. If M(S, k) is Ferrers-equivalent to M(S ′, k) then the partition pattern
σ = 12 · · ·k(τ + k)S is equivalent to σ′ = 12 · · ·k(τ + k)S ′.

Proof. Let π be a partition of [n] with m blocks. Let M denote the matrix M(π, m). Fix
a partition τ with t blocks, and let T denote the matrix M(τ, t). We will color the cells of
M red and green. If τ is nonempty, then the cell in row i and column j is colored green if
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and only if the submatrix of M induced by the rows i+1, . . . , m and columns 1, . . . , j − 1
contains T . If τ is empty, then the cell in row i and column j is green if and only if row
i has at least one 1-cell strictly to the left of column j. A cell is red if it is not green.

Note that the green cells form a Ferrers diagram, and the entries of the matrix M

form a sparse filling G of this diagram. Also, note that the leftmost 1-cell of each row is
always red, and any 0-cell of the same row to the left of the leftmost 1-cell is red too.

It is not difficult to see that the partition π avoids σ if and only if the filling G of
the ‘green’ diagram avoids M(S, k), and π avoids σ′ if and only if G avoids M(S ′, k).

Since M(S, k)
F
∼ M(S ′, k), there is a bijection f that maps M(S, k)-avoiding fillings of

Ferrers shapes onto M(S ′, k)-avoiding fillings of the same shape. By Remark 7, f can be
extended to sparse fillings. Using this extension of f , we construct the following bijection
between P (n; σ) and P (n; σ′): for a partition π ∈ P (n; σ) with m blocks, we take M and
G as above. By assumption, G is M(S, k)-avoiding. Using the bijection f and Remark 7,
we transform G into an M(S ′, k)-avoiding sparse filling f(G) = G′, while the filling of the
red cells of M remains the same. We thus obtain a new matrix M ′.

Note that if we color the cells of M ′ red and green using the criterion described in
the first paragraph of this proof, then each cell of M ′ will receive the same color as the
corresponding cell of M , even though the occurrences of T in M ′ need not correspond
exactly to the occurrences of T in M . Indeed, if τ is nonempty, then for each green cell g

of M , there is an occurrence of T to the left and above g consisting entirely of red cells.
This occurrence is contained in M ′ as well, which guarantees that the cell g remains green
in M ′. A similar argument can be made if τ is empty.

By construction, M ′ has exactly one 1-cell in each column, hence there is a sequence π ′

over the alphabet [m] such that M ′ = M(π′, m). We claim that π′ is a canonical sequence
of a partition. To see this, note that for every i ∈ [m], the leftmost 1-cell of M in row i is
red and the preceding 0-cells in row i are red too. It follows that the leftmost 1-cell of row
i in M is also the leftmost 1-cell of row i in M ′. Thus, the first occurrence of the symbol
i in π appears at the same place as the first occurrence of i in π ′, hence π′ is indeed a
partition. The green cells of M ′ avoid M(S ′, k), so π′ avoids σ′. Obviously, the transform
π 7→ π′ is invertible and provides a bijection between P (n; σ) and P (n; σ ′).

In general, the relation 12 . . . kS ∼ 12 . . . kS ′ does not imply that M(S, k) and M(S ′, k)
are Ferrers equivalent. In Section 5, we will prove that 12112 ∼ 12212, even though
M(112, 2) is not Ferrers equivalent to M(212, 2).

On the other hand, the relation 12 . . . kS ∼ 12 . . . kS ′ allows us to establish a somewhat
weaker equivalence between pattern-avoiding fillings, using the following lemma.

Lemma 10. Let S be a nonempty sequence over the alphabet [k], and let τ = 12 · · ·kS.
For every n and m, there is a bijection f that maps the set of τ -avoiding partitions of
[n] with m blocks onto the set of all the M(S, k)-avoiding fillings F of Ferrers shapes that
satisfy c(F ) = n − m and r(F ) ≤ m.

Proof. Let π be a τ -avoiding partition of [n] with m blocks. Let M = M(π, m), and let
us consider the same red and green coloring of M as in the proof of Lemma 9, i.e., the
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green cells of a row i are precisely the cells that are strictly to the right of the leftmost
1-cell in row i.

Note that M has exactly m red 1-cells, and each 1-cell is red if and only if it is the
leftmost 1-cell of its row. Note also that if ci is the column containing the red 1-cell in
row i, then either ci is the rightmost column of M , or column ci +1 is the leftmost column
of M with exactly i green cells.

Let G be the filling formed by the green cells. As was pointed out in the previous
proof, the filling G is a sparse M(S, k)-avoiding filling of a Ferrers shape. Note that for
each i = 1, . . .m−1, the filling G has exactly one zero column of height i, and this column,
which corresponds to ci+1, is the rightmost of all the columns of G with height at most i.

Let G− be the subfilling of G induced by all the nonzero columns of G. Observe that
G− is a semi-standard M(S, k)-avoiding filling of a Ferrers shape with exactly n − m

columns and at most m rows; we thus define f(π) = G−.
Let us now show that the mapping f defined above can be inverted. Let F be a

filling of a Ferrers shape with n − m columns and at most m rows. We insert m − 1 zero
columns c2, c3, . . . , cm into the filling F as follows: each column ci has height i− 1, and it
is inserted immediately after the rightmost column of F ∪ {c2, . . . , ci−1} that has height
at most i − 1. Note that the filling obtained by this operation corresponds to the green
cells of the original matrix M . Let us call this sparse filling G.

We now add a new 1-cell on top of each zero column of G, and we add a new 1-cell in
front of the bottom row, to obtain a semi-standard filling of a diagram with n columns
and m rows. The diagram can be completed into a matrix M = M(π, m), where π is
easily seen to be a canonical sequence of a τ -avoiding partition.

Lemma 9 provides a tool to deal with partition patterns of the form 12 · · ·k(τ + k)S
where S is a sequence over [k] and τ is a partition. We now describe a correspondence
between partitions and fillings of stack polyominoes, which is useful for dealing with
patterns of the form 12 · · ·kS(τ + k). We use a similar argument as in the proof of
Lemma 9.

Lemma 11. If τ is a partition, and S and S ′ are two nonempty sequences over the
alphabet [k] such that M(S, k)

s
∼ M(S ′, k), then the partition σ = 12 · · ·kS(τ + k) is

equivalent to the partition σ′ = 12 · · ·kS ′(τ + k).

Proof. Fix a partition τ with t blocks. Let π be any partition of [n] with m blocks, let
M = M(π, m). We will color the cells of M red and green. A cell of M in row i and
column j is green, if it satisfies the following conditions.

(a) The submatrix of M formed by the intersection of the top m − i rows and the
rightmost n − j columns contains M(τ, t).

(b) The matrix M has at least one 1-cell in row i appearing strictly to the left of
column j.

A cell is called red, if it is not green. Note that the green cells form a stack polyomino
and the matrix M induces a sparse filling G of this polyomino.
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As in Lemma 9, it is easy to verify that the partition π above avoids the pattern σ if
and only if the filling G avoids M(S, k), and π avoids σ′ if and only if G avoids M(S ′, k).

The rest of the argument is analogous to the proof of Lemma 9. Assume that M(S, k)
and M(S ′, k) are stack-equivalent via a bijection f . By Remark 7, we extend f to a
bijection between M(S, k)-avoiding and M(S ′, k)-avoiding sparse fillings of a given stack
polyomino. Consider a partition π ∈ P (n; σ) with m blocks, and define M and G as
above. Apply f to the filling G to obtain an M(S ′, k)-avoiding filling G′; the filling of
the red cells of M remains the same. This yields a matrix M ′ and a sequence π′ such
that M ′ = M(π′, k). We may easily check that the green cells of M ′ are the same as the
green cells of M . By rule (b) above, the leftmost 1-cell of each row of M is unaffected by
this transform. It follows that the first occurrence of i in π ′ is at the same place as the
first occurrence of i in π, and in particular, π′ is a partition. By the observation of the
previous paragraph, π′ avoids σ′ and the transform π 7→ π′ is a bijection from P (n; σ) to
P (n; σ′).

The following simple result about pattern-avoidance in fillings will turn out to be
useful in the analysis of pattern avoidance in partitions.

Proposition 12. If S is a nonempty sequence over the alphabet [k − 1], then M(S, k)
is stack-equivalent to M(S + 1, k). If S and S ′ are two sequences over [k − 1] such that

M(S, k − 1)
F
∼ M(S ′, k − 1) then M(S, k)

F
∼ M(S ′, k), and if M(S, k − 1)

s
∼ M(S ′, k − 1)

then M(S, k)
s
∼ M(S ′, k).

Proof. To prove the first part, let us define M = M(S, k), M− = M(S, k − 1), and
M ′ = M(S + 1, k). Notice that a filling F of a stack polyomino Π avoids M if and only if
the filling obtained by erasing the topmost cell of every column of F avoids M−. Similarly,
F avoids M ′, if and only if the filling obtained by erasing the bottom row of F avoids
M−. We will now describe a bijection between M -avoiding and M ′-avoiding fillings. Fix
an M -avoiding filling F . In every column of this filling, move the topmost element into
the bottom row, and move every other element into the row directly above it. This yields
an M ′-avoiding filling. The second claim of the theorem is proved analogously.

Note that a sequence S over the alphabet [k − 1] does not necessarily contain all the
symbols {1, . . . , k − 1}. In particular, every sequence over [k − 2] is also a sequence over
[k − 1]. Thus, if S is a sequence over [k − 2], we may use Proposition 12 to deduce
M(S, k)

s
∼ M(S + 1, k)

s
∼ M(S + 2, k).

For convenience, we translate the first part of Proposition 12 into the language of
pattern-avoiding partitions, using Lemma 9 and Lemma 11. We omit the straightforward
proof.

Corollary 13. If S is a nonempty sequence over [k − 1] and τ is an arbitrary partition,
then

12 · · ·k(τ +k)S ∼ 12 · · ·k(τ +k)(S +1) and 12 · · ·kS(τ +k) ∼ 12 · · ·k(S +1)(τ +k).
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We now state another result related to pattern-avoidance in Ferrers diagrams, which
has important consequences in our study of partitions. Let us first fix the following
notation: for two matrices A and B, let ( A 0

0 B ) denote the matrix with r(A) + r(B) rows
and c(A) + c(B) columns with a copy of A in the top left corner and a copy of B in the
bottom right corner.

The idea of the following proposition is not new, it has already been applied by Backelin
et al. [2] to standard fillings of Ferrers diagrams, and later adapted by de Mier [7] for fillings
with arbitrary integers. We now apply it to semi-standard fillings.

Lemma 14. If A and A′ are two Ferrers equivalent matrices, and if B is an arbitrary

matrix, then ( B 0
0 A )

F
∼ ( B 0

0 A′ ).

Proof. Let F be an arbitrary ( B 0
0 A )-avoiding filling of a Ferrers diagram ∆. We say

that a cell in row i and column j of F is green if the subfilling of F induced by the
intersection of rows i + 1, i + 2, . . . , r(F ) and columns 1, 2, . . . , j − 1 contains a copy of
B. Note that the green cells form a Ferrers shape ∆− ⊆ ∆, and that the restriction of
F to the cells of ∆− is a sparse A-avoiding filling G. By Remark 7, the filling G can be
bijectively transformed into a sparse A′-avoiding filling G′ of ∆−, which transforms F into
a semi-standard ( B 0

0 A′ )-avoiding filling of ∆.

We remark that the argument of the proof fails if the matrices ( B 0
0 A ) and ( B 0

0 A′ ) are
replaced with ( A 0

0 B ) and ( A′ 0
0 B

) respectively. Also, the argument fails if Ferrers shapes
are replaced with stack polyominoes. For instance, the matrix A = ( 1 0

0 1 ) is Ferrers-
equivalent and stack-equivalent to A′ = ( 0 1

1 0 ), but the two matrices ( A 0
0 1 ) and ( A′ 0

0 1 ) are
not Ferrers-equivalent, and the two matrices ( 1 0

0 A ) and ( 1 0
0 A′ ) are not stack-equivalent.

Although Lemma 14 does not directly provide new pairs of equivalent partition pat-
terns, it allows us to prove the following proposition.

Proposition 15. Let s1 > s2 > · · · > sm and t1 > t2 > · · · > tm be two strictly decreasing
sequences over the alphabet [k], let r1, . . . , rm be positive integers. Define weakly decreasing

sequences S = sr1

1 sr2

2 · · · srm

m and T = tr1

1 tr2

2 · · · trm

m . We have M(S, k)
F
∼ M(T, k), and in

particular, if τ an arbitrary partition, then 12 · · ·k(τ + k)S ∼ 12 · · ·k(τ + k)T .

Proof. We proceed by induction over minimum j such that si = ti for each i ≤ m− j. For
j = 0, we have S = T and the result is clear. If j > 0, assume without loss of generality
that sm−j+1 − tm−j+1 = d > 0. Consider the sequence t′1 > t′2 > · · · > t′m such that t′i = ti
for every i ≤ m − j and t′i = ti + d for every i > m − j. The sequence (t′i)

m
i=1 is strictly

decreasing, and its first m− j +1 terms are equal to si. Define T ′ = (t′1)
r1(t′2)

r2 · · · (t′m)rm .

By induction, M(S, k)
F
∼ M(T ′, k). To prove that M(T, k)

F
∼ M(T ′, k), first write T =

T0T1, where T0 is the prefix of T containing all the symbols of T greater than tm−j+1

and T1 is the suffix of the remaining symbols. Notice that T ′ = T0(T1 + d). We may
write M(T, k) = ( B 0

0 A ) and M(T ′, k) = ( B 0
0 A′ ), where A = M(T1, tm−j − 1) and A′ =

M(T1 + d, tm−j − 1). By Proposition 12, A
F
∼ A′, and by Lemma 14, M(T, k)

F
∼ M(T ′, k),

as claimed. The last claim of the proposition follows from Lemma 9.
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3.2 Non-crossing and non-nesting partitions

The key application of the framework of the previous subsection is the identity between
non-crossing and non-nesting partitions. We define non-crossing and non-nesting parti-
tions in the following way.

Definition 16. A partition is k-noncrossing if it avoids the pattern 12 · · ·k12 · · ·k, and
it is k-nonnesting if it avoids the pattern 12 · · ·kk(k − 1) · · ·1.

Let us point out that there are several different concepts of ‘crossings’ and ‘nestings’
used in the literature: for example, Klazar [13] has considered two blocks X, Y of a
partition to be crossing (or nesting) if there are four elements x1 < y1 < x2 < y2 (or
x1 < y1 < y2 < x2, respectively) such that x1, x2 ∈ X and y1, y2 ∈ Y , and similarly for
k-crossings and k-nestings. Unlike our approach, Klazar’s definition makes no assumption
about the relative order of the minimal elements of X and Y , which allows more gen-
eral configurations to be considered as crossing or nesting. Thus, Klazar’s k-noncrossing
and k-nonnesting partitions are a proper subset of our k-noncrossing and k-nonnesting
partitions, (except for 2-noncrossing partitions where the two concepts coincide).

Another approach to crossings in partitions has been pursued by Chen et al. [3,
4]. They use the so-called linear representation, where a partition of [n] with blocks
B1, B2, . . . , Bk is represented by a graph on the vertex set [n], with a, b ∈ [n] connected by
an edge if they belong to the same block and there is no other element of this block between
them. In this terminology, a partition is k-crossing (or k-nesting) if the representing graph
contains k edges which are pairwise crossing (or nesting), where two edges e1 = {a < b}
and e2 = {a′ < b′} are crossing (or nesting) if a < a′ < b < b′ (or a < a′ < b′ < b

respectively). Let us call such partitions graph-k-crossing and graph-k-nesting, to avoid
confusion with our own terminology of Definition 16. It is not difficult to see that a
partition is graph-2-noncrossing if and only if it is 2-noncrossing, but for nestings and for k-
crossings with k > 2, the two concepts are incomparable. For instance the partition 12121
is graph-2-nonnesting but it contains 1221, while 12112 is graph-2-nesting and avoids
1221. Similarly, 1213123 has no graph-3-crossing and contains 123123, while 1232132 has
a graph-3-crossing and avoids 123123.

Chen et al. [4] have shown that the number of graph-k-noncrossing and graph-k-
nonnesting partitions of [n] is equal. Below, we prove that the same is true for k-
noncrossing and k-nonnesting partitions as well. It is interesting to note that the proofs
of both these results are based on a reduction to theorems on pattern avoidance in the
fillings of Ferrers diagrams (this is only implicit in [4], a direct construction is given by
Krattenthaler [15]), although the constructions employed in the proofs of these results are
quite different.

Theorem 17. For every n and k, the number of k-noncrossing partitions of [n] is equal
to the number of k-nonnesting partitions of [n].

By Lemma 9, a bijection between k-noncrossing and k-nonnesting partitions can be
constructed from a bijection between Ik-avoiding and Jk-avoiding semi-standard fillings
of Ferrers diagrams.
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Krattenthaler [15] has presented a comprehensive summary of the relationships be-
tween Ir-avoiding and Jr-avoiding fillings of a fixed Ferrers diagram under additional
constraints for row-sums and column-sums. These relationships are based on a suitable
version of the RSK-correspondence (see [10] or [25] for a broad overview of the RSK
algorithm and related topics).

We will now state the theorem about the correspondence between Ik-avoiding and
Jk-avoiding fillings of diagrams. The result we will use is a weaker version of Theorem 13
from [15]. Note that in the original paper, it is not explicitly stated that the bijection
between Ik-avoiding and Jk-avoiding fillings preserves the sum of every row and every
column; however, this is an immediate consequence of the technique used in the proof.
Also, in [15], the result is stated for arbitrary fillings with nonnegative integers; however,
the previous remark shows that the result holds even when restricted to semi-standard
fillings.

Theorem 18 (adapted from [15]). For every Ferrers diagram ∆ and every k, there is
a bijection between the Ik-avoiding semi-standard fillings of ∆ and the Jk-avoiding semi-
standard fillings of ∆. The bijection preserves the number of 1-cells in every row.

Theorem 18 and Lemma 9 give us the result we need. We even obtain the following
refinement of Theorem 17.

Corollary 19. For every n and every k, there is a bijection between k-noncrossing and
k-nonnesting partitions of [n]. The bijection preserves the number of blocks, the size of
each block, and the smallest element of every block.

Applying Lemma 9 with S = 12 · · ·k and S ′ = k(k − 1) · · · 1, and translating it into
the terminology of pattern-avoiding partitions, we obtain the following result.

Corollary 20. Let τ be a partition, let k be an integer. The pattern 12 · · ·k(τ +k)12 · · ·k
is equivalent to 12 · · ·k(τ + k)k(k − 1) · · · 1.

Furthermore, results of Rubey, in particular [20, Proposition 5.3], imply that the
matrices Ik and Jk are in fact stack-equivalent, rather than just Ferrers-equivalent. More
precisely, Rubey’s theorem deals with fillings of moon polyominoes with prescribed row-
sums. However, since a transposed copy of a stack polyomino is a special case of a moon
polyomino, Rubey’s general result applies to fillings of stack polyominoes with prescribed
column sums as well. Combining this theorem with Lemma 11, we obtain the following
result.

Corollary 21. For any k and any partition τ , the pattern 12 · · ·k12 · · ·k(τ + k) is equiv-
alent to 12 · · ·kk(k − 1) · · ·1(τ + k).

3.3 The patterns 12 · · · k(k + 1)12 · · · k and 12 · · · k12 · · · k(k + 1)

Our next aim is to prove that the pattern 12 · · ·k(k+1)12 · · ·k is equivalent to the pattern
12 · · ·k12 · · ·k(k + 1). This result is again a consequence of earlier results on fillings of
polyominoes.
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Definition 22. Let Π be a stack polyomino. The content of Π is the sequence of the
column heights of Π, listed in nondecreasing order.

The key ingredient of our proof is the following result of Rubey.

Theorem 23. Let Π and Π′ be two stack polyominoes with the same content, and let
k ≥ 1 be an integer. There is a bijection between the Ik-avoiding semi-standard fillings of
Π and the Ik-avoiding semi-standard fillings of Π′.

The theorem above is essentially a special case of Proposition 5.3 from Rubey’s pa-
per [20]. The only complication is that Rubey’s proposition deals with arbitrary non-
negative integer fillings, rather than semi-standard fillings. However, as was pointed out
in the last paragraph of Section 4 in [20], it is easy to see that Rubey’s bijection maps
semi-standard fillings to semi-standard fillings.

Observe that Theorem 23 implies that Ik and Jk are stack-equivalent. The number of
Jk-avoiding fillings of a stack polyomino Σ is clearly equal to the number of Ik-avoiding
fillings of the mirror image of Σ, which is equal to the number of Ik-avoiding fillings of Σ
by Theorem 23.

Let us now analyze in more detail the partitions avoiding 12 · · ·k(k + 1)12 · · ·k.

Definition 24. Let π = π1 · · ·πn be a partition. We say that an element πi is left-
dominating if πi ≥ πj for each j < i. We say that a left-dominating element πi left-
dominates an element πj, if πi > πj, i < j, and πi is the rightmost left-dominating
element with these two properties. Clearly, if πj not left-dominating, then it is left-
dominated by a unique left-dominating element. On the other hand, a left-dominating
element is not left-dominated by any other element. If an element is not left-dominating,
we call it simply left-dominated.

The left shadow of π is the sequence π obtained by replacing each left-dominated ele-
ment by the symbol ‘∗’. We will say that a non-star symbol i left-dominates an occurrence
of a star, if i is the rightmost non-star to the left of the star.

For example, if π = 123232144, the left shadow of π is the sequence π = 123∗3∗∗44. In
π, the leftmost occurrence of ‘3’ left-dominates a single star, while the second occurrence
of ‘3’ left-dominates two stars.

It is not difficult to see that a sequence π over the alphabet {1, 2, . . . , m, ∗} is a left
shadow of a partition with m blocks if and only if it satisfies the following conditions.

• The non-star symbols of π form a non-decreasing sequence.

• Each of the symbols 1, 2, . . . , m appears at least once.

• No occurrence of the symbol 1 may left-dominate an occurrence of ∗. Any other
non-star symbol may left-dominate any number of stars, and each star is dominated
by a non-star.

Any sequence that satisfies these three conditions will be called a left-shadow sequence.
Note that a left-shadow sequence is uniquely determined by the multiplicities of its non-
star symbols and by the number of stars dominated by each non-star.
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Definition 25. Let π = π1 · · ·πn be a partition, let F = F (π) be the semi-standard filling
of a Ferrers diagram defined by the following conditions.

1. The columns of F correspond to the left-dominated elements of π. The i-th col-
umn of F has height j if the i-th left-dominated element of π is dominated by an
occurrence of j + 1.

2. The i-th column of F has a 1-cell in row j if the i-th left-dominated element of π is
equal to j.

Note that the shape of the underlying diagram of F (π) is determined by the left
shadow of π. More precisely, the number of columns of height h in F is equal to the
number of stars in the left shadow which are dominated by an occurrence of h + 1. It is
easy to see that the left shadow π and the filling F (π) together uniquely determine the
partition π. In fact, for every semi-standard filling F ′ with the same shape as F (π), there
is a (unique) partition π′ with the same left-shadow as π, and with F (π′) = F ′.

The following observation is a straightforward application of the terminology intro-
duced above. We omit its proof.

Observation 26. A partition π avoids the pattern 12 · · ·k(k + 1)12 · · ·k if and only if
the filling F (π) avoids Ik.

We now focus on the partitions that avoid the pattern 12 · · ·k12 · · ·k(k + 1).

Definition 27. Let π = π1 · · ·πn be a partition. We say that an element πi is right-
dominating if either πi ≥ πj for each j > i or πi > πj for each j < i. If πi is not
right-dominating, we say that it is right-dominated. We say that πi right-dominates πj if
πi is the leftmost right-dominating element appearing to the right of πj, and πj itself is
not right-dominating.

The right shadow π̃ of a partition π is obtained by replacing each right-dominated
element of π by a star.

For example, the right shadow of the partition π = 12213423312 is the sequence
12 ∗ ∗34 ∗ 33 ∗ 2. A sequence π̃ over the alphabet {1, 2, . . . , m, ∗} is the right shadow of a
partition with m blocks if and only if it satisfies the following conditions.

• The non-star symbols of π̃ form a subsequence (1, 2, . . . , m, s1, s2, . . . , sp) where the
sequence s1s2 · · · sp is nonincreasing.

• No occurrence of the symbol 1 may right-dominate an occurrence of ∗. Any other
non-star symbol may right-dominate any number of stars, and each star is right-
dominated by a non-star.

Any sequence that satisfies these two conditions will be called a right-shadow sequence. A
right-shadow sequence is uniquely determined by the multiplicities of its non-star symbols
and by the number of stars right-dominated by each non-star.
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Definition 28. Let π = π1 · · ·πn be a partition. Let S = S(π) be the semi-standard
filling of a stack polyomino defined by the following conditions.

1. The columns of S correspond to the right-dominated elements of π. The i-th column
of S has height j if the i-th right-dominated element of π is dominated by an
occurrence of j + 1.

2. The i-th column of S has a 1-cell in row j if the i-th right-dominated element of π

is equal to j.

Let Σ be the underlying diagram of S(π). Notice that Σ is uniquely determined by
the right shadow π̃ of the partition π, although there may be different right shadows cor-
responding to the same shape Σ. The sequence π̃ and the filling S(π) together determine
the partition π. For a fixed π̃, the mapping π 7→ S(π) gives a bijection between partitions
with right shadow π̃ and fillings of Σ.

The proof of the following observation is again straightforward and we omit it.

Observation 29. A partition π avoids the pattern 12 · · ·k12 · · ·k(k + 1) if and only if
the filling S(π) avoids Ik.

We are now ready to prove the main result of this subsection.

Theorem 30. For any k ≥ 1, the patterns 12 · · ·k(k+1)12 · · ·k and 12 · · ·k12 · · ·k(k+1)
are equivalent.

Proof. We will describe a bijection between the two pattern-avoiding classes. Let π be a
partition with m blocks that avoids 12 · · ·k(k + 1)12 · · ·k. Let π be its left shadow, and
let F (π) be the filling from Definition 25. Let Π denote the underlying shape of F (π).
By Observation 26, F (π) avoids Ik.

Let σ̃ be the right-shadow sequence determined by the following two conditions.

1. For each symbol i ∈ [m], the number of occurrences of i in π is equal to the number
of its occurrences in σ̃.

2. For any i and j, the number of stars left-dominated by the j-th occurrence of i in
π is equal to the number of stars right-dominated by the j-th occurrence of i in σ̃.

Note that these conditions determine σ̃ uniquely. As an example, consider the left-shadow
sequence π = 123 ∗ 3 ∗ ∗44∗. In σ̃, the non-star elements form the subsequence 123443.
The first occurrence of 3 in π left-dominates a single star, the second occurrence of 3
left-dominates two stars, and the second occurrence of 4 left-dominates one star. Hence,
σ̃ is the sequence 12 ∗ 34 ∗ 4 ∗ ∗3.

Next, let Σ be the stack polyomino whose columns correspond to the stars of σ̃, where
the i-th column has height h if the i-th star of σ̃ is right-dominated by h + 1. In the
example above, if σ̃ = 12 ∗ 34 ∗ 4 ∗ ∗3, then Σ has four columns of heights (2, 3, 2, 2).
Clearly, Σ has the same content as Π. By Theorem 23, there is a bijection f between the
Ik-avoiding fillings of Π and the Ik-avoiding fillings of Σ. This bijection transforms F (π)
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into a filling S of Σ. Define a partition σ by replacing the i-th star in σ̃ by the row-index
of the 1-cell in the i-th column of S. By construction, σ is a partition with right shadow
σ̃, and S(σ) = S. By Observation 29, σ avoids 12 · · ·k12 · · ·k(k + 1).

This transformation, which is easily seen to be invertible, provides the required bijec-
tion. This completes the proof.

3.4 Patterns of the form 1(τ + 1)

In this subsection, we will establish a general relationship between the partitions that
avoid a pattern τ and the partitions that avoid the pattern 1(τ + 1). The key result is
the following theorem.

Theorem 31. Let τ be an arbitrary pattern, and let F (x) be its corresponding EGF. Let
σ = 1(τ + 1), and let G(x) be its EGF. For every n ≥ 1, the following holds:

p(n; σ) =
n−1∑

i=0

(
n − 1

i

)
p(i; τ). (3)

In terms of generating functions, this is equivalent to

G(x) = 1 +

∫ x

0

F (t)etdt. (4)

Proof. Fix σ and τ as in the statement of the theorem. Let π be an arbitrary partition,
and let π− denote the partition obtained from π by erasing every occurrence of the symbol
1, and decreasing every other symbol by 1; in other words, π− represents the partition
obtained by removing the first block from the partition π. Clearly, a partition π avoids
σ if and only if π− avoids τ . Thus, for every σ-avoiding partition π ∈ P (n; σ) there is a
unique τ -avoiding partition ρ ∈ ∪n−1

i=0 P (i; τ) satisfying π− = ρ. On the other hand, for
a fixed ρ ∈ P (i; τ), there are

(
n−1

i

)
partitions π ∈ P (n; σ) such that π− = ρ. This gives

equation (3).
To get equation (4), we multiply both sides of (3) by xn

n!
and sum for all n ≥ 1. This

yields

G(x) − 1 =
∑

n≥1

xn

n!

n−1∑

i=0

(
n − 1

i

)
p(i; τ) =

∫ x

0

∑

n≥1

tn−1

(n − 1)!

n−1∑

i=0

(
n − 1

i

)
p(i; τ)dt

=

∫ x

0

∑

n≥0

tn

n!

n∑

i=0

(
n

i

)
p(i; τ)dt =

∫ x

0

∑

n≥0

n∑

i=0

ti

i!
p(i; τ)

tn−i

(n − i)!
dt

=

∫ x

0

(
∑

i≥0

ti

i!
p(i; τ)

)(
∑

k≥0

tk

k!

)
dt =

∫ x

0

F (t)etdt,

which is equivalent to equation (4).
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The following result is an immediate consequence of Theorem 31.

Corollary 32. If τ ∼ τ ′ then 1(τ + 1) ∼ 1(τ ′ + 1), and more generally, 12 · · ·k(τ + k) ∼
12 · · ·k(τ ′ + k). In particular, since 123 ∼ 122 ∼ 112 ∼ 121, we see that for every
m ≥ 2 the patterns 12 · · · (m−1)m(m+1), 12 · · · (m−1)mm, 12 · · · (m−1)(m−1)m and
12 · · · (m − 1)m(m − 1) are equivalent. Conversely, if 1(τ + 1) ∼ 1(τ ′ + 1), then τ ∼ τ ′.

Proof. To prove the last claim, notice that equation (3) can be inverted to obtain

p(n − 1; τ) =

n−1∑

i=0

(−1)i

(
n − 1

i

)
p(n − i; σ).

The other claims follow directly from Theorem 31.

3.5 Patterns equivalent to 12 · · ·m(m + 1)

The partitions that avoid 12 · · ·m(m + 1), or equivalently, the partitions with at most
m blocks, are a very natural pattern-avoiding class of partitions. Their number may be
expressed by p(n; 12 · · · (m + 1)) =

∑m

i=0 S(n, i), where S(n, i) is the Stirling number of
the second kind, which is equal to the number of partitions of [n] with exactly i blocks.

As an application of the previous results, we will now present two classes of patterns
that are equivalent to the pattern 12 · · · (m+1). From this result, we obtain an alternative
combinatorial interpretation of the Stirling numbers S(n, i).

Our result is summarized in the following theorem.

Theorem 33. For every m ≥ 2, the following patterns are equivalent:

(a) 12 · · · (m − 1)m(m + 1),

(b) 12 · · · (m − 1)md, where d is any number from the set [m],

(c) 12 · · · (m − 1)dm, where d is any number from the set [m − 1].

Proof. From Corollary 32, we get the equivalences

12 · · ·m(m + 1) ∼ 12 · · · (m − 1)mm ∼ 12 · · · (m − 1)(m − 1)m.

The equivalences

12 · · · (m − 1)mm ∼ 12 · · · (m − 1)md and 12 · · · (m − 1)(m − 1)m ∼ 12 · · · (m − 1)dm

are obtained by a repeated application of Corollary 13.
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3.6 Binary patterns

Let us now focus on the avoidance of binary patterns, i.e., the patterns that only contain
the symbols 1 and 2.

We will first consider the forbidden patterns of the form 1k21`. We have already seen
that 112 ∼ 121. The following theorem offers a generalization.

Theorem 34. For any three integers j, k, m satisfying 1 ≤ j, k ≤ m, the pattern 1j21m−j

is equivalent to the pattern 1k21m−k.

Before we present the proof of Theorem 34, we need some preparation. Let π =
π1π2 · · ·πn be a partition. Clearly, π can be uniquely expressed as 1P11P21 · · ·1Pt−11Pt,
where the Pi are (possibly empty) maximal contiguous subsequences of π that do not
contain the symbol 1. The sequence Pi will be referred to as the i-th chunk of π. By
concatenating the chunks into a sequence P = P1 · · ·Pt and then subtracting 1 from
every symbol of P , we obtain a canonical sequence of a partition; let this partition be
denoted by π−. The key ingredient in the proof of Theorem 34 is the following lemma.

Lemma 35. Let π be a partition that has t occurrences of the symbol 1, let Pi and π− be
as above. Let j ≥ 1 and k ≥ 0 be two integers. The partition π avoids 1j21k if and only
if the following two conditions hold.

• The partition π− avoids 1j21k.

• For every i such that j ≤ i ≤ t − k, the chunk Pi is empty.

Proof. Clearly, the two conditions are necessary. To see that they are sufficient, we argue
by contradiction. Let π be a partition that satisfies the two conditions, and assume that
π has a subsequence ajbak for two symbols a < b. If a = 1 we have a contradiction with
the second condition, and if a > 1, then π− contains the sequence (a− 1)j(b− 1)(a− 1)k,
contradicting the first condition.

We are now ready prove Theorem 34.

Proof of Theorem 34. It is enough to prove that for every k ≥ 1 and every m > k there is
a bijection f from P (n; 1k21m−k) to P (n; 1m2). To define f , we will proceed by induction
on the number of blocks of π. If π = 1n then we define f(π) = π. Assume that f has
been defined for all partitions with fewer than b blocks, and let π ∈ P (n; 1k21m−k) be
a partition with b blocks, let t be the size of the first block of π. Let P1, . . . , Pt be the
chunks of π and let π− be defined as above. Define σ = f(π−). This is well defined, since
π− ∈ P (n − t; 1k21m−k) and π− has b − 1 blocks. Let S = σ + 1. We express S as a
concatenation of the form S = S1S2 · · ·St, where the length of Si is equal to the length of
Pi. By Lemma 35, the chunk Pi (and hence also Si) is empty whenever k ≤ i ≤ t−m+k.
We put f(π) = σ, where σ is defined as follows.

• If t < m, then σ = 1S11S21 · · ·1St−11St.
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• If t ≥ m, then σ = 1S11S21 · · ·1Sk−11St−m+k+11St−m+k+21 · · ·1St−11St1
t−m+1.

Using Lemma 35, we may easily see that σ avoids 1m2. It is also straightforward to check
that f is indeed a bijection from P (n; 1k21m−k) to P (n; 1m2). Note that f preserves not
only the number of blocks of the partition, but also the size of each block.

Using our results on fillings, we can add another pattern to the equivalence class
covered by Theorem 34.

Theorem 36. For every m ≥ 1, the pattern 12m is equivalent to the pattern 121m−1.

Proof. This is just Corollary 13 with k = 2 and S = 1m−1.

Corollary 37. Let m be a positive integer, let τ be any pattern from the set

T = {1k21m−k : 1 ≤ k ≤ m} ∪ {12m}.

The EGF F (x) of a pattern τ ∈ T is given by

F (x) = 1 +

∫ x

0

exp

(
t +

m−1∑

i=1

ti

i!

)
dt.

Proof. Theorems 34 and 36 show that all the patterns from the set T are equivalent,
so we will compute the EGF of τ = 12m. The formula for F (x) follows directly from
equation (1) on page 4 and Theorem 31.

We now turn to another type of binary patterns, namely the patterns of the form
12k12m−k with 1 ≤ k ≤ m. For a fixed m, these patterns are all equivalent. To prove
this, it suffices to show that the matrices M(2k−112m−k, 2) are all Ferrers-equivalent, and
then apply Lemma 9. We will construct a bijection between pattern-avoiding fillings
which proves the Ferrers-equivalence of these matrices. Furthermore, we will show that
this bijection has additional properties, which will be useful in proving more complicated
criteria for partition-equivalence that cannot be obtained from Lemma 9 alone.

Definition 38. Let F be a sparse filling of a stack polyomino Π and let t ≥ 1 be an
integer. A sequence c1, c2, . . . , ct of 1-cells in F is called a decreasing chain if for every
i ∈ [t − 1] the column containing ci is to left of the column containing ci+1 and the row
containing ci is above the row of ci+1. An increasing chain is defined analogously.

A filling is t-falling if it has at least t rows, and in its bottom t rows, the leftmost
1-cells of the nonzero rows form a decreasing chain.

Notice that a t-falling semi-standard filling of a stack polyomino Π only exists if the
leftmost column of Π has height at least t.

In the rest of this subsection, S p
q denotes the sequence 2p12q and S

p

q denotes the
sequence 1p21q, where p, q are nonnegative integers.
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Lemma 39. For every p, q ≥ 0, the matrix M(S p
q , 2) is stack-equivalent to the matrix

M(S p+q
0 , 2). Furthermore, if p ≥ 1, then for every stack polyomino Π, there is a bijection

f between the M(S p
q , 2)-avoiding and M(S p+q

0 , 2)-avoiding semi-standard fillings of Π with
the following properties.

• The bijection f preserves the number of 1-cells in every row.

• Both f and f−1 map t-falling fillings to t-falling fillings, for every t ≥ 1.

Proof. Let M = M(S p
q , 2) and M ′ = M(S p+q

0 , 2), for some p, q ≥ 0. Let Π be a stack
polyomino. We will proceed by induction over the number of rows of Π. If Π has only one
row, then a constant mapping is the required bijection. Assume now that Π has r ≥ 2
rows, and assume that we are presented with a semi-standard filling F of Π. Let Π− be
the diagram obtained from Π by erasing the r-th row as well as every column that contains
a 1-cell of F in the r-th row. The filling F induces on Π− a semi-standard filling F−.

We claim that for every p, q ≥ 0, a filling F avoids M if and only if the following two
conditions are satisfied.

(a) The filling F− avoids M .

(b) If the r-th row of F contains m 1-cells in columns c1 < c2 < · · · < cm and if
m ≥ p + q, then for every i such that p ≤ i ≤ m − q, the column ci is either the
rightmost column of the r-th row of Π, or it is directly adjacent to the column ci+1

(i.e. ci + 1 = ci+1).

Clearly, the two conditions are necessary. We now show that they are sufficient. The first
condition guarantees that F does not contain any copy of M that would be confined to
the first r−1 rows. The second condition guarantees that F has no copy of M that would
intersect the r-th row.

We now define recursively the required bijection between M -avoiding and M ′-avoiding
fillings. Let F be an M -avoiding filling of Π, let F− and c1, . . . , cm be as above. By the
induction hypothesis, we already have a bijection between M -avoiding and M ′-avoiding
fillings of the shape Π−. This bijection maps F− to a filling F̃− of Π−. Let F̃ be the
filling of Π that has the same values as F in the r-th row, and the columns not containing
a 1-cell in the r-th row are filled according to F̃−. Note that F̃ contains no copy of M ′ in
its first r − 1 rows and it contains no copy of M that would intersect the r-th row.

If F̃ has fewer than p + q 1-cells in the r-th row, we define f(F ) = F̃ , otherwise we
modify F̃ in the following way. For every i = 1, . . . , q, we consider the columns with
indices strictly between cm−q+i and cm−q+i+1 (if i = q, we take all columns to the right
of cm that intersect the last row). We remove these columns from F̃ and re-insert them
between the columns cp+i−1 and cp+i (which used to be adjacent by condition (b) above).
Note that these transformations preserve the relative left-to-right order of all the columns
that do not contain a 1-cell in their r-th row. In particular, the resulting filling still has
no copy of M ′ in the first r − 1 rows. By construction, the filling also satisfies condition
(b) for the values p′ = p + q and q′ = 0 used instead of the original p and q. Hence, it is
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a M ′-avoiding filling. This construction provides a bijection f between M -avoiding and
M ′-avoiding fillings.

It is clear that f preserves the number of 1-cells in each row. It remains to check that
if p ≥ 1, then f preserves the t-falling property. Let us fix t, and let r be the number
of rows of Π. If r < t then no filling of Π is t-falling. If r = t, then F is t-falling if and
only if F− is (t− 1)-falling and the r-th row is either empty or has a 1-cell in the leftmost
column of Π. These conditions are preserved by f and f−1, provided p ≥ 1. Finally, if
r > t, then F is t-falling if and only if F− is t-falling. We now obtain the required result
from the induction hypothesis and from the fact that the relative position of the 1-cells
of the first r − 1 rows does not change when we transform F̃ into f(F ).

With the help of Lemma 39, we are able to prove several results about pattern avoid-
ance in partitions. We first prove a direct corollary of previous results.

Corollary 40. For any partition τ , for any k ≥ 2, and for any p, q ≥ 0, the pattern
12 · · ·k(τ + k)S p

q is equivalent to 12 · · ·k(τ + k)S p+q
0 , and 12 · · ·kS p

q (τ + k) is equivalent

to 12 · · ·kS
p+q
0 (τ + k).

Proof. By Lemma 39, the two matrices M(S p
q , 2) and M(S p+q

0 , 2) are Ferrers-equivalent.

By Proposition 12, this implies that M(S p
q , k)

F
∼ M(S p+q

0 , k) for any k ≥ 2. Lemma 9
then gives the first equivalence. The second equivalence follows from Lemma 11 by an
analogous argument.

Next, we present two theorems that make use of the t-falling property. Recall that
S

p

q = 1p21q.

Theorem 41. Let τ be any partition with k blocks, let p ≥ 1 and q ≥ 0. The pattern

σ = τ(S
p

q + k) is equivalent to σ′ = τ(S
p+q

0 + k).

Proof. Let π be a partition of [n] with m blocks, let M = M(π, m). We color the cells of
M red and green, where a cell in row i and column j is green if and only if the submatrix
of M formed by the intersection of the first i − 1 rows and j − 1 columns of M contains
M(τ, k). It is not difficult to see that for each green cell (i, j) there is an occurrence of
M(τ, k) which appears in the first i−1 rows and the first j−1 columns and which consists
entirely of red cells. Thus, for any matrix M ′ obtained from M by modifying the filling
of M ’s green cells, the green cells of M ′ appear exactly at the same positions as the green
cells of M .

Let Γ be the diagram formed by the green cells of M , and let G be the filling of Γ by
the values from M . Note that Γ is an upside-down copy of a Ferrers shape. It is easy to
see that the partition π avoids σ if and only if G avoids M(S

p

q , 2), and π avoids σ′ if and

only if G avoids M(S
p+q

0 , 2).
Let us now assume that π is σ-avoiding. We now describe a procedure to transform π

into a σ′-avoiding partition π′ (see Figure 1). We first turn the filling G and the diagram
Γ upside down, which transforms Γ into a Ferrers shape Γ, and it also transforms the
M(S

p

q , 2)-avoiding filling G into an M(S p
q , 2)-avoiding filling G of Γ. Then we apply
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the bijection f of Lemma 39 to G, ignoring the zero columns of G. We thus obtain a
filling G

′
= f(G) which avoids M(S p+q

0 , 2). We turn this filling upside down, obtaining

a M(S
p+q

0 , 2)-avoiding filling G′ of Γ. We then fill the green cells of M with the values
of G′ while the filling of the red cells remains the same. We thus obtain a matrix M ′.
The matrix M ′ has exactly one 1-cell in each column, so there is a sequence π ′ over the
alphabet [m] such that M ′ = M(π′, m).

By construction, the sequence π′ has no subsequence order-isomorphic to σ′. We now
need to show that π′ is a restricted-growth sequence. For this, we will use the preservation
of the t-falling property. Let ci be the leftmost 1-cell of the i-th row of M , let c′i be the
leftmost 1-cell of the i-th row of M ′. We know that the cells c1, . . . , cm form an increasing
chain, because π was a restricted-growth sequence. We want to show that the cells
c′1, . . . , c

′
m form an increasing chain as well. Let s be the largest index such that the cell

cs is red in M . We set s = 0 if no such cell exists. Note that the cells c1, . . . , cs are red
and the cells cs+1, . . . , cm are green in M . We have ci = c′i for every i ≤ s. If s > 0, we
also see that all the green 1-cells of M are in the columns to the right of cs. This means
that even in the matrix M ′ all the green 1-cells are to the right of cs, because the empty
columns of G must remain empty in G′. In particular, all the cells c′s+1, . . . , c

′
m appear to

the right of c′s.
It remains to show that c′s+1, . . . , c

′
m form an increasing chain. We know that the cells

cs+1, . . . , cm form an increasing chain in M and in G. When G is turned upside down,
this chain becomes a decreasing chain cs+1, . . . , cm in G. This chain shows that G is

(m − s)-falling. By Lemma 39, G
′
must be (m − s)-falling as well, hence it contains a

decreasing chain c′s+1, . . . , c
′
m in its bottom m−s rows. This decreasing chain corresponds

to an increasing chain c′s+1, . . . , c
′
m in M ′, showing that π′ is a restricted-growth function,

as claimed.
It is obvious that the above construction can be reversed, which shows that it is indeed

a bijection between P (n; σ) and P (n; σ′).

The following result is proved by a similar approach, but the argument is slightly more
technical.

Theorem 42. Let T be an arbitrary sequence over the alphabet [k], let p ≥ 1 and q ≥ 0.

The partition σ = 12 · · ·k(S
p

q + k)T is equivalent to σ′ = 12 · · ·k(S
p+q

0 + k)T .

Proof. Let π be a partition of [n] with m blocks, let M = M(π, m). As in the previous
proof, we color the cells of M red and green. A cell in row i and column j will be green if
the submatrix of M formed by rows 1, . . . , i−1 and columns j+1, . . . , n contains M(T, k).

Let Γ be the diagram formed by the green cells and G its filling inherited from M . Let r

be the number of rows of Γ. The partition π contains σ if and only if G contains M(S
p

q , 2).
Note that the diagram Γ is an upside-down copy of a left-justified stack polyomino.

We apply the same construction as in the previous proof. Let G be the upside down
copy of G. The filling G is r-falling and it avoids M(S p

q , 2). We apply the mapping f

from Lemma 39 to transform G into an r-falling sparse filling G
′
. We then turn G

′
upside

down again and reinsert it into the green cells of the original matrix. This yields a matrix
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G′M(π′, n)

Figure 1: Illustration of the proof of Theorem 41.

M ′ with exactly one 1-cell in each column. Hence, there exists a sequence π ′, such that
M ′ = M(π′, m). The sequence π′ has no subsequence order-isomorphic to σ′.

We need to prove that π′ is a restricted-growth sequence. Let ci be the leftmost 1-cell
in row i of M and let c′i be the leftmost 1-cell in row i of M ′. To prove that π′ is a
partition, we want to show that c′1, . . . , c

′
m form an increasing chain in M ′.

Let us fix two row indices i < j. We claim that c′i is left of c′j. If both c′i and c′j are
green, then the claim follows from the preservation of the r-falling property. If both c′i and
c′j are red, then c′i = ci and c′j = cj. The claim then follows from the fact that c1, . . . , cm

is an increasing chain. If c′j is red and c′i is green, the claim holds as well, because cj = c′j,
and all the green cells below row j must appear to the left of the column of cj.

Finally, assume that c′j is green and c′i is red. We have c′i = ci. All the 1-cells of G

that are to the left of ci are also below row i. Let x be the number of such 1-cells. Then
x is equal to the number of nonzero columns of G that are to the left of ci. Since the
number of these nonzero columns is preserved by the mapping f , we see that G′ also has
x 1-cells left of ci.

Since f preserves the number of 1-cells in each row, both G and G′ have exactly x

1-cells below row i. All the 1-cells of G′ below row i must appear to the left of ci, and
since there are only x 1-cells of G′ to the left of ci, they must all appear below row i.
Hence, all the green 1-cells above row i (including the cell c′j) appear to the right of ci.
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3.7 Patterns equivalent to 12k13

Let t be a nonnegative integer. In this subsection, we will deal with the following sets of
patterns:

Σ+
t = {12p+112q32r : p, q, r ≥ 0, p + q + r = t}

Σ−
t = {12p+132q12r : p, q, r ≥ 0, p + q + r = t}

Σt = Σ+
t ∪ Σ−

t

Our aim is to show that all the patterns in Σt are equivalent. Throughout this subsection,
we will assume that t is arbitrary but fixed. We will write Σ+, Σ− and Σ instead of Σ+

t , Σ−
t

and Σt, if there is no risk of ambiguity.
We will use the following definition.

Definition 43. Let σ be a pattern over the alphabet {1, 2, 3}, let π be a partition with
m blocks, and let k ≤ m be an integer. We say that π contains σ at level k, if there are
symbols `, h ∈ [m] such that ` < k < h, and the partition π contains a subsequence S

made of the symbols {`, k, h} which is order-isomorphic to σ.

For example, the partition π = 1231323142221 contains σ = 121223 at level 3, because
π contains the subsequence 131334, but π avoids σ at level 2, because π has no subsequence
of the form `2`22h with ` < 2 < h.

Our plan is to show, for suitable pairs σ, σ′ ∈ Σ, that for every k there is a bijection
fk that maps the partitions avoiding σ at level k to the partitions avoiding σ ′ at level k,
while preserving σ′-avoidance at all levels j < k and preserving σ-avoidance at all levels
j > k +1. Composing the maps fk for k = 2, . . . , n−1, we will obtain a bijection between
P (n; σ) and P (n; σ′).

To do this we will need more definitions.

Definition 44. Consider a partition π, and fix a level k ≥ 2. A symbol of π is called k-low
if it is smaller than k and k-high if it is greater than k. A k-low cluster (or k-high cluster)
is a maximal consecutive sequence of k-low symbols (or k-high symbols, respectively) in π.
The k-landscape of π is a word over the alphabet {L, k, H} obtained from π by replacing
each k-low cluster with a single symbol L and each k-high cluster with a single symbol H.

A word w over the alphabet {L, k, H} is called a k-landscape word if it satisfies the
following conditions.

• The first symbol of w is L, the second symbol of w is k.

• No two symbols L are consecutive in w, no two symbols H are consecutive in w.

Clearly, the landscape of a partition is a landscape word.
Two k-landscape words w and w′ are said to be compatible, if each of the three symbols

{L, k, H} has the same number of occurrences in w as in w′.
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We will often drop the prefix k from these terms, if the value of k is clear from the
context.

To give an example, consider π = 1231323142221: it has five 3-low clusters, namely
12, 1, 2, 1 and 2221, it has one 3-high cluster 4, and its 3-landscape is L3L3L3LHL.

If w and w′ are two compatible k-landscape words, we have a natural bijection between
partitions with landscape w and partitions with landscape w′. If π has landscape w, we
map π to the partition π′ of landscape w′ which has the same k-low clusters and k-high
clusters as π, and moreover, the k-low clusters appear in the same order in π as in π ′,
and also the k-high clusters appear in the same order in π as in π ′. It is not difficult to
check that these rules define a unique sequence π′ and this sequence is indeed a partition.
This provides a bijection between partitions of landscape w and partitions of landscape
w′ which will be called the k-shuffle from w to w′.

The key property of shuffles is established by the next lemma.

Lemma 45. Let w and w′ be two compatible k-landscape words. Let π be a partition with
k-landscape w and let π′ be the partition obtained from π by the shuffle from w to w′. Let
σ be a pattern from Σ, and let j be an integer. The following holds.

1. If σ does not end with the symbol 1 and j > k, then π ′ contains σ at level j if and
only if π contains σ at level j.

2. If σ does not end with the symbol 3 and j < k, then π ′ contains σ at level j if and
only if π contains σ at level j.

Proof. We begin with the first claim of the lemma. Let σ = 12p+132q12r be an arbitrary
pattern from Σ− (the case σ ∈ Σ+ is analogous). By assumption, we have r > 0. Assume
that π contains σ at a level j > k. In particular, π has a subsequence S = `jp+1hjq`jr,
with ` < j < h.

If k < `, then all the symbols of S are k-high. Since the shuffle preserves the relative
order of high symbols, π′ contains the subsequence S as well. If k ≥ `, then the shuffle
preserves the relative order of the symbols j and h, which are all high. Let x and y be the
two symbols of S directly adjacent to the second occurrence of ` in S (if q > 0, both these
symbols are equal to j, otherwise one of them is h and the other j). The two symbols
are both high, but they must appear in different k-high clusters. After the shuffle, the
two symbols x and y will again be in different clusters, separated by a non-high symbol
`′ ≤ k, and since the first occurrence of `′ in π′ precedes any occurrence of j, the partition
π′ will contain a subsequence `′jp+1hjq`′jr, which is order-isomorphic to σ.

We see that the shuffle preserves the occurrence of σ at level j. Since the inverse of
the shuffle from w to w′ is the shuffle from w′ to w, we see that the inverse of a shuffle
preserves the occurrence of σ at level j as well.

The second claim of the lemma is proved by a similar argument. Assume that π

contains σ at a level j < k. Thus, π contains a subsequence S over the alphabet {` < j <

h}, which is order-isomorphic to σ. If h < k, then the symbols of S are low and hence
preserved by the shuffle. If h ≥ k, let x and y be the two symbols of S adjacent to the
symbol of h. Recall that σ does not end with the symbol 3, so x and y are both well
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defined. The symbols x and y must appear in two distinct low clusters. After the shuffle
is performed there will be a non-low symbol h′ between x and y. Hence, π′ will contain a
subsequence order isomorphic to σ.

We will use shuffles as basic building blocks for our bijection. The first example is the
following lemma.

Lemma 46. For every p, q, r ≥ 0, the pattern σ = 12p+112q32r is equivalent to the pattern
σ′ = 12p+132q12r.

Proof. Let us fix p, q, r ≥ 0 and define t = p + q + r. For a given k, a partition π of [n] is
called a k-hybrid if π avoids σ′ at every level j < k and π avoids σ at every level j ≥ k.
We will show that for every k ∈ {2, . . . , n − 1} there is a bijection fk between k-hybrids
and (k + 1)-hybrids. Since 2-hybrids are precisely the σ-avoiding partitions of [n] and
n-hybrids are precisely the σ′-avoiding partitions of [n], this gives the required result.

Let us fix k. Note that a partition π contains σ at level k if and only if its k-landscape
w contains a subsequence kp+1LkqHkr. Similarly, π contains σ′ at level k if and only if w

contains a subsequence kp+1HkqLkr.
Let π be a k-hybrid with landscape w. If π has fewer than t+1 occurrences of k, then

it is also a (k + 1)-hybrid and we put fk(π) = π. Otherwise, we write w = xyz, where
x is the shortest prefix of w that has p + 1 symbols k and z is the shortest suffix of w

that has r symbols k. By assumption, x and z do not overlap (although they may be
adjacent if q = 0). Let y be the word obtained by reversing the order of the letters of y,
define w′ = xyz. Note that w′ is a landscape word compatible with w, and that w avoids
kp+1LkqHkr if and only if w′ avoids kp+1HkqLkr. We apply to π the shuffle from w to w′

which transforms it into a partition π′ = fk(π).
Lemma 45 implies that π′ is a (k + 1)-hybrid. Hence, fk is the required bijection.

Another result in the same spirit is the following lemma.

Lemma 47. For every p, q, r ≥ 0, the pattern σ = 12p+212q32r is equivalent to the pattern
σ′ = 12p+112q32r+1.

Proof. We follow the same argument as in Lemma 46. As before, a k-hybrid is a partition
that avoids σ′ at every level j < k and that avoids σ at every level j ≥ k. We will present
a bijection fk between k-hybrids and (k + 1)-hybrids. Note that π avoids σ at level k if
and only if its landscape w avoids kp+2LkqHkr.

Fix a k-hybrid π with a landscape w. If π has fewer than p + 2 + q + r occurrences of
k, then it is also a (k + 1)-hybrid and we define fk(π) = π; otherwise, we write w = xSyz

where x is the shortest prefix of w that has p + 1 occurrences of k, z is the shortest suffix
with r occurrences of k, S is the subword that starts just after the (p + 1)th occurrence of
k and ends immediately after the (p + 2)th occurrence of k. We define w′ = xySz, where
S is the reversal of S.

Note that in the definition of w′, we need to take w′ = xySz instead of the seemingly
more natural definition w = xySz. This is because in general, the string xySz need
not be a landscape word, since it may contain to consecutive occurrences of either L or
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H. Our definition guarantees that w′ is a correct landscape word, and that w′ avoids
kp+1LkqHkr+1 if and only if w avoids kp+2LkqHkr (which is if and only if y avoids LkqH).

The rest of the argument is the same as in the previous lemma.

We may now state and prove the main result of this subsection.

Theorem 48. For every t, the patterns in the set Σt are equivalent.

Proof. By Corollary 40, we already know that for any p, q ≥ 0, the pattern 12p+112q3 is
equivalent to the pattern 12p+q+113. This, together with the two previous lemmas gives
the required result.

3.8 More ‘landscape’ patterns

We will show that with a little bit of additional effort, the previous argument involving
landscapes can be adapted to prove, for every p, q ≥ 0, the following equivalences:

• 1232p412q ∼ 1232p42q1

• 1232p142q ∼ 12312p42q

• 123p+1143q ∼ 123p+113q4

• 123p+1413q ∼ 12343p13q

Throughout this subsection, we will say that τ is a 1-2-4 pattern if τ has the form
123S where S is a sequence that has exactly one occurrence of the symbol 1, exactly
one occurrence of the symbol 4, and all its remaining symbols are equal to 2, where 4 is
neither the first nor the last symbol of S. Similarly, a 1-3-4 pattern is a pattern of the
form 123S where S has one occurrence of 1 and of 4, and all its other symbols are equal
to 3, where 1 is not the last symbol of S.

We decided to exclude the patterns of the form 1232p12q4, 12342p12q and 1233p43q1
from the set of 1-2-4 and 1-3-4 patterns defined above, because some of the arguments we
will need in the following discussion (namely in Lemma 49) would become more compli-
cated if these special types of patterns were allowed. We need not be too concerned about
this constraint, because we have already dealt with the patterns of the three excluded
types in Corollary 40 and Theorem 42. From Corollary 40, we obtain the equivalences
1232p12q4 ∼ 1232p+q14 and 12342p12q ∼ 12342p+q1, while from Theorem 42, we obtain
1233p43q1 ∼ 1233p+q41.

For our arguments, we need to extend some of the terminology of the previous sub-
section to cover the new family of patterns. Let τ be a 1-2-4 pattern, k be a natural
number, and π be a partition. We say that π contains τ at level k, if π has a subsequence
T order-isomorphic to τ such that the occurrences of the symbol 2 in τ correspond to the
occurrences of the symbol k in T . Similarly, if τ is a 1-3-4 pattern, we say that a partition
π contains τ at level k if π has a subsequence T order-isomorphic to τ with the symbol k

in T corresponding to the symbol 3 in τ .
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Our aim is to prove an analogue of Lemma 45 for 1-2-4 and 1-3-4 patterns. Un-
fortunately, general k-shuffles may behave badly with respect to the avoidance of these
patterns. However, we will define special types of k-shuffles that have the properties we
need. We first introduce some new definitions.

Let w be a k-landscape word. We say that two occurrences of the symbol H in w are
separated if there is at least one occurrence of L between them. Similarly, two symbols
L are separated if there is at least one H between them. As an example, consider the
k-landscape word w = LkLkHkkHLkH. In w, neither the first two occurrences of L nor
the first two occurrences of H are separated, while the second and third occurrence of
H, as well as the second and third occurrence of L are separated. We also say that two
clusters of a partition are separated if the corresponding symbols of the landscape word
are separated.

Let w and w′ be two k-landscape words. We say that w and w′ are H-compatible if they
are compatible, and if for any i, j, the i-th and j-th occurrence of H in w are separated if
and only if the i-th and j-th occurrence of H in w′ are separated. An L-compatible pair
of words is defined analogously.

For example, the two compatible words w = LkHkkHL and w′ = LkHkLHk are L-
compatible (since the two occurrences of L are separated in both words) but they are not
H-compatible (the two symbols H are not separated in w but they are separated in w ′).

The following lemma explains the relevance of these concepts.

Lemma 49. Let k be an integer. The following holds.

(1) Let w and w′ be two L-compatible k-landscape words, and let τ be a 1-2-4 pattern.
Let π be an arbitrary partition, and let π′ be the partition obtained from π by the
k-shuffle from w to w′. For every j < k, π contains τ at level j if and only if
π′ contains τ at level j. Moreover, if the last symbol of τ is equal to 2, then the
previous equivalence also holds for every j > k.

(2) Let w and w′ be two H-compatible k-landscape words, and let τ be a 1-3-4 pattern.
Let π be an arbitrary partition, and let π′ be the partition obtained from π by the
k-shuffle from w to w′. For every j > k, π contains τ at level j if and only if
π′ contains τ at level j. Moreover, if the last symbol of τ is equal to 3, then the
previous equivalence also holds for every j < k.

Proof. We first prove (1). Assume that π contains a 1-2-4 pattern τ at level j. If j > k,
we may use the same argument as in the proof of the first part of Lemma 45 to see that
the occurrence of τ is preserved by the shuffle as long as τ does not end with a 1.

Assume now that j < k. Let us write τ = 1232p42q12r (the case when τ has the form
1232p12q42r is analogous). By assumption, π contains a subsequence T order-isomorphic
to τ , with the symbol 2 of τ corresponding to the symbol j in T . We label from left-to-
right the 1 + p + q + r occurrences of j in T by j0, j1, · · · , jp+q+r. Let a < b < c denote
the symbols of T that correspond respectively to the symbols 1, 3 and 4 in τ ; we label the
two occurrences of a in T by a0 and a1. With this notation, we may write T as follows:

T = a0j0bj1 · · · jpcjp+1 · · · jp+qa1jp+q+1 · · · jp+q+r.
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We distinguish several cases, based on the relative order of b, c and k. If c < k, then all
the symbols of T are k-low and their relative position is preserved by the shuffle, which
means that T is also a subsequence of π′.

If c ≥ k and b < k, then the symbols a < j < b are k-low. Let x and y be the two
symbols adjacent to c in T . Typically x = jp and y = jp+1, unless q is zero, in which
case y = a1. Recall that c cannot directly follow b and it cannot be the last element of
T by the definition of 1-2-4 pattern. The elements x and y are low and they appear in
two distinct low clusters. After the shuffle, the occurrences of a, b and j in T have the
same relative order, and the elements x and y still belong to different clusters. Thus, π ′

contains a symbol greater than b between x and y. This shows that π ′ has a subsequence
order-isomorphic to τ .

It remains to consider the most complicated case, when c > k and b ≥ k. This is when
we first use the L-compatibility assumption. Let x and y be the two symbols adjacent to
c in T . By the definition of 1-2-4 patterns, x and y are both k-low. Since b is not k-low
and c is high, the partition π has the following properties.

1. The symbol j1 does not belong to the leftmost low cluster.

2. The two symbols x and y belong to two separated low clusters.

The two properties are preserved by the shuffle. In particular, in π ′, the symbol j1

does not belong to the leftmost low cluster, which means that there is at least one non-low
symbol appearing in π′ before j1. Since π′ is a partition in its canonical sequential form,
this implies that all the symbols 1, 2, · · · , k appear in π′ in this order before j1. Let a′, j ′

and k′ denote respectively the leftmost occurrences of a, j and k in π ′. We also know, from
the L-compatibility of w and w′, that in π′ the two symbols x and y appear in distinct
and separated low clusters. In particular, π′ contains a k-high symbol c′ between x and
y. Putting it all together, we see that π′ contains the subsequence

T ′ = a′j ′k′j1 · · · jpc
′jp+1 · · · jp+qa1jp+q+1 · · · jp+q+r,

which is order isomorphic to τ .
Thus, π contains a 1-2-4 pattern τ at level j, if and only if π ′ contains τ at level j.

This completes the proof of (1).
Claim (2) is proved by a similar argument. Let τ be a 1-3-4 pattern of the form

123p+113q43r (the case when τ = 123p+143q13r is analogous and easier). Assume that π

contains τ at level j, represented by a sequence T of the form

T = a0bj0j1 · · · jpa1jp+1 · · · jp+qcjp+q+1 · · · jp+q+r,

with a < b < j < c.
If j < k, we apply the same argument as in the proof of the second claim of Lemma 45

to prove that if τ does not end with 4, then the occurrence of τ is preserved by the shuffle.
Next, we assume that j > k and we distinguish several cases based on the relative

order of a, b and k.
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If a > k, then all the symbols of T are k-high and their order is preserved by the
shuffle.

If a ≤ k, and b > k, we let x and y denote the two symbols adjacent to a1 in T , and
we observe that π′ has a non-high element a′ between x and y. The first occurrence of
a′ in π′ must appear to the left of any k-high symbol, hence π′ contains a subsequence
a′bjp+1a′jqcjr order-isomorphic to τ .

If a < k and b ≤ k, we define x and y as in the previous paragraph. This time, x and
y belong to two separated high clusters, so π′ has a k-low element a′ between x and y,
and in particular, π′ contains the subsequence a′kjp+1a′jqcjr.

With the help of Lemma 49, we may prove all the equivalence relations announced at
the beginning of this section. We split the proofs into four lemmas and then summarize
the results in a theorem.

Lemma 50. Let p, q ≥ 1. The pattern τ = 1232p412q is equivalent to τ ′ = 1232p42q1.

Proof. For an integer k we say that a partition π is a k-hybrid if π avoids τ ′ at level j for
every j < k and it avoids τ at level j for every j ≥ k. To prove the claim, it is enough to
establish a bijection fk between k-hybrids and (k + 1)-hybrids.

We say that a k-high cluster of π is extra-high if it contains a symbol greater than
k+1. We claim that π contains τ at level k if and only if by scanning the k-landscape w of
π from left to right we may find (not necessarily consecutively) the leftmost high cluster,
followed by p occurrences of the symbol k, followed by an extra-high cluster, followed by
a low cluster, followed by q occurrences of k. To see this, it suffices to notice that the
leftmost high cluster contains the symbol k + 1, and to the left of this cluster we may
always find all the symbols 12 · · ·k in increasing order.

By a similar argument, we see that π contains τ ′ at level k if and only if it contains, left-
to-right, the leftmost high-cluster, p occurrences of k, an extra-high cluster, q occurrences
of k and a low cluster.

Now assume that π is a k-hybrid partition. Let H′ be the leftmost extra-high cluster of
π such that between H′ and the leftmost high cluster of π there are at least p occurrences
of k. If no such cluster exists, or if π has fewer than q symbols equal to k to the right of
H′, then π avoids both τ and τ ′ at level k, and we define fk(π) = π.

Otherwise, let w be the k-landscape of π. We will decompose w as

w = xH′ykqS1kq−1S2 · · ·k1Sq,

where H′ represents the extra-high cluster defined above, and ki represents the i-th symbol
k in π, counted from the right. The symbols x, y and S1, . . . , Sq above refer to the
corresponding subwords of w appearing between these symbols.

By construction, none of the Si’s contains the symbol k, so each of them is an alter-
nating sequence over the alphabet {L, H}, possibly empty. Since π avoids τ at level k,
the subword y does not contain the symbol L.

We decompose S1 into two parts S1 = H∗S−
1 in the following way. If the first letter of

S1 is H, then we put H∗ = H and S−
1 is equal to S1 with the first letter removed. If S1

does not start with H, then H∗ is the empty string and S−
1 = S1.
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Now, we define the word w′ by

w′ = xH′S−
1 k1S2k2S3k3 · · ·kq−1SqkqH

∗y.

It is not difficult to check that w′ is a landscape word (note that neither y nor S−
1 can start

with the symbol H), and that w′ is L-compatible with w (recall that y contains no L).
Let π′ be the partition obtained from π by the shuffle from w to w′. Note that the

prefix of π through the cluster H′ is not affected by the shuffle, because the words w

and w′ share the same prefix up to the symbol H′. In particular, the shuffle preserves
the property that H′ is the leftmost extra-high cluster with at least p symbols k between
H′ and the leftmost high cluster of π′. It is routine to check that π′ avoids τ ′ at level
k. By Lemma 49, π′ is a (k + 1)-hybrid partition. It is easy to see that for any given
(k + 1)-hybrid partition π′, we may uniquely invert the procedure above and obtain a
k-hybrid partition π.

Defining fk(π) = π′, we obtain the required bijection between k-hybrids and (k + 1)-
hybrids.

The proofs of the following three lemmas follow the same basic argument as the proof
of Lemma 50 above. The only difference is in the decompositions of the corresponding
landscape words w and w′. We omit repeating the common parts of the arguments and
concentrate on pointing out the differences.

Lemma 51. Let p, q ≥ 1. The pattern τ = 1232p142q is equivalent to τ ′ = 12312p42q.

Proof. A partition π contains τ at level k if and only if it contains, from left to right, the
leftmost high cluster, p copies of k, a low cluster, an extra-high cluster, and q copies of k.
Similar characterization applies to τ ′.

Let H1 denote the leftmost high cluster of π, let H′ denote the rightmost extra-high
cluster of π that has the property that there are at least q occurrences of k to the right
of H′. If H′ does not exist, or if there are fewer than p occurrences of k between H1 and
H′, then π contains neither τ nor τ ′ at level k and we put fk(π) = π. Otherwise, let w be
the landscape of π, and let us write

w = xH1S1k1S2k2 · · ·SpkpyH′z

where none of the Si contains k, and y avoids L. Define S−
p and H∗ by writing Sp = S−

p H∗

where S−
p does not end with the letter H and H∗ is equal either to H or to the empty

string, depending on whether Sp ends with H or not.
Now we write

w′ = xH1yk1H
∗S1k2S2 · · ·kpS

−
p H′z,

where y is the reversal of y. The rest of the proof is analogous to Lemma 50.

We now apply the same arguments to 1-3-4 patterns.

Lemma 52. For any p ≥ 0 and q ≥ 1, the pattern τ = 123p+113q4 is equivalent to the
pattern τ ′ = 123p+1143q.
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Proof. As usual, a k-hybrid is a partition that avoids τ at every level j ≥ k and that
avoids τ ′ at every level below k.

Let us say that a k-cluster of a partition π is extra-low if it contains a symbol smaller
than k − 1. A partition contains τ at level k if and only if it has p + 1 occurrences of k

followed by an extra-low cluster, followed q occurrences of k, followed by a high cluster.
Similarly, a partition contains τ ′ at level k if and only if it has p + 1 copies of k, followed
by an extra-low cluster, followed by a high cluster, followed by q copies of k.

Assume π is a k-hybrid partition. Let L′ denote the leftmost extra-low cluster of π

that has at least p + 1 copies of k to its left. If L′ does not exist, or if it has fewer than q

copies of k to its right, we put fk(π) = π. Otherwise, we decompose the landscape word
w of π as

w = xL′S1k1S2k2 · · ·Sq−1kq−1Sqkqy,

where the Si do not contain k. By assumption, y avoids H. Next, we write y = L∗y−

where L∗ is an empty string or a single symbol L, and y− does not start with L. We define
w′ by

w′ = xL′y−k1L
∗S1k2 · · ·Sq−1kqSq.

The words w and w′ are H-compatible. We define the bijection between k-hybrids and
(k + 1)-hybrids in the usual way.

Lemma 53. For every p ≥ 0 and q ≥ 1, the pattern τ = 123p+1413q is equivalent to the
pattern τ ′ = 12343p13q.

Proof. As before, take π to be a k-hybrid partition. Let L′ be the rightmost extra-low
cluster that has at least q copies of k to its right. If L′ has at least p + 1 copies of k to its
left, we decompose the landscape w of π as

w = Lk1S1k2S2 · · ·kpSpkp+1yL′z.

Next, we write Sp = S−
p L∗ with the usual meaning and define

w′ = Lk1L
∗yk2S1k3S2 · · ·Sp−1kp+1S

−
p L′z.

The rest is the same as before.

We summarize our results.

Theorem 54. For every p, q ≥ 0, we have the following equivalences:

1. 1232p412q ∼ 1232p42q1

2. 1232p142q ∼ 12312p42q

3. 123p+1143q ∼ 123p+113q4

4. 123p+1413q ∼ 12343p13q
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Proof. If p and q are both positive, the results follow directly from the four preceding
lemmas.

If p = 0, the second and the fourth claim are trivial, the first one is a special case of
Corollary 40, and the third is covered by Lemma 52.

If q = 0, the first and the third claim are trivial, the second is a special case of
Corollary 40, and the fourth follows from Theorem 42.

4 The patterns of size four

4.1 Enumeration of 1123-avoiding partitions

To complete the classification of the equivalence classes of the patterns of length four,
we need to prove the equivalence 1212 ∼ 1123. Unlike in the previous arguments, we do
not present a direct bijection between pattern-avoiding classes, but rather we prove that
p(n; 1123) is equal to the n-th Catalan number. Since it is well known that noncrossing
partitions are enumerated by the Catalan numbers (see, e.g., [16]), this will yield the
desired equivalence.

As we said before, our aim is to show that the 1123-avoiding partitions of [n] are
enumerated by the n-th Catalan number, i.e., p(n; 1123) = 1

n+1

(
2n

n

)
.

We achieve this by proving that p(n; 1123) is equal to the number of Dyck paths of
semilength n. A Dyck path of semilength n is a nonnegative path on the two-dimensional
integer lattice from (0, 0) to (2n, 0) composed of up-steps connecting (x, y) to (x+1, y+1)
and down-steps connecting (x, y) to (x + 1, y − 1). It is well known that these paths are
enumerated by Catalan numbers. Let D(n, k) be the set of Dyck paths of semilength n

whose last up-step is followed by exactly k down-steps. Let d(n, k) be the cardinality of
D(n, k).

Lemma 55. The numbers d(n, k) are determined by the following set of recurrences:

d(1, 1) = 1 (5)

d(n, k) = 0 if k < 1 or k > n (6)

d(n, k) =

n−1∑

j=k−1

d(n − 1, j) for n ≥ 2, n ≥ k ≥ 1. (7)

Proof. Only the third recurrence is nontrivial. We prove it by presenting a bijection
between D(n, k) and the disjoint union

⋃n−1
j=k−1 D(n − 1, j). Assume that k and n are

fixed, with n ≥ 2 and k ≤ n. Take a Dyck path P ∈ D(n, k). By erasing the last up-step
and the last down-step of D, we get a Dyck path P ′ ∈ D(n − 1, j), where j ≥ k − 1.
Conversely, given a Dyck path P ′ ∈ D(n − 1, j) with j ≥ k − 1, we insert a down-step at
the end of D′, and then insert an up-step into the resulting path immediately before its
last k down-steps. This inverts the mapping above.
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We now focus on 1123-avoiding partitions. First of all, we will present a correspon-
dence between 1123-avoiding partitions and 123-avoiding sequences. Before we state the
correspondence, we need some more definitions.

Definition 56. A 123-avoiding sequence is a sequence s1, s2, . . . , s` of positive integers,
such that there are no three indices i < j < k that would satisfy si < sj < sk. We define
the rank of a sequence to be equal to `+m− 1, where ` is the length of the sequence and
m = max{si, i = 1, . . . , `} is the largest element of the sequence.

For example, there are five 123-avoiding sequences of rank 3: (1,1,1), (1,2), (2,1), (2,2),
and (3). There are fourteen 123-avoiding sequences of rank 4: (1,1,1,1), (1,1,2), (1,2,1),
(1,2,2), (2,1,1), (2,1,2), (2,2,1), (2,2,2), (1,3), (2,3), (3,1), (3,2), (3,3), and (4).

Claim 57. A 1123-avoiding partition π of [n] with m blocks has the following form:

π = 123 · · · (m − 2)(m − 1)S (8)

where S is a 123-avoiding sequence of rank n, with maximum element m. Conversely, If
S is any 123-avoiding sequence of rank n with maximum element m then π defined by the
formula (8) is a canonical sequence of a 1123-avoiding partition of [n].

In particular, the number of 123-avoiding sequences of rank n with last element k is
equal to the number of 1123-avoiding partitions of size n with last element k.

Proof. Let π = π1 · · ·πn be a 1123-avoiding partition with m blocks. Observe that for
every i ∈ [m − 1], the symbol πi is equal to i, otherwise π would contain the forbidden
pattern. It follows that π can be decomposed as π = 123 · · · (m − 2)(m − 1)S, where the
sequence S has length l = n−m + 1 and maximum element equal to m. In particular, S

has rank n and its last element is equal to k.
We now check that S is 123-avoiding. If S contained a subsequence xyz for x < y < z

then the original partition would contain a subsequence xxyz, which is forbidden. It
follows that S obtained from a 1123-avoiding partition π has all the required properties.

Conversely, if S is a 123-avoiding sequence of rank n and maximum element m, then
it is routine to verify that π = 12 · · · (m − 1)S is a 1123-avoiding partition of size n with
m blocks. Clearly, the last element of π is equal to the last element of S.

Let T (n, k) be the set of 123-avoiding sequences of rank n with last element equal to k.
Let t(n, k) be the cardinality of T (n, k). By the previous claim, t(n, k) is equal to the
number of 1123-avoiding partitions of size n with last element equal to k. To show that
1123-avoiding partitions of size n have the same enumeration as Dyck paths of semilength
n, it suffices to show that d(n, k) = t(n, k) for each n, k. To show this, we will prove that
t(n, k) is determined by the same set of recurrences as d(n, k) .

Claim 58. The numbers t(n, k) satisfy the following set of recurrences:

t(1, 1) = 1 (9)

t(n, k) = 0 if k < 1 or k > n (10)

t(n, k) =

n−1∑

i=k−1

t(n − 1, i) for n ≥ 2, n ≥ k ≥ 1 (11)
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Proof. Only the recurrence (11) is nontrivial. Let us fix n ≥ 2 and k ≤ n. To prove the
recurrence, we need a bijection from T (n, k) to ∪n−1

i=k−1T (n − 1, i).
Let us first consider the case k = 1. A sequence S ∈ T (n, 1) can be transformed into

a sequence S ′ ∈ ∪n−1
i=0 T (n− 1, i), by simply erasing the last element of S. This provides a

bijection between T (n, 1) and ∪n−1
i=0 T (n − 1, i).

In the rest of the proof, we deal with the case k > 1. Let S ∈ T (n, k) be a 123-avoiding
sequence of length `. The sequence S can be uniquely expressed as S = S01

bk, where S0

is the (possibly empty) longest proper prefix of S whose last element is different from 1.
If S0 is nonempty, let j be the last element of S0.

Let us decompose T (n, k) into a disjoint union of two sets T1 and T2 defined by

T1 = {S ∈ T (n, k) : S0 is nonempty, and j ≥ k}

T2 = {S ∈ T (n, k) : S0 is empty, or j < k}.

Note that if S ∈ T2 and S0 is nonempty, then all the elements of S0 are greater than or
equal to j. Indeed, if S0 contained an element i smaller than j, then S would contain a
subsequence ijk, which would create a copy of 123 in S.

Let S ′ be a sequence from ∪n−1
j=k−1T (n − 1, j). S ′ may be uniquely expressed as S ′ =

S ′
0(k − 1)c, where c ≥ 0 and S ′

0 is the (possibly empty) longest prefix of S ′ whose last
element is different from k − 1. Note that if the last element of S ′ is greater than k − 1
then S ′ = S ′

0. If S ′
0 is nonempty, let j ′ be the last element of S ′

0.
We decompose ∪n−1

j=k−1T (n − 1, j) into a disjoint union of two sets T ′
1 and T ′

2, where

T ′
1 = {S ′ ∈ ∪n−1

i=k−1T (n − 1, i) : S ′
0 is nonempty, and j ′ ≥ k}

T ′
2 = {S ′ ∈ ∪n−1

i=k−1T (n − 1, i) : S ′
0 is empty, or j ′ < k − 1}.

Since j ′ is never equal to k − 1, the two sets T ′
1 and T ′

2 form a disjoint partition of
∪n−1

i=k−1T (n − 1, i). Note that T ′
2 is in fact a subset of T (n − 1, k − 1).

To prove the claim, it suffices to give a bijection f1 between T1 and T ′
1, and a bijection

f2 between T2 and T ′
2.

We first construct f1. Choose S ∈ T1 and write S = S01
bk as above. Let j be the last

element of S0. Define S ′ = f1(S) = S0(k − 1)b. Let us check that S ′ belongs to T ′
1. It is

easy to see that S ′ avoids 123. The length of S ′ is one less than the length of S, and the
maximum of S ′ is equal to the maximum of S, hence S ′ has rank n − 1. We know that
j ≥ k. In particular j 6= k− 1, and hence S0 is the longest prefix of S ′ whose last element
is different from k − 1. This shows that S ′ ∈ T ′

1.
It is easy to check that f1 can be inverted.
Let us now construct f2. Choose S ∈ T2, and write S = S01

bk as above. If S0 is
nonempty, let j be the last element of S0. Recall that no element of S0 is smaller than
j, and that j, if defined, is greater than 1 by definition of S0. In particular, S0 − 1 is a
(possibly empty) sequence of positive numbers. Define S ′ = f2(S) = (S0 − 1)(k − 1)b+1.
The length of S ′ is equal to the length of S, and the maximum of S ′ is one less than the
maximum of S, hence S ′ has rank n− 1. It may be routinely checked that S ′ avoids 123.
Note that the last element of S0 − 1 is smaller than k − 1, and hence S ′ belongs to T ′

2.
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The inverse of f2 is easy to obtain. Choose S ′ ∈ T ′
2, with S ′ = S ′

0(k − 1)b, where S ′
0 is

the longest prefix of S ′ not ending with k−1. As we pointed out earlier, S ′ must end with
the symbol k − 1, hence b ≥ 1. Define S = (S0 + 1)1b−1k. It may be routinely checked
that S belongs to T2.

The following results are direct consequences of Claim 57 and Claim 58. We omit their
proofs.

Theorem 59. The number of 1123-avoiding matchings of size n with last element equal
to k is equal to the number of Dyck paths of semilength n whose last up-step is followed
by k down-steps.

Corollary 60. The number of 1123-avoiding matchings of size n is Cn = 1
n+1

(
2n

n

)
. In

particular, 1123 is equivalent to 1212 and to 1221.

From Theorem 59 we may derive the closed-form expression for t(n, k). Since the
number of Dyck paths that end with an up-step followed by k down-steps is equal to
the number of non-negative lattice paths from (0, 0) to (2n − k − 1, k − 1), we may
apply standard arguments for the enumeration of non-negative lattice paths to obtain the
formula

t(n, k) =
k

n

(
2n − k − 1

n − 1

)
.

4.2 Classification of patterns of size 4

Theorem 59 and the general results presented in the previous sections allow us to fully
classify patterns of length four by their equivalence classes (see Table 2).

τ p(n; τ)

1213, 1223, 1231, 1232, 1233, 1234 [22, Sequence A007051] (see Equation (2))
1123, 1212, 1221 1

n+1

(
2n

n

)
[22, Sequence A000108] (see Theorem 59)

1122 1, 1, 2, 5, 14, 42, 133, 441, . . .
1112, 1121, 1211, 1222 [22, Sequence A005425] (see Corollary 37)
1111 [22, Sequence A001680] (see Equation (1))

Table 2: Number of partitions in P (n; τ), where τ ∈ P (4).

5 The patterns of size five

For a full characterization of the equivalence of patterns up to size seven, we need to
consider one more isolated case, namely the pattern 12112. Our aim is to show that this
pattern is equivalent to the three patterns 12221, 12212, and 12122. The latter three

the electronic journal of combinatorics 15 (2008), #R39 36



patterns are all equivalent by Corollary 40. It is thus sufficient to show that 12112 ∼
12212.

We remark that the proof involving the pattern 12112 does not use the notion of
Ferrers equivalence. In fact, the matrix M(2, 112) is not Ferrers-equivalent to the three
Ferrers-equivalent matrices M(2, 221), M(2, 212) and M(2, 122).

5.1 Introduction

We will first introduce the basic terminology and notation that we will use throughout
the proof.

Let S = s1s2 · · · sn be a sequence of length n over the alphabet [m], such that every
element of [m] appears in S at least once. For i ∈ [m] let fi and `i denote the index of
the first and the last symbol of S that is equal to i. Formally, fi = min{j : sj = i} and
`i = max{j : sj = i}.

Definition 61. For k ∈ [m], we say that the sequence S is a k-semicanonical sequence
(k-sequence for short), if S has the following properties.

• For every i and j such that 1 ≤ i < k and i < j, we have fi < fj.

• For every i and j such that k ≤ i < j ≤ m, we have `i < `j.

Note that m-semicanonical sequences are precisely the canonical sequences of parti-
tions of [n] with m blocks (i.e., the sequences satisfying fi < fi+1 for i ∈ [m − 1]), while
the 1-canonical sequences are precisely the sequences satisfying `i < `i+1 for i ∈ [m − 1].
Note that for every fixed k ∈ [m] and a fixed partition π = π1 · · ·πn with m blocks, there
is exactly one k-sequence S = s1 · · · sn with the property si = sj ⇐⇒ πi = πj.

In particular, assuming n and m are fixed, the number of k-sequences is independent
of k, and each partition of [n] with m blocks is represented by a unique k-sequence. To
prove the equivalence 12112 ∼ 12212, we will exploit a remarkable property of the pattern
12112, described by the following key lemma.

Lemma 62. For every fixed n and m, the number of 12112-avoiding k-sequences is in-
dependent of k. Thus, for every k ∈ [m], the number of 12112-avoiding k-sequences of
length n with m symbols is equal to the number of 12112-avoiding partitions of n with m

blocks.

Before we prove of Lemma 62, let us explain how the lemma implies the equivalence
12112 ∼ 12212.

Theorem 63. The pattern 12112 is equivalent to 12212. In fact, for every m and n, there
is a bijection between 12112-avoiding partitions of [n] with m blocks and 12212-avoiding
partitions of [n] with m blocks.

Proof. Fix m and n. We know that the 12112-avoiding partitions of [n] with m blocks
correspond precisely to m-semicanonical sequences over [m] of length n, and by Lemma 62,
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these sequences are in bijection with 1-semicanonical 12112-avoiding sequences of the
same length and alphabet. It remains to provide a bijection between the 12112-avoiding
1-sequences and the 12212-avoiding partitions.

Take a 1-semicanonical 12112-avoiding sequence S with m symbols and length n,
reverse the order of letters in S, and then replace each symbol i of the reverted sequence
by the symbol m − i + 1. It is easy to check that this transform is an involution which
maps 12112-avoiding 1-sequences onto 12212-avoiding m-sequences, which are precisely
the 12212-avoiding partitions of [n] with m blocks.

It now remains to prove Lemma 62. For the rest of the proof, unless otherwise noted,
we will assume that m and n are fixed, and that each sequence we consider has length n

and m distinct symbols.
In the following arguments, it is often convenient to represent a sequence S = s1 · · · sn

by the matrix M(S, m). Recall that M(S, m) is the 0-1 matrix with m rows and n columns,
with a 1-cell in row i and column j if and only if sj = i. A matrix representing a k-sequence
will be called k-semicanonical matrix (or just k-matrix), and a matrix representing a
12112-avoiding sequence will be simply called 12112-avoiding matrix. In accordance with
earlier terminology, we will use the term sparse matrix for a 0-1 matrix with at most one
1-cell in each column, and we will use the term semi-standard matrix for a 0-1 matrix
with exactly one 1-cell in each column. For a 0-1 matrix M , we let fi(M) and `i(M)
denote the column-index of the first and the last 1-cell in the i-th row of M . We will
write fi and `i instead of fi(M) and `i(M) if there is no risk of confusion.

Before we formulate the proof of Lemma 62, let us present a brief sketch of the main
idea. We will first build a bijection that transforms a (k + 1)-matrix M into a k-matrix,
ignoring 12112-avoidance for a while. Let the last 1-cell in row k of M be in column c,
let us call the row k the key row of M . If the last 1-cell in row k + 1 appears to the right
of column c, then M is already a k-matrix and we are done. On the other hand, if row
k + 1 has no 1-cell to the right of c, we swap the key row k with the row k + 1, to obtain
a new matrix M ′ whose key row is now the row k + 1. We repeat this procedure until we
reach the situation when the key row is either the topmost row of the matrix, or the row
above the key row has a 1-cell to the right of column c. This procedure transforms the
original k +1 matrix into a k-matrix. Also, the procedure is invertible (note that the first
1-cell of the key row is always to the left of any other 1-cell in the rows k, k + 1, . . . , m).

Unfortunately, this simplistic approach does not preserve 12112-avoidance. However,
we will present an algorithm which follows the same basic structure as the procedure
above, but instead of merely swapping the key row with the row above it, it performs a
more complicated step. The description of this step is the main ingredient of our proof.

To formalize our argument, we need to introduce more definitions. Let M be a 0-1
matrix with exactly one 1-cell in each column and at least one 1-cell in each row, and
let us write fi = fi(M) and `i = `i(M). Let k, p and q be three row-indices of M , with
k ≤ p ≤ q. We will say that M is a (k, p, q)-matrix, if M satisfies the following conditions.

• The matrix obtained from M by erasing row p is a k-semicanonical matrix with
m − 1 rows.
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• For each i < k, we have fi < fp. For every j ≥ k, j 6= p, we have fp < fj.

• The number q is determined by the relation q = max{j : `j ≤ `p}. Thus, the first
condition implies that `j ≤ `p for every j ∈ {k, k + 1, . . . , q}.

In a (k, p, q)-matrix, row p will be called the key row.
Intuitively, a (k, p, q)-matrix is an intermediate stage of the above-described procedure

which transforms a (k + 1)-matrix into a k-matrix by moving the key row towards the
top. The number p is the index of the key row in a given step of the procedure, while
the number q is the topmost row that needs to be swapped with the key row to produce
the required k-matrix. In particular, a matrix M is (k + 1)-semicanonical if and only if
it is a (k, k, q)-matrix for some value of q, and M is k-semicanonical if and only if it is a
(k, q, q)-matrix for some q.

As an example, consider the sequence S = 1331232431 with n = 10 and m = 4. This
sequence corresponds to the following matrix M = M(S, 4).

M =




0000000100
0110010010
0000101000
1001000001


 M ′ =




0110010010
0000000100
0000101000
1001000001




The matrix M is a (2, 3, 4)-matrix. If we exchange the third row (which acts as the key
row) with the fourth row, we obtain a (2, 4, 4)-matrix M ′ representing the 2-sequence
S ′ = 1441242341. The matrix M ′ can also be regarded as a (1, 1, 4)-matrix, with the key
row at the bottom.

The following lemma implies Lemma 62.

Lemma 64. For arbitrary k ≤ p < q, there is a bijection φ between 12112-avoiding
(k, p, q)-matrices and 12112-avoiding (k, p + 1, q)-matrices.

Before we construct the bijection φ, we need to prove several basic properties of the
12112-avoiding (k, p, q)-matrices.

5.2 Tools of the proof

Let us introduce some more terminology. If x ∈ [m] is a row of a matrix M , then an
x-column is a column of M that has a 1-cell in row x. Similarly, if X ⊆ [m] is a set of
rows of M , we will say that a column j is an X-column if j has a 1-cell in a row belonging
to X.

If x, y is a pair of rows of M with x < y, we will say that M contains 12112 in (x, y)
if the submatrix of M induced by the pair of rows x, y contains 12112. If X and Y are
two sets of rows, we will say that M contains 12112 in (X, Y ) if there is an x ∈ X and
y ∈ Y such that x < y and M contains 12112 in (x, y).

Throughout this section, we will assume that k, p, q are fixed, and that k ≤ p < q.
We now state a pair of simple but useful observations. Their proofs are straightforward,

and we omit them.
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Observation 65. Let M be a sparse 0-1 matrix, and let x < y be two rows of M , such
that fx < fy. The matrix M avoids 12112 in (x, y) if and only if M has at most one
x-column s satisfying fy < s < `y. If such a unique column s exists, we will say that
s separates row y. The y-columns that are to the left of the separating column s will be
called front y-columns (with respect to row x) and their 1-cells will be called front 1-cells.
Similarly, the y-columns to the right of s will be called rear y-columns and their 1-cells
are rear 1-cells. If there is no such separating column, then we will assume that all the
y-columns and their 1-cells are front.

Observation 66. Let M be a sparse 0-1 matrix, and let x < y be a pair of rows such
that `x < `y. Let t be the number of 1-cells in row x, and let ci be the i-th x-column, i.e.,
fx = c1 < c2 < · · · < ct = `x. The matrix M avoids 12112 in (x, y), if and only if every
y-column appears either to the left of column c1, or between the columns ct−1 and ct, or
to the right of column ct. These three types of y-columns (and their 1-cells) will be called
left, middle, and right y-columns (or 1-cells) with respect to row x.

Lemma 67. Let M be a 12112-avoiding (k, p, q)-matrix, and let j be a row of M with
k ≤ j ≤ p. Let M ′ be a sparse 0-1 matrix of the same size as M , with the property that
for every i 6∈ {j, j + 1, . . . , q}, the i-th row of M is equal to the i-th row of M ′. If M ′ has
a copy of the pattern 12112 in a pair of rows x < y, then j ≤ x ≤ q.

Proof. Let M and M ′ be as above. We will call the rows {j, j + 1, . . . , q} mutable, and
the remaining rows will be called constant.

Assume that M ′ has a copy of 12112 in the rows x < y. Clearly, at least one of the two
rows x, y must be mutable, and in particular, we must have x ≤ q. The lemma claims that
x must be mutable. For contradiction, assume that x < j. There are two possibilities;
either x < k or k ≤ x < j.

If x < k, then y is one of the mutable rows. From the definition of the (k, p, q)-matrix,
we obtain that all the columns of M to the left of fp(M) and to the right of `p(M) contain
a 1-cell in one of the constant rows. Since M ′ is sparse, we conclude that in M ′, all the
1-cells in the mutable rows can only appear in the columns i such that fp(M) ≤ i ≤ `p(M).

Now, we apply Observation 65 to the rows x and p in the matrix M , and conclude
that M (and hence also M ′) has at most one x-column s such that fp(M) ≤ s ≤ `p(M).
Therefore M ′ also has at most one x-column between fy(M

′) and `y(M
′). By Observa-

tion 65, this shows that x cannot form the pattern 12112 with any of the mutable rows y

of M ′.
Assume now that k ≤ x < j. As before, we have y ∈ {j, . . . , q}. Let c1 < c2 < · · · < ct

be the x-columns of M (and hence of M ′ as well, since x is constant). For any mutable
row i, we have `x(M) < `i(M) by the definition of (k, p, q)-matrix. By Observation 66, all
of the i-columns of M appear either to the left of c1 or to the right of ct−1. In particular,
all the 1-cells between the columns c1 and ct−1 belong to the constant rows. This implies
that M ′ can have no occurrence of 12112 in the two rows x < y.

We will now describe a simple operation, call pseudoswap, on 12112-avoiding pairs of
rows.
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Figure 2: The illustration of the hard case of the pseudoswap operation.

Assume that M is a sparse matrix with a pair of adjacent rows x and y = x + 1 that
avoids 12112 in (x, y). Assume furthermore that fx < fy ≤ `y < `x. The pseudoswap of
the two rows is performed as follows.

Easy case. If the row y is not separated by an x-column (in the sense of Observation 65),
or if M has at most one rear y-column with respect to row x, the pseudoswap is
performed by simply swapping the two rows.

Hard case. Assume M has an x-column s separating y, and that it has r > 1 rear y-
columns c1 < c2 < · · · < cr (see Figure 2). In this case, the pseudoswap preserves
the position of all the 1-cells in columns c1, . . . , cr−1 (i.e., the 1-cells in these columns
remain in row y), and all the other 1-cells in rows x, y are moved from x to y and
vice versa. Note that after the pseudoswap is performed, the columns s < c1 < c2 <

· · · < cr−1 all contain a 1-cell in row y, and these r 1-cells are precisely the middle
1-cells of y with respect to x. (in the sense of Observation 66).

Let M ′ be the matrix obtained from M by the pseudoswap. It can be routinely
checked that M ′ avoids 12112 in (x, y). Let us write f ′

i for fi(M
′) and `′i for `i(M

′).
Clearly, f ′

x = fy and f ′
y = fx, and also `′x = `y and `′y = `x. Also, if M has r ≥ 0 rear cells

in row y, then M ′ has r middle cells in row y.
It is not difficult to see that the pseudoswap can be inverted. Let M ′ be a sparse matrix

avoiding 12112 in two adjacent rows x < y, such that f ′
y < f ′

x ≤ `′x < `′y. If M ′ has fewer
than two middle y-columns, we invert the easy case of the pseudoswap by exchanging the
two rows. On the other hand, if M ′ has r > 1 middle y-columns m1 < · · · < mr, we
invert the hard case by preserving the position of the 1-cells in columns m2, m3, . . . , mr

and inverting all the other {x, y}-columns.
We will be mostly interested in the situation when the pseudoswap is applied to the

pair of rows (p, p + 1) in a (k, p, q)-matrix with p < q. It is not hard to see that this
operation yields a (k, p + 1, q)-matrix. Let us now look in more detail at the situation
related to the hard case of the pseudoswap. Recall that if X and Y are two sets of rows
of M , we say that M avoids 12112 in (X, Y ), if there is no x ∈ X and y ∈ Y such that
x < y and the two rows x, y contain a copy of 12112.

The following lemma is illustrated in Figure 3.
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Lemma 68. (a) Let M be a (k, p, q)-matrix that avoids 12112 in (p, p+1). Let fp(M) =
b1 < b2 < · · · < bt = `p(M) be the p-columns of M . Assume that the row p + 1 is
separated by the column bi, and that it has r ≥ 2 rear 1-cells. Let c1 < c2 < · · · < cs

be the front (p + 1)-columns and let d1 < d2 < · · · < dr be the rear (p + 1)-columns.
By Observation 65, we have the inequalities

b1 < · · · < bi−1 < c1 < · · · < cs < bi < d1 < · · · < dr < bi+1 < · · · < bt.

Let X = {p, p + 1} and let Y be the set of all the rows above p + 1 that contain at
least one 1-cell to the left of the column dr−1; formally,

Y = {y > p + 1: fy(M) < dr−1}.

The matrix M avoids 12112 in (X, Y ) if and only if each Y -column y satisfies one
of the following three inequalities:

1. bi−1 < y < c1 = fp+1

2. dr−1 < y < dr

3. dr < y < bi+1

The rows in Y are precisely the rows above p+1 that are separated by the p-column bi.

(b) Let M ′ be a (k, p + 1, q)-matrix that avoids 12112 in (p, p + 1). Let α1 < · · · <

αu < β1 < · · · < βr < γ1 < · · · < γv be the (p + 1)-columns of M ′, where the αi, βi

and γi denote respectively the left, middle and right (p + 1)-columns with respect to
row p. Assume that there are at least two middle 1-cells. Let δ1 < · · · < δw be the
p-columns of M ′. By Observation 66, we have the inequalities

α1 < · · · < αu < δ1 < · · · < δw−1 < β1 < · · · < βr < δw < γ1 < · · · < γv.

Let X = {p, p + 1} and let Y ′ be the set of all the rows above p + 1 that contain at
least one 1-cell to the left of column βr. The matrix M ′ avoids 12112 in (X, Y ′) if
and only if each Y ′-column y satisfies one of the following three inequalities:

1. βr−1 < y < βr

2. βr < y < δw

3. δw < y < γ1

The rows in Y ′ are precisely the rows above p + 1 that are separated by the (p + 1)-
column βr.
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Figure 3: Illustration of Lemma 68, part (a) is above, part (b) below. The black dots
correspond to 1-cells in rows p and p + 1, and the grey rectangles correspond to possible
positions of the 1-cells in the rows of Y or Y ′.

Proof. Let us consider part (a). Fix a row y ∈ Y . By the definition of a (k, p, q)-matrix,
we have dr < `y. By Observation 66, we see that M avoids 12112 in (p + 1, y) if and only
if every y-column j satisfies either j < c1 = fp+1, dr−1 < j < dr, or j > dr. The first
y-column satisfies fy < dr−1 by the definition of Y , and hence fy < c1 = fp+1 < bi. Since
`y > `p+1 = dr > bi, we see that if the pair of rows (p + 1, y) avoids 12112, then y is
separated by bi and the two rows (p, y) avoid 12112 if and only if bi−1 < fy < `y < bi+1.
This proves part (a) of the lemma.

The proof of part (b) is analogous and we omit it.

5.3 The bijection

We are now ready to present the bijection φ. Let M be a 12112-avoiding (k, p, q)-matrix
with p < q, and let us write fi and `i for fi(M) and `i(M). By the definition of (k, p, q)-
matrix and by the assumption p < q, we know that fp < fp+1 ≤ `p+1 < `p, so we may
perform the pseudoswap of the rows p and p + 1 in M . Let M ′ be the m × n matrix
obtained from M by this pseudoswap. Let f ′

i = fi(M
′) and `′i = `i(M

′). Note that f ′
i = fi

and `′i = `i for every i 6∈ {p, p + 1}.
Clearly, M ′ is a (k, p + 1, q)-matrix. We now distinguish two cases, depending on

whether the pseudoswap we performed was easy or hard.
Easy case. If the row p + 1 of M has at most one rear 1-cell with respect to row p,

then M ′ is 12112-avoiding, and we may define φ(M) = M ′. Indeed, from the definition of
the pseudoswap we know that M ′ cannot contain a copy of 12112 in the rows (p, p + 1),
and since we are performing the easy case of the pseudoswap, we cannot create any new
copy of the forbidden pattern that would intersect the remaining m − 2 rows.
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Hard case. Assume that the row p+1 of M has r > 1 rear 1-cells. Let b1 < · · · < bt,
c1 < · · · < cs, d1 < d2 < · · · < dr, and Y have the same meaning as in part (a) of
Lemma 68. Let Y1, Y2 and Y3 denote, respectively, the Y -columns that lie between bi−1

and c1, between dr−1 and dr, and between dr and bi+1.
The bijection φ is now constructed in two steps. In the first step, we perform the

pseudoswap of the rows p and p + 1. Let M ′ be the result of this first step. Let us now
apply the notation of part (b) of Lemma 68 to the matrix M ′ (see Figure 3). Note that
dr−1 = βr, and hence Y = Y ′. Part (b) of Lemma 68 requires that all the Y ′-columns of
a 12112-avoiding (k, p + 1, q)-matrix fall into one of the three groups:

• columns between δw < y < γ1. In M ′, we have δw = dr and γ1 = bi+1, so these
columns are precisely the columns in Y3.

• columns between βr < y < δw. In M ′, these are precisely the columns in Y2.

• columns between βr−1 < y < βr. In M ′, there are no Y -columns in this range.

On the other hand, if Y1 is nonempty, then these columns violate the inequalities of part
(b) in Lemma 68, showing that M ′ is not 12112-avoiding. To correct this, we apply the
second step of the bijection φ. Consider the submatrix of M ′ induced by the columns Y1

and the columns Z = {δ1 < · · · < δw−1 < β1 < · · · < βr−1}. Note that the columns Y1

are to the left of any column of Z. Now we rearrange the columns inside this submatrix,
so that all the columns in Y1 appear after the columns in Z, keeping the relative order
of the columns in Y1, as well as those in Z. This transforms M ′ into a matrix M ′′. We
define φ(M) = M ′′.

Since M ′′ is clearly a (k, p + 1, q)-matrix, it remains to check that M ′′ avoids 12112.
Let x < y be a pair of rows of M ′′. We want to check that M ′′ avoids 12112 in these two
rows. Let us consider the following cases separately.

The case x < p. The rows below row p are unaffected by φ. The rows above row q

are preserved as well, because any row z ∈ Y must satisfy `z < bi+1 ≤ `p, so no row above
q belongs to Y . Thus, we may apply Lemma 67, to see that M ′′ avoids 12112 in the rows
(x, y).

The case x = p, y = p + 1. The properties of pseudoswap guarantee that M ′′ avoids
12112 in these two rows.

The case x ∈ X = {p, p + 1} and y ∈ Y ′. By construction, M ′′ satisfies the
inequalities of part (b) of Lemma 68, and thus it avoids 12112 in (X, Y ).

The case x ∈ X = {p, p + 1}, y 6∈ Y ′ and y > p + 1. By the definition of Y ′, we
have fy(M

′′) = fy(M) > dr−1 = βr. In any column to the right of βr the mapping φ acts
by exchanging the rows p and p + 1. It is easy to check that this action cannot create a
copy of 12112 in (x, y) (note that in any of the three matrices M , M ′ and M ′′, both the
rows p and p + 1 have a 1-cell to the left of βr ).

The case y > x > p + 1. The submatrix of M ′′ induced by the rows above p + 1
only differs from the corresponding submatrix of M by the position of the zero columns.
Thus, it cannot contain any copy of 12112.

This shows that φ(M) is indeed a 12112-avoiding (k, p + 1, q)-matrix.
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It is routine to check that the mapping φ can be inverted, which shows that φ is indeed
the required bijection.

The following corollary is a direct consequence of Theorem 63 and Lemma 10.

Corollary 69. For every r and c, there is a bijection between the M(2, 112)-avoiding semi-
standard fillings of all the Ferrers shapes with r rows and c columns and the M(2, 212)-
avoiding semi-standard fillings of all the Ferrers shapes with r rows and c columns.

It would be tempting to assume that the two matrices M(2, 112) and M(2, 212) are
Ferrers-equivalent. However, as we already mentioned in the introduction of Section 5,
this is not the case. For instance, the Ferrers shape F with five columns of height 4 and
one column of height 2 has 866 M(2, 112)-avoiding fillings but only 865 M(2, 212)-avoiding
fillings. Thus, the bijection of Corollary 69 in general cannot preserve the shape of the
underlying diagram.

5.4 Classification of patterns of size 5

In Table 3, we list the equivalence classes of patterns of size 5, together with the reference
to the appropriate result. By Corollary 32, if τ and σ are two equivalent patterns of size
4, then 1(τ + 1) and 1(σ + 1) are equivalent patterns of size 5, and vice versa. Thus, the
classification of the patterns of size 4, given in Table 2, explains the equivalences among
patterns of size 5 with only one occurrence of 1. For this reason, Table 3 only lists the
references for the patterns with at least two occurrences of the symbol 1.

Table 3: Classification of patterns of size five.

τ p(11; τ) Reference

12314, 12324, 12334, 12341,
12342, 12343, 12344, 12345

175275 Theorem 33

12313 213423
12123, 12132, 12134, 12213,
12231, 12234, 12312, 12321,
12323, 12331, 12332

223191 12332 ∼ 12331 ∼ 12321 by Proposition 15, 12234 ∼ 12134
by Corollary 13, the rest by Theorem 48

12133, 12233 238379 Corollary 13
11223, 11232 276670 Theorem 41
11234 282503
12131 285503
11233 288157
12113, 12223, 12232, 12311,
12322, 12333

288543 12311 ∼ 12322 and 12113 ∼ 12223 by Corollary 13

11231 322218
11213 323663
11123 348887
12112, 12122, 12212, 12221 362447 12112 ∼ 12212 by Theorem 63, the rest by Corollary 40
12121 364317
11212 364341
12211 373270
11221 376556
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11222 378365
11122 379805
11112, 11121, 11211, 12111,
12222

441009 Theorems 34 and 36

11111 556711

6 The patterns of size six

In Table 4, we list the equivalence classes of patterns of size 6. To save space, we omit
the singleton equivalence classes and the enumeration data. The full enumeration of
these patterns is available from the second author’s website [27]. As before, we provide
references for the patterns that contain at least two occurrences of the symbol 1.

Table 4: Nonsingleton equivalence classes of patterns of size six.

Pattern Reference

123415, 123425, 123435, 123445,
123451, 123452, 123453, 123454,
123455, 123456

Theorem 33

123413, 123424 Corollary 13
123134, 123143 Theorem 54
123124, 123145, 123214, 123234,
123243, 123245, 123324, 123341,
123342, 123345, 123412, 123421,
123423, 123431, 123432, 123434,
123441, 123442, 123443

123421 ∼ 123431 ∼ 123441 ∼ 123432 by Proposition 15, 123124 ∼
123234, 123145 ∼ 123245, 123214 ∼ 123324, 123341 ∼ 123342 and
123412 ∼ 123423 by Corollary 13

123144, 123244, 123344 Corollary 13
121334, 122334, 121343, 122343 121334 ∼ 122334 and 121343 ∼ 122343 by Corollary 13
121345, 122345 Corollary 13
121344, 122344 Corollary 13
123114, 123224, 123334, 123343,
123411, 123422, 123433, 123444

123114 ∼ 123224 and 123411 ∼ 123422 by Corollary 13

121234, 122134 Corollary 40
123123, 123312, 123321 Corollary 20
122133, 121233 Corollary 40
112334, 112343 Theorem 41
121134, 122234 Corollary 13
121223, 121232, 121322, 122123,
122132, 122213, 122231, 122312,
122321, 123112, 123122, 123212,
123221, 123223, 123233, 123323,
123331, 123332

123112 ∼ 123223 by Corollary 13, 123331 ∼ 123332 ∼ 123221 by
Proposition 15, the rest by Theorem 48

123121, 123232 Corollary 13
122311, 123311, 123211, 123322 122311 ∼ 123211 by Theorem 42, the rest by Proposition 15
121333, 122333 Corollary 13
121133, 122233 Corollary 13
112223, 112232, 112322 Theorem 41
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Table 4: Nonsingleton equivalence classes of patterns of size six.

Pattern Reference

121113, 122232, 122322, 123111,
123222, 123333, 122223

121113 ∼ 122223 and 123111 ∼ 123222 by Corollary 13

111223, 111232 Theorem 41
122221, 121222, 122122, 122212 Corollary 40
111112, 111121, 111211, 112111,
121111, 122222

Theorems 34 and 36

7 The patterns of size seven

Table 5 lists the nonsingleton classes of patterns of size 7. The full listing of all the
classes, together with enumeration data that shows the distinction between the classes, is
available from the second author’s website [28].

Table 5: Nonsingleton equivalence classes of patterns of size seven.

Pattern Reference

1234516, 1234526, 1234536, 1234546,
1234556, 1234561, 1234562, 1234563,
1234564, 1234565, 1234566, 1234567

Theorem 33

1234514, 1234525 Corollary 13
1234513, 1234524, 1234535 Corollary 13
1234135, 1234245, 1234254 1234135 ∼ 1234245 by Corollary 13
1234351, 1234352 Corollary 13
1234315, 1234425 Corollary 13
1234125, 1234156, 1234215, 1234235,
1234256, 1234325, 1234345, 1234354,
1234356, 1234435, 1234451, 1234452,
1234453, 1234456, 1234512, 1234521,
1234523, 1234531, 1234532, 1234534,
1234541, 1234542, 1234543, 1234545,
1234551, 1234552, 1234553, 1234554

1234521 ∼ 1234531 ∼ 1234541 ∼ 1234551 ∼ 1234532 by
Proposition 15, 1234125 ∼ 1234235, 1234156 ∼ 1234256,
1234215 ∼ 1234325, 1234451 ∼ 1234452 and 1234512 ∼
1234523 by Corollary 13

1234155, 1234255, 1234355, 1234455 Corollary 13
1233451, 1233452 Corollary 13
1231445, 1231454, 1232445, 1232454,
1233445, 1233454

Corollary 13

1231456, 1232456, 1233456 Corollary 13
1231455, 1232455, 1233455 Corollary 13
1234115, 1234225, 1234335, 1234445,
1234454, 1234511, 1234522, 1234533,
1234544, 1234555

Corollary 13

1231245, 1232145, 1232345, 1233245 1231245 ∼ 1232345 by Corollary 13, 1231245 ∼ 1232145 by
Corollary 40

1234132, 1234243 Corollary 13
1234213, 1234324 Corollary 13
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Table 5: Nonsingleton equivalence classes of patterns of size seven.

Pattern Reference

1231234, 1233214, 1233412, 1233421,
1234123, 1234234, 1234312, 1234321,
1234412, 1234421, 1234423, 1234431,
1234432

1233412 ∼ 1233421, 1234312 ∼ 1234321 and 1234412 ∼
1234421 by Corollary 40, 1231234 ∼ 1233214 by Corollary 21,
1231234 ∼ 1234123 by Theorem 30, 1234123 ∼ 1234321 by
Corollary 20, 1233421 ∼ 1234321 by Theorem 42, 1234321 ∼
1234421 ∼ 1234431 ∼ 1234432 by Proposition 15

1234231, 1234341, 1234342 Corollary 13
1233441, 1233442 Corollary 13
1231244, 1232144, 1232344, 1233244 Corollary 13
1213453, 1223453 Corollary 13
1213435, 1223435 Corollary 13
1213456, 1223456 Corollary 13
1213455, 1223455 Corollary 13
1213445, 1213454, 1223445, 1223454 Corollary 13
1231145, 1232245, 1233345 Corollary 13
1213345, 1223345 Corollary 13
1213443, 1223443 Corollary 13
1213434, 1223434 Corollary 13
1234313, 1234424, 1233413 1233413 ∼ 1234313 by Theorem 54, 1234313 ∼ 1234424 by

Corollary 13
1234131, 1234242 Corollary 13
1233134, 1233143 Theorem 54
1234133, 1234244 Corollary 13
1231334, 1231433 Theorem 54
1234113, 1234224 Corollary 13
1231242, 1232142 Theorem 54
1232412, 1232421 Theorem 54
1231124, 1232234 Corollary 13
1234121, 1234232, 1234343 Corollary 13
1231214, 1232324 Corollary 13
1231224, 1232124, 1232214, 1232334,
1232343, 1232433, 1233234, 1233243,
1233324, 1233341, 1233342, 1233423,
1233431, 1233432, 1234112, 1234122,
1234212, 1234221, 1234223, 1234233,
1234323, 1234331, 1234332, 1234334,
1234344, 1234434, 1234441, 1234442,
1234443

Corollary 13

1213344, 1223344 Corollary 13
1123445, 1123454 Theorem 41
1232114, 1233224 Corollary 13
1233411, 1233422, 1234211, 1234311,
1234322, 1234411, 1234422, 1234433

Corollary 13

1231444, 1232444, 1233444 Corollary 13
1231144, 1232244, 1233344 Corollary 13
1212334, 1212343, 1221334, 1221343 1212334 ∼ 1221334 and 1212343 ∼ 1221343 by Corollary 40,

1212334 ∼ 1212343 by Theorem 41
1212345, 1221345 Corollary 40
1212344, 1221344 Corollary 40
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Table 5: Nonsingleton equivalence classes of patterns of size seven.

Pattern Reference

1213334, 1213343, 1213433, 1223334,
1223343, 1223433

1213334 ∼ 1213343 ∼ 1213433 by Theorem 41, 1213334 ∼
1223334 by Corollary 13

1213444, 1223444 Corollary 13
1231114, 1232224, 1233334, 1233343,
1233433, 1234111, 1234222, 1234333,
1234444

Corollary 13

1211334, 1211343, 1222334, 1222343 Corollary 13
1122334, 1122343 Theorem 41
1211345, 1222345 Corollary 13
1211344, 1222344 Corollary 13
1123334, 1123343, 1123433 Theorem 41
1212234, 1221234, 1222134 Corollary 40
1233312, 1233321 Corollary 40
1233122, 1233212, 1233221 Corollary 40
1212233, 1221233, 1222133 Corollary 40
1212333, 1221333 Corollary 40
1121334, 1121343 Theorem 41
1211134, 1222234 Corollary 13
1112334, 1112343 Theorem 41
1231212, 1232323 Corollary 13
1232121, 1233232 Corollary 13
1231221, 1232332 Corollary 13
1232112, 1233223 Corollary 13
1231122, 1232233 Corollary 13
1222311, 1223211, 1232211, 1233311,
1233322

1222311 ∼ 1223211 ∼ 1232211 by Theorem 42, 1232211 ∼
1233311 ∼ 1233322 by Corollary 13

1211333, 1222333 Corollary 13
1212223, 1212232, 1212322, 1213222,
1221223, 1221232, 1221322, 1222123,
1222132, 1222213, 1222231, 1222312,
1222321, 1223122, 1223212, 1223221,
1231222, 1232122, 1232212, 1232221,
1232333, 1233233, 1233323, 1233331,
1233332

1232221 ∼ 1233331 ∼ 1233332 by Proposition 15, the rest by
Theorem 48

1231112, 1232223 Corollary 13
1231121, 1232232 Corollary 13
1231211, 1232322 Corollary 13
1213333, 1223333 Corollary 13
1223111, 1232111, 1233111, 1233222 1223111 ∼ 1232111 by Theorem 42, 1232111 ∼ 1233111 ∼

1233222 by Proposition 15
1211133, 1222233 Corollary 13
1122223, 1122232, 1122322, 1123222 Theorem 41
1112223, 1112232, 1112322 Theorem 41
1211113, 1222223, 1222232, 1222322,
1223222, 1231111, 1232222, 1233333

Corollary 13

1111223, 1111232 Theorem 41
1212222, 1221222, 1222122, 1222212,
1222221

Corollary 40
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Table 5: Nonsingleton equivalence classes of patterns of size seven.

Pattern Reference

1111112, 1111121, 1111211, 1112111,
1121111, 1211111, 1222222

Theorems 34 and 36

8 Concluding remarks

In Table 6, we present the total number of equivalence classes of patterns of length
1, 2, . . . , 7.

n 1 2 3 4 5 6 7

number of classes of patterns of size n 1 1 2 5 21 114 617

Table 6: Number of equivalence classes of patterns of size 1, 2, . . . , 7

To provide an accurate asymptotic estimate of the number of equivalence classes of
patterns of a given size remains out of reach of our methods.

Let us remark that our computer enumeration has revealed several pairs of non-
equivalent patterns τ 6∼ τ ′ whose growth functions p(n; τ) and p(n; τ ′) coincide for several
small values of n. For instance, the growth functions of the two patterns τ = 1234415
and τ ′ = 1234152 are equal for n < 15. In other words, the value of n = 15 is the smallest
witness of the non-equivalence of the two patterns. We wonder if each two non-equivalent
patterns of size n have a witness of size O(n), or even n+O(1). Note that for any k and for
τ, τ ′ chosen as above, the pair of non-equivalent patterns 12 · · ·k(τ +k) and 12 · · ·k(τ ′+k)
of length k + 7 requires a witness of length k + 15 (this follows from Theorem 31).

The raw enumeration data for patterns of size six and seven [27, 28] are available from
the second author’s website. To save space, we did not include the data in this paper.
The data were obtained with the help of a computer program, whose source code is also
available from the second author’s website [29].
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