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Abstract

In his Master’s thesis, Ján Mazák proved that the circular chromatic index of

the type 1 generalized Blanuša snark B1
n equals 3+ 2

n . This result provided the first

infinite set of values of the circular chromatic index of snarks. In this paper we show

the type 2 generalized Blanuša snark B2
n has circular chromatic index 3 + 1

b1+3n/2c .

In particular, this proves that all numbers 3 + 1/n with n > 2 are realized as the

circular chromatic index of a snark. For n = 1, 2 our proof is computer-assisted.

1 Introduction

Let G be a graph and r > 2. For all a ∈ [0, r), let |a|r = min{|a|, r−|a|}. For a, b ∈ [0, r),
the r–circular interval [a, b]r is defined by

[a, b]r =

{

[a, b] if a 6 b,

[a, r) ∪ [0, b] if a > b.

For a, b ∈ R, |a|r and [a, b]r are defined by first reducing a and b modulo r to a′, b′ ∈
[0, r). An edge r–circular colouring, or an edge r–colouring for short, of G is a function
c : E(G) → [0, r) such that for any two adjacent edges e and e′, |c(e) − c(e′)|r > 1. If G
admits an edge r–colouring, then G is edge r–colourable. The circular chromatic index of
G is defined by

χ′
c(G) = inf{r ∈ R | G is edge r–colourable}. (1)

It is well-known, see [9] for example, that for every finite graph G, the infimum in (1)
is attained, and that χ′

c(G) is rational. It is also known that for every graph G, χ′(G) =
dχ′

c(G)e, where χ′(G) is the chromatic index of G. Hence, by Vizing’s theorem, ∆(G) 6

χ′
c(G) 6 ∆(G) + 1. Recall that a graph G is said to be class 2, if χ′(G) = ∆(G) + 1, or
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Figure 1: The dot product construction

equivalently, if χ′
c (G) > ∆(G). Afshani et al. [1] proved that if G is a bridgeless cubic

graph then
3 6 χ′

c(G) 6 11/3.

The upper bound is attained by the Petersen graph. No bridgeless cubic graph other than
the Petersen graph with the circular chromatic index greater than 7/2 is known. Kaiser et

al. [5] proved that every bridgeless cubic graph with girth at least 14 has circular chromatic
index at most 7/2. The circular chromatic index of special classes of graphs has been of
interest. For example the circular chromatic index of the flower snarks is studied in [3] and
the circular chromatic index of Goldberg snarks and twisted Goldberg snarks is studied
in [2]. West and Zhu [8] study the circular chromatic index of Cartesian products of
graphs, and toroidal grids in particular.

It is convenient when studying edge-colourings, to allow semiedges in graphs, i.e.
edges with only one end-vertex. Having this convention, we may “cut” a given graph into
smaller pieces, colour the pieces separately, and then attach the pieces together to obtain
a colouring of the given graph. We may also be able to prove that colourings of the pieces
are never compatible, thus proving uncolourability of the given graph. For ordinary edge
colourings of snarks, such uncolourability arguments usually use the parity lemma. Given
an edge 3–colouring of a cubic graph G with order n, let ni be the number of semiedges
coloured i. The parity lemma asserts that

n1 ≡ n2 ≡ n3 ≡ n mod 2.

2 Generalized Blanuša Snarks

Having order 18, Blanuša snarks are the smallest snarks after the Petersen graph P . They
are both obtained by a dot product from two copies of P . Given two cubic class 2 graphs
G1 and G2, the dot product G1 · G2 is constructed by adding four edges to the disjoint
union of G1 − {vw, v′w′} and G2 − {x, y}, as shown in Figure 1, where vw and v′w′ are
non-adjacent edges in G1 and x and y are adjacent vertices in G2. This operation was
first introduced by Isaacs [4].
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Figure 2: The Blanuša blocks

Note that the dot product G1 · G2 depends on the choice of the edges vw, v′w′ in G1

and the edge xy in G2. When G1 = G2 = P , since the Petersen graph is edge-transitive,
the choice of xy does not matter. On the other hand, two non-adjacent edges in P can be
at distance 2 or 3 in the line graph L(P ). The two non-isomorphic snarks obtained by a
dot product P · P are called the Blanuša snarks. More precisely, if vw, v ′w′ ∈ E(P ) have
a common neighbour in L(P ), the resulting graph P · P is called the first Blanuša snark,
and otherwise, the graph P · P is called the second Blanuša snark.

This construction was generalized by Watkins [7]. We refer to the graph obtained by
“cutting” two edges of P which are at distance i + 1, and keeping the semiedges, as the
Blanuša block Ai. The graph obtained by removing two adjacent vertices of P and keeping
the semiedges is called the Blanuša block B. These blocks are shown in Figure 2. The
labels of the semiedges indicate connections in constructions involving these blocks. The
semiedges with label a (resp. b) are always connected to a semiedge with label a′ (resp.
b′) and vice versa. By this assumption, the first (resp. second) Blanuša snarks is obtained
by attaching a copy of A1 (resp. A2) to a copy of B. It can be seen in Figure 2 that
A1 can indeed be decomposed into a copy of B and a single edge. Thus in constructions
involving A1, we may replace A1 by a B and a K2 to obtain further decomposition.

Watkins [7] defined two families of generalized Blanuša snarks using the blocks B,
A1, and A2. The family B1 consists of the graphs B1

n constructed as follows: take n − 1
copies of the block B and one copy of A1, arrange these blocks cyclically, and connect the
semiedges a and b of each block to the semiedges a′ and b′ of the next block respectively.
Note that B1

1 is the Petersen graph, and B1
2 is the first Blanuša snark. The family B2 is

defined similarly, using the block A2 in place of A1. Following [7], we refer to members of
B1 (resp. B2) as type 1 (resp. type 2) generalized Blanuša snarks.

The circular chromatic index of type 1 generalized Blanuša snarks was established by
Mazák [6].

Theorem 1. [6] For all n > 1, χ′
c (B1

n) = 3 + 2

3n
.

Although it was known that the set S = {χ′
c (G) : G is a bridgeless cubic graph} is

infinite, before Mazák’s result, only a finite number of values in S were known. In this
paper we prove the following result for type 2 generalized Blanuša snarks which realizes
infinitely many new values in S. Note that B2

1 is the Petersen graph whose circular
chromatic index is already known.
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Theorem 2. For all n > 1,

χ′
c

(

B2

n+1

)

= 3 +
1

b1 + 3n/2c
=

{

3 + 2

3n+1
if n is odd,

3 + 2

3n+2
if n is even.

3 The Upper Bounds

We first prove the upper bounds of Theorem 2. The structure of the optimum edge colour-
ings of the graphs B2

n helps in understanding the proof of the lower bounds, presented in
the next section.

Let G be a cubic graph which may contain semiedges. A consecutive colouring of
G is any mapping c : E(G) → Z such that for each v ∈ V (G), if e, e′, e′′ are the edges
incident with v, then the colours c(e), c(e′), c(e′′) are three consecutive integers. Obviously,
reducing the colours c(e) modulo 3, one gets a proper edge 3–colouring of G. One could
also reduce the colours c(e) modulo 3 + ε for any given 0 < ε < 1, to obtain an edge
(3+ ε)–colouring of G. The notion of consecutive colouring helps us present circular edge
colourings of graphs by integers rather than real numbers.

Lemma 3. Given n > 1, let ε = 1

b1+3n/2c
and r = 3 + ε. Then χ′

c

(

B2
n+1

)

6 r.

Proof. We split the proof into two cases depending on the parity of n. If n is even, then
ε = 2

3n+2
. Consider the consecutive colouring of the graph B given in Figure 3(a). Since

3 = −ε modulo r and 6 = −2ε modulo r, we may combine suitable linear transformations
of this colouring for two consecutive copies of the block B in B2

n+1, to get a colouring c
for which c(a) = c(b) = 0 in the first block, and c(a′) = c(b′) = 3ε in the second block.
This r–colouring of two consecutive B–blocks is explicitly given in Figure 4. Since B2

n+1

contains n copies of the block B, combining suitable transformations of these colourings,
we get an edge r–colouring c of these blocks, for which c(a) = c(b) = 0 for the first block,
and c(a′) = c(b′) = (n/2)3ε = 1− ε for the last block. On the other hand, since 4 = 1− ε
modulo r, the consecutive colouring of A2 given in Figure 3(b) can be used to extend c
to an edge r–circular colouring of B2

n+1.
If n is odd, then ε = 2

3n+1
. Similarly to the previous case, we find a partial edge

r–colouring c of B2
n+1 which colours all the edges in all copies of B, such that for the

block A2 we have c(a) = c(b) = 0, c(a′) = 1, and c(b′) = 1 − ε. This colouring can be
extended to B2

n+1 using the consecutive colouring of A2 given in Figure 3(c).

4 The Lower Bounds

We need the following two lemmas in our proof of the lower bounds of Theorem 2.
Lemma 4 can be found in [9] in more general settings. Lemma 5 is an easy observa-
tion proved in [2]. In the following α′(G) denotes the maximum size of a matching in a
graph G.

the electronic journal of combinatorics 15 (2008), #R44 4



2

1

2 4

5

4

21

3

3

0

0 6

3

2

1

2 3

2

3

21

0 1

1

0

0

0 4

4

2
2

1

2 0

2

3

21

0 1

1

0

0

0 1

4

2

(a) (b) (c)

Figure 3: Consecutive colourings of Blanuša blocks used in Lemma 3.
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Figure 4: The colouring of two consecutive B–blocks of B2
n used in the proof of Lemma 3.

All colours are negated for better readability.

Lemma 4. If χ′
c (G) = p

q
, where p and q are relatively prime positive integers, then

p 6 |E(G)| and q 6 α′(G) 6
1

2
|V (G)|.

Lemma 5. Let r = 3 + ε for some 0 < ε < 1, and let c be an edge r–colouring of a

cubic graph G. If e, e′ ∈ E(G) are at distance d in the line graph L(G), then c(e′) ∈
[c(e) + t, c(e) + t + dε]r for some integer d 6 t 6 2d.

To prove the lower bounds, we need to study edge (3 + ε)–colourings of the blocks B
and A2. The following is proved by Mazák [6].

Lemma 6. [6] Let 0 < ε < 1

4
, r = 3 + ε, and c be an edge r–colouring of B. Then

|c(a) − c(a′)|r 6 2ε and |c(a) − c(a′)|r + |c(b) − c(b′)|r 6 3ε.

If c is an edge 3–colouring of A2 such that c(a) = c(a′), then by the parity lemma,
c(b) = c(b′) which is a contradiction since this gives an edge 3–colouring of the Petersen
graph. Thus by the parity lemma, in every edge 3–colouring of A2, either c(a) = c(b) 6=
c(a′) = c(b′) or c(a) = c(b′) 6= c(a′) = c(b). In our next lemma, we prove an analogue of
this observation for edge (3 + ε)–colourings of A2.

Lemma 7. Let 0 < ε < 1

3
, r = 3 + ε, and c be an edge r–colouring of A2. Then

|c(a) − c(a′)|r + |c(b) − c(b′)|r > 2 − 2ε.

Proof. Let e0 be the unique edge of A2 which is at distance 3 from a, a′, b, b′. We may
assume that c(e0) = 0. Then by Lemma 5, for every e ∈ E(A2), c(e) ∈ [t, t + dε]r where
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d and t are integers satisfying 1 6 d 6 3 and d 6 t 6 2d. Since ε < 1

3
, each of these

intervals has length strictly less than 1, and thus it contains exactly one of the integers
0, 1, 2. Let σ(e) ∈ {0, 1, 2} be the integer corresponding to (the interval containing) c(e).
Since c is an edge r–colouring, the mapping σ is a proper edge 3–colouring of A2 and by
the parity lemma, either σ(a) = σ(b) 6= σ(a′) = σ(b′) or σ(a) = σ(b′) 6= σ(a′) = σ(b). By
symmetries of A2, we may assume that the former holds. Now up to symmetry we either
have

σ(a) = σ(b) = 0 and σ(a′) = σ(b′) = 1, or
σ(a) = σ(b) = 1 and σ(a′) = σ(b′) = 2.

(2)

If we reduce the colours in [−2ε, 0]r modulo r to be in the real interval [−2ε, 0], then
by (2) we have

|c(a) − c(a′)|r = c(a′) − c(a) and |c(b) − c(b′)|r = c(b′) − c(b).

On the other hand, since a′ and b′ are at distance 3 from b and a respectively, there exist
integers 3 6 s, t 6 6 such that c(a′)− c(b) ∈ [s, s+3ε]r and c(b′)− c(a) ∈ [t, t+3ε]r. Since
σ(a′)− σ(b) = σ(b′)− σ(a) = 1, we have s = r = 4. Therefore c(a′)− c(b) and c(b′)− c(a)
are both in the real interval [1 − ε, 1 + 2ε] and we have

|c(a) − c(a′)|r + |c(b) − c(b′)|r = c(a′) − c(a) + c(b′) − c(b)

= c(a′) − c(b) + c(b′) − c(a) > 2(1 − ε).

The above two lemmas give a lower bound on the circular chromatic index of type 2
generalized Blanuša snarks.

Corollary 8. For all n > 2, χ′
c

(

B2
n+1

)

> 3 + 2

3n+2
.

Proof. The graph B2
n+1 has n copies of B joined sequentially. Given an edge (3 + ε)–

colouring of this graph, the difference between the colours of the semiedges a′ and b′ of
the first copy of B, and the semiedges a and b of the last copy of B is at most n(3ε) by
Lemma 6. On the other hand since these semiedges are joined to the semiedges of the
copy of A2, by Lemma 7 we have

3nε > |c(a) − c(a′)|r + |c(b) − c(b′)|r > 2 − 2ε.

Solving for ε we get ε >
2

3n+2
.

For even n > 2, Theorem 2 follows by Lemma 3 and Corollary 8. For odd n, the key is
to prove that the inequality in the lower bound of Corollary 8 is strict. Before we present
a proof of this fact, we need the following equivalent definition of circular edge colouring.
Let p, q be positive integers with p/q > 2. An edge (p, q)–colouring of a graph G is any
mapping c : E(G) → {0, 1, . . . , p− 1}, such that for any two adjacent edges e and e′ we
have

q 6 |c(e) − c(e′)| 6 p− q.

Note that e→ c(e)/q defines an edge p/q–colouring of G. It is well-known that for every
such p, q, a graph G has an edge p/q–colouring if and only if it has an edge (p, q)–colouring.
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Lemma 9. For all odd n > 3, χ′
c

(

B2
n+1

)

> 3 + 2

3n+2
.

Proof. Let G = B2
n+1. Suppose χ′

c (G) = 3 + 2

3n+2
and let ψ be an edge (9n+ 8, 3n+ 2)–

colouring of G. Let ε = 2

3n+2
, r = 3 + ε, and c be the edge r–colouring of G defined by

c(e) = ψ(e)/(3n+ 2). Note that for all e ∈ E(G), c(e) is an integer multiple of ε/2. Also
note that since n > 3, ε 6

2

11
. To clarify the notation, we denote ε/2 by µ throughout

this proof. Let ai and bi be the edges of G corresponding to the semiedges a and b of the
ith copy of B in G. Then ai+1 and bi+1 correspond to the semiedges a′ and b′ of the ith
copy of B in G, and an+1, bn+1, a1, b1 correspond respectively to the semiedges a, b, a′, b′

of the copy of A2 in G.
Note that since χ′

c (G) equals the lower bound of Corollary 8, all the inequalities in
the proof of that lower bound are tight. Namely, |c(ai+1)− c(ai)|r + |c(bi+1)− c(bi)|r = 3ε
for all 1 6 i 6 n, and |c(an+1) − c(a1)|r + |c(bn+1) − c(b1)|r = 2 − 2ε = n(3ε). Therefore
by Lemma 6, we may assume that for all 1 6 i 6 n,

ai+1 ∈ [ai + ε, ai + 2ε]r and bi+1 ∈ [bi + ε, bi + 2ε]r. (3)

Since ai and bi are at distance 3, by Lemma 5 we have |c(ai) − c(bi)|r ∈ [ti, ti + 3ε]r for
some integer 3 6 ti 6 6. Each of these intervals contains exactly one of the integers
0, 1, 2 and intervals corresponding to different numbers are disjoint. Let σi be the unique
member of [ti, ti + 3ε]r ∩ {0, 1, 2}. Since |x|r 6 r/2 for all x, σi 6= 2. Now by (3),
ai+1 − bi+1 ∈ [ai − bi − ε, ai − bi + ε]r. Thus σi+1 = σi. Let σ be the common value of
all σi. It is easy to see that σ = 1 is not compatible with either of the constraints (2).
Therefore σ = 0.

Consider the ith B–block of G. Since |c(ai+1) − c(ai)|r + |c(bi+1) − c(bi)|r = 3ε = 6µ,
we may assume that |c(ai+1) − c(ai)|r > 3µ. We also assume that c(a) = 0. Thus
c(ai+1) ∈ {3µ, 4µ} since it is an integer multiple of µ.

Case 1. Let c(ai+1) = 3µ. Since bi and bi+1 are both at distance 3 from ai and ai+1,
and since σ = 0,

c(bi), c(bi+1) ∈ [c(ai) − 2ε, c(ai) + 2ε]r ∩ [c(ai+1) − 2ε, c(ai+1) + 2ε]r

= [−4µ, 4µ]r ∩ [−µ, 9µ]r

= [−µ, 4µ]r.

On the other hand, since one of the edges adjacent with ai has a colour in [2, 2 + ε]r, at
least one of the colours c(bi), c(bi+1), is in [6, 6 + 3ε]r = [−4µ, 2µ]. Thus the only possible
way to get |c(bi+1) − c(bi)|r = 3µ is that c(bi) = −µ and c(bi+1) = 2µ.

Case 2. If c(ai+1) = 4µ, a similar argument shows that either c(bi) = 0 and c(bi+1) =
2µ, or c(bi) = 2µ and c(bi+1) = 4µ.

Note that in Case 1, |c(ai) − c(bi)|r = |c(ai+1) − c(bi+1)|r = µ while in Case 2, one
of |c(ai) − c(bi)|r and |c(ai+1) − c(bi+1)|r is 0 while the other is ε. Therefore, these two
colourings are not compatible with each other for consecutive copies of B, and the same
case holds for all copies of B. Up to symmetries, in the first case we have c(a1) = 0,
c(b1) = µ, c(an+1) = 1 − 2µ, and c(bn+1) = 1 − µ, while in the second case we have
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c(a1) = 0, c(b1) = 0, c(an+1) = 1 − 3µ, and c(bn+1) = 1 − µ. In either case we have
c(an+1) = c(b1) + 1 − 3µ. On the other hand since an+1 is at distance 3 from b1, by
Lemma 5 we must have

1 −
3ε

2
= c(an+1) − c(b1) ∈ [t, t + 3ε]r,

for some 3 6 t 6 6. This contradicts the choice of ε.

The following lemma is the last ingredient we need in our proof of Theorem 2.

Lemma 10. Given an integer n > 5, there exist no positive integers p 6 12n + 15 and

q 6 4n+ 5 such that

3 +
2

3n+ 2
<
p

q
< 3 +

2

3n+ 1
. (4)

Proof. Suppose there exist p and q with the desired properties. Then

p− 3q <
2q

3n + 1
6

8n+ 10

3n + 1
6

25

8
,

where the last inequality holds since n > 5. Therefore, p − 3q ∈ {1, 2, 3}. On the other
hand, by (4) we have

(p− 3q)
3n+ 1

2
< q < (p− 3q)

3n+ 2

2
.

This gives (3n + 1)/2 < q < (3n + 2)/2 if p − 3q = 1, and 3n + 1 < q < 3n + 2 if
p − 3q = 2. These both contradict the fact that q is an integer. If p − 3q = 3, we
similarly get q > (9n+ 4)/2 which implies 27n+ 18 6 24n+ 30 since p 6 12n+ 15. This
contradicts n > 5.

Note that B2
n+1 has order 8n+10 and size 12n+15. Thus by Lemma 4, if χ′

c

(

B2
n+1

)

=
p/q where p and q are relatively prime positive integers, then p 6 12n+15 and q 6 4n+5.
Therefore for odd n > 5, Theorem 2 follows by Lemmas 3, 9, and 10.

5 Two Remaining Graphs

For n = 1, 3, we had to use computers to settle the circular chromatic index of B2
n+1. The

main theoretical tool in such computer experiments is the concept of a tight cycle. Given
an edge r–colouring c of a graph G, we construct a digraph H with V (H) = E(G) in
which there is an edge from e to e′ if c(e′) = c(e) + 1 modulo r. Any directed cycle in H
is called a tight cycle of c (or of G with respect to c). It is known (cf. [9] for example),
that χ′

c (G) = r if and only if every edge r–colouring of G has a tight cycle.
For the second Blanuša snark B2

2 , we investigated all its edge (7, 2)–colourings using
a computer program and verified that they all have tight cycles. Thus χ′

c (B2
2) = 7/2.
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For B2
4 , Lemma 4 and the bounds proved in this paper give

χ′
c

(

B2

4

)

∈

{

51

16
,
16

5

}

.

Using a computer program we verified that no Hamilton cycle of the line graph L(B2
4) can

serve as a tight cycle in an edge (51, 16)–colouring of B2
4 , thus proving χ′

c (B2
4) = 16/5.

The computer programs used to obtain the results of this section are available at the
author’s personal web page http://www.cecm.sfu.ca/~mghebleh/prog.
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