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Universitat Politècnica de Catalunya

Barcelona, Spain
david.wood@upc.edu

Submitted: Dec 7, 2006; Accepted: Dec 7, 2007; Published: Jan 1, 2008
Mathematics Subject Classifications:

05C62 (graph representations), 05C10 (topological graph theory), 05C83 (graph minors)

Abstract

The minor crossing number of a graph G is the minimum crossing number of a
graph that contains G as a minor. It is proved that for every graph H there is a
constant c, such that every graph G with no H-minor has minor crossing number
at most c|V (G)|.
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1 Introduction

The crossing number of a graph1 G, denoted by cr(G), is the minimum number of crossings
in a drawing2 of G in the plane; see [13, 28, 29, 37, 48–50] for surveys. The crossing number
is an important measure of the non-planarity of a graph [48], with applications in discrete
and computational geometry [27, 47] and VLSI circuit design [3, 20, 21]. In information
visualisation, one of the most important measures of the quality of a graph drawing is the
number of crossings [34–36].

We now outline various aspects of the crossing number that have been studied. First
note that computing the crossing number is NP-hard [15], and remains so for simple
cubic graphs [19, 31]. Moreover, the exact or even asymptotic crossing number is not
known for specific graph families, such as complete graphs [40], complete bipartite graphs
[23, 38, 40], and Cartesian products [1, 5, 6, 17, 39]. Given that the crossing number
seems so difficult, it is natural to focus on asymptotic bounds rather than exact values.
The ‘crossing lemma’, conjectured by Erdős and Guy [13] and first proved by Leighton [20]
and Ajtai et al. [2], gives such a lower bound. It states that for some constant c, cr(G) ≥
c‖G‖3/|G|2 for every graph G with ‖G‖ ≥ 4|G|. See [22, 25] for recent improvements.
Other general lower bound techniques that arose out of the work of Leighton [20, 21]
include the bisection/cutwidth method [11, 26, 45, 46] and the embedding method [44, 45].
Upper bounds on the crossing number of general families of graphs have been less studied.
One example, by Pach and Tóth [30], says that graphs G of bounded genus and bounded
degree have O(|G|) crossing number. See [9, 12] for extensions. The present paper also
focuses on crossing number upper bounds.

Graph minors3 are a widely used structural tool in graph theory. So it is inviting
to explore the relationship between minors and the crossing number. One impediment
is that the crossing number is not minor-monotone; that is, there are graphs G and
H with H a minor of G, for which cr(H) > cr(G). Nevertheless, following an initial
paper by Robertson and Seymour [41], there have been a number of recent papers on the
relationship between crossing number and graph minors [7, 8, 14, 16, 18, 19, 24, 31, 51].
For example, Wood and Telle [51] proved the following upper bound (generalising the

1We consider finite, undirected, simple graphs G with vertex set V (G) and edge set E(G). Let
|G| := |V (G)| and ‖G‖ := |E(G)|. Let ∆(G) be the maximum vertex degree of G.

2A drawing of a graph represents each vertex by a distinct point in the plane, and represents each
edge by a simple closed curve between its endpoints, such that the only vertices an edge intersects are
its own endpoints, and no three edges intersect at a common point (except at a common endpoint). A
crossing is a point of intersection between two edges (other than a common endpoint). A graph is planar

if it has a crossing-free drawing.
3Let vw be an edge of a graph G. Let G′ be the graph obtained by identifying the vertices v and w,

deleting loops, and replacing parallel edges by a single edge. Then G′ is obtained from G by contracting

vw. A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.
A family of graphs F is minor-closed if G ∈ F implies that every minor of G is in F . F is proper if it
is not the family of all graphs. A deep theorem of Robertson and Seymour [43] states that every proper
minor-closed family can be characterised by a finite family of excluded minors. Every proper minor-closed
family is a subset of the H-minor-free graphs for some graph H . We thus focus on minor-closed families
with one excluded minor.
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above-mentioned results in [9, 12, 30] for graphs of bounded genus).

Theorem 1 ([51]). For every graph H there is a constant c = c(H), such that every

H-minor-free graph G has crossing number cr(G) ≤ c ∆(G)2|G|.

1.1 Minor Crossing Number

Bokal et al. [8] defined the minor crossing number of a graph G, denoted by mcr(G),
to be the minimum crossing number of a graph that contains G as a minor. The main
motivation for this definition is that for every constant c, the family of graphs G for
which mcr(G) ≤ c is closed under taking minors. Moreover, the minor crossing number
corresponds to a natural style of graph drawing, in which each vertex is drawn as a tree.
Bokal et al. [7] proved a number of lower bounds on the minor crossing number that
parallel the lower bound techniques of Leighton. The main result of this paper is to prove
the following upper bound, which is an analogue of Theorem 1 for the minor crossing
number (without the dependence on the maximum degree).

Theorem 2. For every graph H there is a constant c = c(H), such that every H-minor-

free graph G has minor crossing number mcr(G) ≤ c |G|.

The restriction to graphs with an excluded minor in Theorem 2 is unavoidable in the
sense that mcr(Kn) ∈ Θ(n2). The linear dependence in Theorem 2 is best possible since
mcr(K3,n) ∈ Θ(n). Both these bounds were established by Bokal et al. [8]. An elegant
feature of Theorem 2 and the minor crossing number is that there is no dependence on the
maximum degree, unlike in Theorem 1, where some dependence on the maximum degree
is unavoidable. In particular, the complete bipartite graph K3,n has no K5-minor and has
Θ(n2) crossing number [23, 38].

2 Planar Decompositions

It is widely acknowledged that the theory of crossing numbers needs new ideas. Some
tools that have been recently developed include ‘meshes’ [39], ‘arrangements’ [1], ‘tile
drawings’ [4, 32, 32, 33], and the ‘zip product’ [4–6]. A feature of the proof of Theorem 1
by Wood and Telle [51] is the use of ‘planar decompositions’ as a new tool for studying
the crossing number. Planar decompositions are also the key component in the proof of
Theorem 2 in this paper.

Let G and D be graphs, such that each vertex of D is a set of vertices of G (called a
bag). Note that we allow distinct vertices of D to be the same set of vertices in G; that
is, V (D) is a multiset. For each vertex v of G, let D(v) be the subgraph of D induced by
the bags that contain v. Then D is a decomposition of G if:

• D(v) is connected and nonempty for each vertex v of G, and
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• D(v) and D(w) touch4 for each edge vw of G.

Decompositions, when D is a tree, were first studied in detail by Robertson and
Seymour [42]. Diestel and Kühn [10]5 first generalised the definition for arbitrary graphs
D.

We measure the ‘complexity’ of a graph decomposition D by the following parameters.
The width of D is the maximum cardinality of a bag. The order of D is the number of
bags. The degree of D is the maximum degree of the graph D. The decomposition D is
planar if the graph D is planar.

Diestel and Kühn [10] observed that decompositions generalise minors in the following
sense.

Lemma 1 ([10]). A graph G is a minor of a graph D if and only if a graph isomorphic

to D is a decomposition of G with width 1.

Wood and Telle [51] describe a number of tools for manipulating decompositions, such
as the following lemma for composing two decompositions.

Lemma 2 ([51]). Suppose that D is a decomposition of a graph G with width k, and that

J is a decomposition of D with width `. Then G has a decomposition isomorphic to J
with width k`.

Lemma 2 has the following special case, which follows from Lemma 1.

Lemma 3. If a graph G1 is a minor of a graph G2, and J is a decomposition of G2 with

width `, then some graph isomorphic to J is a decomposition of G1 with width `.

The next tool by Wood and Telle [51] reduces the order of a planar decomposition at
the expense of increasing the width.

Lemma 4 ([51]). Suppose that a graph G has a planar decomposition D of width k and

order at most c|G| for some c ≥ 1. Then G has a planar decomposition of width c′k and

order |G|, for some c′ depending only on c.

Converse to Lemma 4, we now show that the width and degree of a planar decompo-
sition can be reduced at the expense of increasing the order.

Lemma 5. If a graph G has a planar decomposition D of width k, then G has:

(a) a planar decomposition D1 of width k, order |D1| < 6|D| and degree ∆(D1) ≤ 3,
(b) a planar decomposition D2 of width 2, order |D2| < 3k(k+1)|D| and degree ∆(D2) ≤ 4,
(c) a planar decomposition D3 of width 2, order |D3| < 6k2|D| and degree ∆(D3) ≤ 3.

4Let A and B be subgraphs of a graph G. Then A and B intersect if V (A) ∩ V (B) 6= ∅, and A and
B touch if they intersect or v ∈ V (A) and w ∈ V (B) for some edge vw of G.

5A decomposition was called a connected decomposition by Diestel and Kühn [10].
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Proof. For the clarity of presentation, we assume that all the bags of D have width k,
although this assumption is not used in the proof. We also assume that D has minimum
degree at least 3; the reader can easily adapt the construction to vertices of degrees 1 and
2. (Alternatively, we can augment D to have minimum degree 3 by adding new edges,
whenever D has at least 4 vertices.) Fix an embedding of D in the plane.

First we prove (a). Let D1 be the graph with two vertices Xe and Ye for every edge
e = XY ∈ E(D), where each bag Xe is a copy of X. We say that Xe belongs to X. Add
the edge XeYe to D1 for each edge e = XY ∈ E(D). Add the edge XeXf to D1 whenever
the edges e and f are consecutive in the cyclic order of edges incident to a bag X in D.

As illustrated in Figure 1(b), each bag X is thus replaced by a cycle in D1, each vertex
of which has one more incident edge in D1. Thus D1 is a planar graph with maximum
degree 3 and order |D1| = 2‖D‖ (after adding edges to D, if necessary). Since D is planar,
‖D‖ ≤ 3|D| − 6 and so |D1| ≤ 6|D| − 12. Since the set of bags of D1 that belong to a
specific bag of D induces a connected (cycle) subgraph of D1, and D(v) is a connected
subgraph of D for each vertex v of G, D1(v) is a connected subgraph of D1.

We now prove that D1(v) and D1(w) touch for each edge vw of G. If v and w are in
a common bag X of D, then v and w are in every bag Xe of D1. Otherwise, v ∈ X and
w ∈ Y for some edge e = XY of D, in which case v ∈ Xe, w ∈ Ye, and XeYe is an edge
of D1. Thus D1(v) and D1(w) touch. Therefore D1 is a planar decomposition of G. This
completes the proof of (a).

Now we prove (b). Fix an arbitrary linear order � on V (G), and arbitrarily orient the

edges of D. For each arc e =
−−→
XY of D, orient the edge XeYe of D1 from Xe to Ye.

Informally speaking, we now construct a planar decomposition D2 from D1 by replac-
ing each bag Xe of D1 by a set of

(

k+1
2

)

bags, each of width 1 or 2, that form a wedge
pattern, as illustrated in Figure 1(c). Depending on whether e is incoming or outgoing at
X, the wedge is reflected appropriately to ensure the planarity of D2.

Now we define D2 formally. Consider a bag X = {v1, v2, . . . , vk} of D, where v1 ≺
v2 ≺ · · · ≺ vk. For each pair of vertices vi, vj in X, and for each edge e incident to X, add
a bag labelled {vi, vj}Xe

to D2, where {vi, vj}Xe
is a copy of {vi, vj}. (The bag {vi, vi}Xe

is a singleton {vi}.) We say that {vi, vj}Xe
belongs to Xe and to X. Thus there are

(

k+1
2

)

bags that belong to each bag of D1. Hence |D2| ≤
(

k+1
2

)

|D1| < 3k(k + 1)|D|. Add an
edge in D2 between the bags {vi, vj}Xe

and {vi, vj+1}Xe
for 1 ≤ i ≤ k and 1 ≤ j ≤ k − 1.

As illustrated in Figure 1(c), the subgraph of D2 induced by the bags that belong to each
bag Xe of D1 form a planar grid-like graph.

Consider two edges e = XY and f = XZ of D that are consecutive in the cyclic order
of edges incident to a bag X of D (defined by the planar embedding). Without loss of
generality, XZ is clockwise from XY . We now add edges to D2 between certain bags that
belong to Xe and Xf depending on the orientations of the edges XY and XZ. Since D
has minimum degree at least 3, the bags corresponding to X form a cycle in D2. (For
D-vertices of degree less than 3, the construction is slightly different; we leave the details

of degD(v) ≤ 2 to the reader.) For 1 ≤ i ≤ k, let Pi be the bag {vi, vk}Xe
if
−−→
XY and

{vi, vi}Xe
if
−−→
Y X, and let Qi be the bag {vi, vi}Xf

if
−−→
XZ and {vi, vk}Xf

if
−−→
ZX. Add an

edge between Pi and Qi for 1 ≤ i ≤ k. As illustrated in Figure 1(c), the subgraph of D2
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Figure 1: (a) The planar decomposition D. (b) The planar decomposition D1 obtained
from D by replacing each bag of degree d by d bags of degree 3. (c) The planar decom-
position D2 obtained from D1 by replacing each bag of width k by

(

k+1
2

)

bags of width 2.
The subgraph D2(3) is highlighted.

induced by the bags that belong to each bag X of D is planar.

Now consider an edge e =
−−→
XY of D, where X = {v1, v2, . . . , vk} with v1 ≺ v2 ≺ · · · ≺

vk, and Y = {w1, w2, . . . , wk} with w1 ≺ w2 ≺ · · · ≺ wk. Whenever vi = wj, add an
edge between {v1, vi}Xe

and {w1, wj}Ye
to D2. This completes the construction of D2.

Observe that the bags {v1, v1}Xe
, {v1, v2}Xe

, . . . , {v1, vk}Xe
are ordered clockwise on the
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outer face of the subgraph of D2 induced by the bags belonging to X. Similarly, the bags
{w1, w1}Ye

, {w1, w2}Ye
, . . . , {w1, wk}Ye

are ordered anticlockwise on the outer face of the
subgraph of D2 induced by the bags belonging to Y . Thus these edges do not introduce
any crossings in D2, as illustrated in Figure 1(c).

We now prove that each subgraph D2(v) is a nonempty connected subgraph of D2 for
each vertex v of G. Say v is in a bag X = {v1, v2, . . . , vk} of D, with v1 ≺ v2 ≺ · · · ≺ vk

and v = vi. Observe that the set of bags {{vi, vj}Xe
: vj ∈ X ∈ e ∈ E(D), i ≤ j} forms a

cycle in D2 (drawn as a circle in Figure 1(c)), and for each edge e incident to X, the bags
{{vi, vj}Xe

: vj ∈ X ∈ e ∈ E(D), j ≤ i} form a path between {v1, vi}Xe
and {vi, vi}Xe

,
where it attaches to this cycle. Thus the set of bags in D2 that belong to X and contain
v forms a connected subgraph of D2. For each edge e = XY of D with v ∈ X ∩ Y , there
is an edge in D2 (between some bags {v1, vi}Xe

and {w1, wj}Ye
) that connects the set of

bags that belong to X and contain v with the set of bags that belong to Y and contain
v. Thus D2(v) is connected since D(v) is connected.

We now prove that D2(v) and D2(w) touch for each edge vw of G. If v and w are
in a common bag X of D, then v and w are in every bag {v, w}Xe

of D1. Otherwise,
v ∈ X and w ∈ Y for some edge e = XY of D, in which case v and w are in adjacent
bags {v1, v}Xe

and {w1, w}Ye
, for appropriate vertices v1 and w1. Thus D2(v) and D2(w)

touch. Therefore D2 is a decomposition of G. Observe that ∆(D2) ≤ 4. This completes
the proof of (b).

Now we prove (c). Construct a planar decomposition D3 from D2 by the following
operation applied to each bag W of D2 with degree 4. Say the neighbours of W are
Z1, Z2, Z3, Z4 in clockwise order in the embedding of D2. Replace W by two bags W1

and W2, both copies of W , where W1 is adjacent to W2, Z1, Z2, and W2 is adjacent to
W1, Z3, Z4. Clearly D3 is a planar decomposition of G with maximum degree 3. For each
bag Xe of D1, there are k bags of degree 3 in D2 and 1

2
k(k − 1) bags of degree 4 that

belong to Xe. Since each bag of degree 4 in D2 is replaced by two bags in D3, there are
k +2(1

2
k(k− 1)) = k2 bags in D3 that belong to Xe. Thus |D3| ≤ 2k2‖D‖ < 6k2|D|. This

completes the proof of (c).

Note that the upper bound of |D1| ≤ 6|D| in Lemma 5(a) can be improved to |D1| ≤
4|D| by replacing each bag of degree d by d−2 bags of degree 3, as illustrated in Figure 2.
We omit the details.

3 Planar Decompositions and Crossing Number

In this section we review some of the results by Wood and Telle [51] that link planar
decompositions and crossing number.

Lemma 6 ([51]). If D is a planar decomposition of a graph G with width k, then G has

crossing number

cr(G) ≤ k(k + 1) ∆(G)2 |D| .
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Figure 2: Replacing a bag of degree 6 by four bags of degree 3.

Lemma 7 ([51]). For every graph H there is an integer k = k(H), such that every

H-minor-free graph G has a planar decomposition of width k and order |G|.

Observe that Lemmas 6 and 7 imply Theorem 1. The next lemma is converse to
Lemma 6.

Lemma 8 ([51]). Every graph G has a planar decomposition of width 2 and order |G|+
cr(G).

We have the following characterisation of graphs with linear crossing number.

Theorem 3 ([51]). The following are equivalent for a graph G of bounded degree:

1. cr(G) ≤ c1|G| for some constant c1,

2. G has a planar decomposition with width c2 and order |G| for some constant c2,

3. G has a planar decomposition with width 2 and order c3|G| for some constant c3.

Proof. Lemma 8 implies that (1) ⇒ (3). Lemma 4 implies that (3) ⇒ (2). Lemma 6
implies that (2) ⇒ (1).

Note that Lemma 5(c) provides a more direct proof that (2) ⇒ (3) in Theorem 3
(without the dependence on degree).

4 Planar Decompositions and Minor Crossing

Number

Lemma 6 can be extended to give the following upper bound on the minor crossing
number. Basically we replace the dependence on ∆(G) in Lemma 6 by ∆(D).
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Lemma 9. If D is a planar decomposition of a graph G with width k, then G has minor

crossing number

mcr(G) < k3(k + 1)(∆(D) + 1)2 |D| .

Proof. Let G′ be the graph with one vertex for each occurrence of a vertex of G in a bag
of D. Consider a vertex x of G′ in bag X and a distinct vertex y of G′ in bag Y . Connect
x and y by an edge in G′ if and only if X = Y or XY is an edge of D. (G′ is a subgraph of
the lexicographic product D[Kk].) For each vertex v of G, the copies of v form a connected
subgraph of G′, since D(v) is a connected subgraph of D. Since D(v) and D(w) touch for
each edge vw of G, some copy of v is adjacent to some copy of w. Thus G is a minor of
G′, and mcr(G) ≤ cr(G′). Moreover, D defines a planar decomposition of G′ with width
k. By Lemma 6 applied to G′,

mcr(G) ≤ cr(G′) ≤ k(k + 1) ∆(G′)2 |D| .

A neighbour of a vertex x of G′ is in the same bag as x or is in a neighbouring bag. Thus
∆(G′) ≤ (∆(D) + 1)k − 1. Thus

mcr(G) < k(k + 1) ((∆(D) + 1)k)2 |D| = k3(k + 1) (∆(D) + 1)2 |D| .

Lemmas 9 and 5(a) imply that if D is a planar decomposition of a graph G with
width k, then G has minor crossing number in O(k4|D|). This bound can be improved by
further transforming the decomposition into a decomposition with width 2. In particular,
Lemmas 9 and 5(b) imply:

Lemma 10. If D is a planar decomposition of a graph G with width k, then G has minor

crossing number

mcr(G) < 23(2 + 1)(4 + 1)2 3k(k + 1)|D| = 1800 k(k + 1)|D| .

Proof of Theorem 2. It follows immediately from Lemmas 7 and 10.
We now set out to prove a converse result to Theorem 2.

Lemma 11. For every graph G, there is a graph G′ containing G as a minor, such that

mcr(G) = cr(G′) and |G′| ≤ |G| + mcr(G).

Proof. By definition, there is a graph G′ containing G as a minor, such that mcr(G) =
cr(G′). Choose such a graph G′ with the minimum number of vertices. There is a set
{Tv : v ∈ V (G)} of disjoint subtrees in G′, such that for every edge vw of G, some vertex
of Tv is adjacent to some vertex of Tw. Every vertex of G′ is in some Tv, as otherwise we
could delete the vertex from G′. Hence

|G′| =
∑

v∈V (G)

|Tv| = |G| +
∑

v∈V (G)

(|Tv| − 1) = |G| +
∑

v∈V (G)

‖Tv‖ .

We can assume that every edge of every subtree Tv is in some crossing, as otherwise we
could contract the edge. Thus |G′| ≤ |G| + cr(G′) = |G| + mcr(G).
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The next lemma is an analogue of Lemma 8.

Lemma 12. Every graph G has a planar decomposition with width 2 and order |G| +
2 mcr(G).

Proof. By Lemma 11, there is some graph G′ containing G as a minor, such that cr(G′) =
mcr(G) and |G′| ≤ |G|+mcr(G). By Lemma 8, G′ has a planar decomposition of width 2
and order |G′| + cr(G′) = |G′| + mcr(G) ≤ |G| + 2 mcr(G). By Lemma 3, G has a planar
decomposition with the same properties.

We have the following characterisation of graphs with linear minor crossing number,
which is analogous to Theorem 3 for crossing number (without the dependence on degree).

Theorem 4. The following are equivalent for a graph G:

1. mcr(G) ≤ c1|G| for some constant c1,

2. G has a planar decomposition with width c2 and order |G| for some constant c2,

3. G has a planar decomposition with width 2 and order c3|G| for some constant c3.

Proof. Lemma 12 implies (1) ⇒ (3). Lemma 4 implies that (3) ⇒ (2). Lemma 10 implies
that (2) ⇒ (1).
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[50] Imrich Vrťo. Crossing numbers of graphs: A bibliography. 2007.
ftp://ftp.ifi.savba.sk/pub/imrich/crobib.pdf.

[51] David R. Wood and Jan Arne Telle. Planar decompositions and the crossing
number of graphs with an excluded minor. New York J. Math., 13:117–146, 2007.

the electronic journal of combinatorics 15 (2008), #R4 13


