
Induced trees in triangle-free graphs
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Malostranské nám. 25, 118 00 Praha 1

Czech Republic

Submitted: Nov 29, 2007; Accepted: Feb 24, 2008; Published: Mar 12, 2008

Mathematics Subject Classification: 05C55, 05C05

Abstract

We prove that every connected triangle-free graph on n vertices contains an
induced tree on exp(c

√
log n ) vertices, where c is a positive constant. The best

known upper bound is (2 + o(1))
√

n. This partially answers questions of Erdős,
Saks, and Sós and of Pultr.

1 Introduction

For a graph G, let t(G) denote the maximum number of vertices of an induced subgraph
of G that is a tree (i.e., connected and acyclic). There are arbitrary large graphs G with
t(G) ≤ 2, namely graphs in which every connected component is a clique. To rule out
these trivial examples, we need to put some restrictions on G.

Motivated by study of forbidden configurations in Priestley spaces [1], Pultr (private
communication, 2002) asked how big t(G) can be if G is connected and bipartite. Formally,
he was interested about asymptotic properties of the function

fB(n) = min{t(G) : |V (G)| = n, G connected and bipartite}.

Pultr’s question was the starting point of our work. However, the function t(G) was
studied earlier and in a more general context by Erdős, Saks, and Sós [2]. They describe
the influence of the number of edges of G on t(G) and, more to our point, they study
how small t(G) can be if ω(G) is given. They observe that t(G) ≤ 2α(G), and this allows
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them to use estimates for Ramsey numbers. This way, they show that for any fixed k > 3
there are constants c1, c2 such that

c1
log n

log log n
≤ min{t(G) : |V (G)| = n, G 6⊇ Kk} ≤ c2 log n .

For k = 3 the lower bound still applies, but the upper bound obtained by using Ramsey
numbers was only O(

√
n log n) (nowadays this approach yields O(

√
n log n), due to the

improved lower bound on R(k, 3), see [4]). We concentrate on this case k = 3, that is we
put

fT (n) = min{t(G) : |V (G)| = n, G connected and triangle-free}.
Instead of applying Ramsey theory, we approach the problem directly.

It is easy to show that fT (n) ≤ fB(n) = O(
√

n ). The best construction we are aware
of yields fB(n) ≤ (2 + o(1))

√
n; see Section 2. A simple “blow-up” construction, also

presented in Section 2, shows that if fT (n0) <
√

n0 for some n0, then fT (n) = O(n1/2−ε) for
a positive constant ε > 0, and similarly for fB. Hence, fT (n) either is of order exactly

√
n,

or it is bounded above by some power strictly smaller than 1/2. We conjecture that the
second possibility holds, and that another power of n is a lower bound.

Conjecture 1.1 There are constants 0 < α < β < 1/2, and c1, c2 such that for all n

c1n
α ≤ fT (n) ≤ fB(n) ≤ c2n

β .

The following lower bound is the main result of this paper.

Theorem 1.2 There is a constant c > 0 such that for all n

fT (n) ≥ ec
√

log n .

We finish the introduction by mentioning further results concerning t(G). It is in-
teresting to consider the problem of finding induced trees in (sparse) random graphs.
Vega [3] shows that t(Gn,c/n) = Ω(n) a.s.; Palka and Ruciński [6] prove that t(Gn,c log n/n) =
Θ(n log log n/ log n) a.s.

Krishnan and Ochem [5] search for values of fT (n) (for small n) using a computer;
they succeed to find fT (n) for n ≤ 15. They also extend results of [2] about the decision
problem: “given a connected graph G and an integer t, does G have an induced tree with t
vertices?”. Not only this is NP-complete for general graphs (which is proved in [2]), but
it remains NP-complete even if we restrict to bipartite graphs, or to triangle-free graphs
of maximum degree 4.

2 Initial observations

Observation 2.1 fB(n) ≤ (2 + o(1))
√

n.
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Proof: It is enough to take a path with each edge replaced by a complete bipartite
graph. More precisely, we take pairwise disjoint sets Vi (for i = −(k − 1), . . . , k − 1) such
that |Vi| = k − |i|. We let G be the graph with vertices V =

⋃
|i|<k Vi and all possible

edges between Vi and Vi+1 (for i = −(k − 1), . . . , k − 2).
It is clear that if an induced tree in G contains a vertex from Vi and two vertices

from Vi+1 then it contains no vertex of Vj for j > i + 1; similarly for i + 1 replaced by
i− 1. Therefore any maximum induced tree is one of trees Ta,b (−(k− 1) ≤ a < b ≤ k− 1
and b − a > 1): it contains all vertices from two levels, Va and Vb and one vertex from
each Vi where a < i < b. It is easy to compute that such tree contains 2k − 1 vertices
out of the |V | = k2; this proves fB(k2) ≤ 2k − 1. If (k − 1)2 < n ≤ k2 then we take a
subgraph of G to show that fB(n) ≤ 2k − 1 < 2

√
n + 1. 2

Lemma 2.2 (Blow-up construction) Let G be a connected triangle-free graph and let
W ⊆ V (G) be a subset of m vertices (m ≥ 3) such that any induced tree in G contains at
most t vertices of W . Then we have fT (n) = O(nln(t−1)/ ln(m−1)). The same result holds
with “triangle-free” replaced by “bipartite” and with fT replaced by fB.

Proof: We let W = {w0, . . . , wm−1}, and write r = m − 1 and q = t − 1 to simplify
expressions. As G is triangle-free it follows that t ≥ 3, and so q ≥ 2.

Let T = Tr,l be a rooted tree with l+1 levels (counting root as one level) in which each
non-leaf vertex has r sons. Next, for each vertex v of T we take a copy Gv of G (so that
distinct copies are disjoint). Whenever v is a non-leaf vertex of T and u is its i-th son, we
introduce an edge between wi in Gv and w0 in Gu; the resulting graph will be called T (G)
(see Fig. 1). Clearly this graph is triangle-free/bipartite if G was triangle-free/bipartite.

Moreover, |V (T (G))| = |V (T )| · |V (G)| and |V (T )| = rl+1−1
r−1

= Θ(rl) (since l → ∞ and
r ≥ 2).

Let S be an induced subtree of T (G) and put

S̄ = {v ∈ V (T ) | Gv contains a vertex of S} .

By construction, S ∩ Gv is a tree in Gv for each v. So the condition on G implies that
each vertex of S̄ has at most t neighbors in S̄. Consequently, we have (since q ≥ 2)

|S̄| ≤ 1 +
l∑

i=1

(q + 1)qi−1 ≤ 1 + (q + 1)
ql − 1

q − 1
= Θ(ql) .

Now recall that q, r, and |V (G)| are constants. For a given n, choose the smallest l
such that n ≤ |V (Tr,l(G))|; we have n = Θ(rl). By the above considerations,

f(n) ≤ f(Tr,l(G)) ≤ |V (G)| · Θ(ql) = Θ(rl logr q) = Θ(nlogr q) ,

which finishes the proof. 2
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Figure 1: Graph T3,2(G) from the proof of Lemma 2.2.

Corollary 2.3 If fT (n0) <
√

n0 for some n0, then fT (n) = O(n1/2−ε) for a positive
constant ε > 0. (The same is true for fB.)

Proof: Let G be the graph on n0 vertices for which t(G) = t <
√

n0. We let W = V (G)
and m = n0 and apply Lemma 2.2. 2

As mentioned in the introduction, Krishnan and Ochem [5] search for values of fT (n)
using a computer. This was motivated by hope that Corollary 2.3 would apply. It turns
out, however, that for small n Observation 2.1 gives a precise estimate even for fT (n)
(e.g., fT (15) = 7); therefore Corollary 2.3 does not apply.

Remark. If we consider the construction from Lemma 2.2 for G = K3, W = V (G),
m = 3, and t = 2 we recover a result of [2] that there is a graph G containing triangles
(but no K4) such that t(G) = O(log n).

3 Lower bound for bipartite graphs

Here we prove a statement weaker than Theorem 1.2—we give a bound on fB(n) instead
of fT (n). The proof is simpler than that of Theorem 1.2 and it serves as an introduction
to it.

We begin with a lemma about selecting induced forests of a particular kind in a
bipartite graph. We introduce some terminology. Let H be a bipartite graph with color
classes A and B. We will think of A as the “top” class and B as the “bottom” class (in a
drawing of G in the plane, say). We write a = |A| and b = |B|. For a subgraph F of H we
write A(F ) = V (F ) ∩ A, we set a(F ) = |A(F )|, and we define B(F ) and b(F ) similarly.

Whenever we say forest we actually mean an induced subgraph of H that is a forest.
An up-forest F is a forest such that every vertex in A(F ) has degree (in F ) precisely 1
and every vertex in B(F ) has degree (in F ) at least 1.

A matching is a forest F in which all vertices have degrees (in F ) exactly 1.
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A

B

Figure 2: An up-forest

Lemma 3.1 Let H be a bipartite graph with color classes A and B as above, let ∆ be the
maximum degree of H, and let η ∈ (0, 1) be a real parameter. Let us suppose that every
vertex in A is connected to at least one vertex in B. Then at least one of the following
cases occurs:

(M) There is a matching with at least (1 − η)a edges.

(B) There is an up-forest F with

b(F ) ≥ η

∆3
· a

that is 2-branching, meaning that every vertex in B(F ) has degree at least 2 in F .

A

B

A

B

Figure 3: An illustration of Lemma 3.1

Proof. Let B′ ⊆ B be the set of vertices of degree 1 in B. If |B ′| ≥ (1−η)a then, clearly,
case (M) occurs, so we may assume |B ′| < (1 − η)a. Let B ′′ ⊆ B consist of all vertices
of degree at least 2. Since every vertex in A has degree at least 1, |E(H \ N(B ′))| ≥ ηa,
and so |B′′| ≥ (η/∆)a.

Let us set B0 = B′′ and let F0 be an empty graph. Supposing that a set Bi−1 ⊆ B′′

and an up-forest Fi−1 have already been constructed with Bi−1 6= ∅, we construct Bi

and Fi. We let vi be an arbitrary vertex in Bi−1, and we let Si be the star formed by vi

and all of its neighbors in A. We set Fi = Fi−1 ∪ Si, we let Ni ⊆ B be the neighborhood
of A(Si), and we let Bi be Bi−1 \ Ni. The construction finishes when Bi = ∅, with Fi as
the resulting up-forest.

It is easy to check that this construction indeed yields an up-forest F with each degree
in B(F ) at least 2. We have a(Si) ≤ ∆ and |Ni| ≤ a(Si)(∆− 1) + 1, and so in each step,
at most |Ni| ≤ ∆(∆ − 1) + 1 ≤ ∆2 vertices are removed from Bi. Having started with
at least (η/∆)a vertices, we can proceed for at least (η/∆3)a steps, and so the resulting
up-forest is as in (B). 2
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Now we prove the lower bound

fB(n) ≥ ec
√

log n

for a constant c > 0.
Let G be a given connected bipartite graph. We assume that n = |V (G)| is sufficiently

large whenever convenient. We let t be the “target size” of an induced tree in G we are
looking for; namely, t = dexp(c

√
log n )e. If G has a vertex of degree at least t − 1, then

we can take its star for the induced tree and we are done, so we may assume that the
maximum degree satisfies ∆ ≤ t − 2.

Let us fix an arbitrary vertex of G as a root, and let Li be the set of vertices of G
at distance precisely i from the root. All edges of G go between Li−1 and Li for some i,
since an edge within some Li would close an odd cycle.

We may assume that Lt = ∅, for otherwise G contains an induced path of length t.
Hence there is a k with |Lk| ≥ n/t.

Let us fix such a k. We are going to construct sets Mi ⊆ Li, i = k, k−1, . . ., inductively,
until we first reach an i with |Mi| = 1 (this happens for i = 0 at the latest since |L0| = 1).
We shall let ` be this last i.

Suppose that nonempty sets Mk, Mk−1, . . . , Mi have already been constructed, in such
a way that the subgraph of G induced by Mk∪· · ·∪Mi is a forest, each of whose components
intersects Mi in at most one vertex. We are going to construct Mi−1.

Let us put A = Mi, B = Li−1, and let us consider the bipartite graph H induced by
A ∪ B in G. Every vertex of A is connected to at least one vertex in B. We set η = 1

t

and apply Lemma 3.1. This yields an up-forest F in H as in the lemma. We define
Mi−1 = B(F ).

If F is a matching, i.e., case (M) occurred in the lemma, we call the step from Mi

to Mi−1 a matching step. In this case, we have |Mi−1| ≥ (1 − 1
t
)|Mi|. Otherwise, F

is a 2-branching forest; then we call the step a branching step and we have |Mi−1| ≥
|Mi|/(t∆3) ≥ |Mi|/t4.

Suppose that the sets Mk, . . . , M` have been constructed, |M`| = 1. We claim that
the number b of branching steps in the construction is at least c1

√
log n for a suitable

constant c1 > 0. Indeed, there are no more than t matching steps, and so 1 = |M`| ≥
|Mk|(1−1/t)tt−4b ≥ (n/t)e−1/2·t−4b = Ω(nt−4b−1). Thus b = Ω(log n/ log t) = Ω(

√
log n ),

since t = dexp(c
√

log n )e.
It is easy to see that Mk ∪ Mk−1 ∪ · · · ∪ M` induces a forest in G. We let T be the

component of this forest containing the single vertex of M`. Since every vertex of Mi−1,
` < i ≤ k, has at least one neighbor in Mi, and if the step from Mi to Mi−1 was a
branching step then each vertex of Mi−1 has at least two neighbors in Mi, it follows that
T has at least 2b = exp(Ω(

√
log n )) vertices. This finishes the proof of the lower bound

fB(n) ≥ exp(c
√

log n ). 2

Remark. The above proof may seem wasteful in many respects. However, the result is
tight up to the value of the constant in the exponent if we insist on selecting an induced
tree “growing up” (i.e., made of up-forests for some choice of root and corresponding
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sets Li). Indeed, any such induced tree in the graph Gr in Figure 4 may contain at most
two of the r vertices at the topmost level of the graph. Let us put r = exp(c

√
log n ) and

glue copies of Gr according to the pattern of a complete r-ary tree (as in the proof of
Lemma 2.2), so that the resulting graph has approximately n vertices (that is, the depth
is l = Θ(

√
log n). We obtain a graph with all up-growing induced trees having size at

most 2l = exp(O(
√

log n )).

Figure 4: Graph G6 in which all “up-growing trees” contain at most two vertices of the
uppermost level.

4 Lower bound for triangle-free graphs

Here we prove Theorem 1.2. The scheme of the proof is very similar to the proof of
the same bound for bipartite graphs in Section 3. We continue using the definitions and
notation from that proof. So we decompose the given graph into the levels L0, L1, . . . , Lr,
r < t. The main difference compared to the bipartite case is that there may now be edges
within the levels Li. We will need the well-known fact that any graph on n vertices with
maximum degree ∆ contains an independent set of size at least n/(∆ + 1). We will also
need the following simple modification.

Lemma 4.1 Let Γ be a graph (not necessarily bipartite) on n vertices with maximum
degree ∆, and let η ∈ [0, 1] be a real parameter. Then at least one of the following two
cases occurs:

(IS) Γ contains an independent set with at least (1 − η)n vertices.

(IM) Γ contains an induced matching with at least η
2∆

n edges.

Proof. We repeatedly select edges e1, e2, . . . of Γ; having selected ei, we delete it and all
the neighbors of its endvertices from the current graph. In each step we delete at most
2∆ vertices, so we either construct an induced matching as in (IM) or reach an edgeless
graph after deleting at most ηn vertices, hence yielding an induced set as in (IS). 2

Proof of Theorem 1.2. We proceed similarly as in the previous section. We suppose
G is a given triangle-free graph on n vertices (and that n is big enough), we put t =
dexp(c

√
log n )e. Again, we may assume t ≤ ∆−2: G is triangle-free, so a star of a vertex

is an induced tree.
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As before, we begin by selecting a root vertex and constructing the at most t levels
L0, L1, . . . . We select k such that |Lk| ≥ n/t and we will construct sets Mk, Mk−1, . . . ,
M`, such that Mi ⊆ Li, |M`| = 1, in such a way that their union induces a forest in G. In
the induction step, we will either construct Mi−1 from Mi, or sometimes we will go down
two levels at once, producing both Mi−1 and Mi−2.

We begin by selecting Mk as an independent set in the subgraph induced by Lk. By
the fact mentioned before Lemma 4.1 we may assume |Mk| ≥ |Lk|/t ≥ n/t2.

We suppose that Mi has already been constructed so that each component of the forest
induced by Mk ∪ · · · ∪Mi intersects Li in at most one vertex (and, in particular, Mi is an
independent set). Now we proceed as in the proof in Section 3: We let A = Mi, B = Li−1,
and we consider the bipartite graph H induced by A∪B in G. We apply Lemma 3.1 to H
with η = 1

t
, obtaining an up-forest F . We set M ′

i−1 = B(F ); this is not yet the final Mi

since there may be edges on M ′
i−1.

If case (B) occurred in Lemma 3.1, we have |M ′
i−1| ≥ |Mi|/t4. We let Mi−1 be an

independent set of size |M ′
i |/(∆+1) ≥ |Mi|/t5 in the subgraph induced by M ′

i−1. We call
this step a branching step.

If case (M) occurred in Lemma 3.1, we have |M ′
i−1| ≥ (1 − 1

t
)|Mi|. Then we apply

Lemma 4.1 with η = 1
t

to the graph Γ induced in G by M ′
i−1. If case (IS) applies in that

lemma, we let Mi−1 be the independent set of size at least (1 − 1
t
)|M ′

i−1| ≥ (1 − 1
t
)2|Mi|;

we call this step a matching step. Both the matching step and the branching step go one
level down, from i to i − 1.

If case (IM) applies in Lemma 4.1, we define Mi−1 as the vertex set of the induced
matching from the lemma. In this case we have |Mi−1| ≥ (1 − 1

t
)|Mi|/t2. Note that

this Mi−1 does not satisfy the inductive assumption (it is not an independent set). We are
also going to construct Mi−2 in the same step, thus going from i to i−2. To obtain Mi−2,
we define another auxiliary bipartite graph, which we again call H to save letters. The
bottom color class B is Li−2, and the top color class A is obtained by contracting the edges
induced by Mi−1. More formally, we set A = {uu′ ∈ E(G) : u, u′ ∈ Mi−2}, B = Li−2,
and E(H) = {{uu′, v} : u, u′ ∈ A, v ∈ B, uv ∈ E(G) or u′v ∈ E(G)}. (Note that in this
definition it can not happen that both uv and u′v are edges of G, as G is triangle-free.)
We apply Lemma 3.1 with η = 1

2
, say, to H. In both of cases (M) and (B) we obtain an

up-forest F in H with b(F ) ≥ |Mi−1|/(32t3) (we note that |A| = 1
2
|Mi−1| and that H has

maximum degree no larger than 2t). We set M ′
i−2 = B(F ), and finally, we select Mi−2 as

an independent set of size at least |M ′
i−2|/t in the subgraph induced by M ′

i−2. Since G
is triangle-free, one can check that Mk ∪ · · · ∪ Mi−1 ∪ Mi−2 induces a forest. We have
|Mi−2| ≥ |Mi−1|/32t4 ≥ |Mi| · (1 − 1

t
)/32t6 ≥ |Mi|/t7. We call this step from Mi to Mi−2

a double-step.
By calculation similar to that in Section 3, we find that the number b of branching

steps and double-steps together is at least Ω(
√

log n ). We again claim that the component
of the forest induced by Mk ∪ · · · ∪ M` containing the single vertex of M` has at least 2b

vertices. Indeed, if Mi was obtained from Mi+1 by a branching step, then each vertex
of Mi has at least two successors in Mi+1. If Mi was obtained from Mi+2 by a double-step,
then each vertex v of Mi has at least one succesor in Mi+1, this is connected by an edge to
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precisely one other vertex of Mi+1, and both of these vertices have one neighbor in Mi+2;
consequently v has at least two successors in Mi+2. Theorem 1.2 is proved. 2
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