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México DF, Mexico

P. Hliněný†
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Abstract

We show that for each integer g ≥ 0 there is a constant cg > 0 such that every
graph that embeds in the projective plane with sufficiently large face–width r has
crossing number at least cgr

2 in the orientable surface Σg of genus g. As a corollary,
we give a polynomial time constant factor approximation algorithm for the crossing
number of projective graphs with bounded degree.

1 Introduction

We recall that the face–width of a graph G embedded in a surface Σ is the minimum
number of intersections of G with a noncontractible curve in Σ.

Fiedler et al. [7] proved that the orientable genus of a projective graph grows linearly
with the face–width. Our aim is to show that for each integer g ≥ 0, the crossing number
crg of projective graphs in the closed orientable surface Σg of genus g grows quadratically
with the face–width.
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Theorem 1.1 For every integer g ≥ 0 there are constants cg, rg > 0, such that if G
embeds in the projective plane with face–width at least r ≥ rg, then the crossing number
crg(G) of G in Σg is at least cgr

2.

We remark that cr0, the crossing number in the sphere, coincides with the “usual”
crossing number in the plane.

Our strategy for proving Theorem 1.1 is to show the existence of sufficiently large
grid–like structures, so called diamond grids (Theorem 2.1), in projective graphs, and
then prove that diamond grids have large crossing number (Section 3, which concludes
with a proof of Theorem 1.1). We remark that our constants are not unreasonable (see
Theorem 3.4).

Böröczky, Pach and Tóth showed [2] that for every surface χ there is a constant cχ

such that if a graph with n vertices and maximum degree ∆ embeds in χ, then its planar
crossing number is at most cχ∆ n. Djidjev and Vrt’o [5] then significantly improved the
constant there for orientable surfaces. The result was also generalized by Wood and Telle
to all graph classes with an excluded minor [12, 13] (see also [1]).

Along a similar vein, we also give a straightforward upper bound for the crossing
number (in the plane, and thus in any orientable surface) of a projective graph G in
terms of its face–width r and its maximum degree ∆, regardless of the number of vertices:
cr(G) ≤ r2∆2/8 in Proposition 4.1.

No efficient algorithm is known for approximating the crossing number of arbitrary (not
even bounded–degree) graphs within a constant factor. The best result reported in this
direction is by Even, Guha, and Schieber [6], who give an O(log3 |V (G)|) approximation
algorithm for cr(G) + |V (G)| (not for cr(G), thus weak in the case of graphs with few
crossings) on bounded-degree graphs. As a consequence of the claimed lower and upper
bounds we obtain a polynomial time approximation algorithm for the crossing number of
projective graphs of bounded degree:

Theorem 1.2 For every fixed ∆ and orientable surface Σg, there is a polynomial time
approximation algorithm that computes the crossing number crg of a projective graph with
maximum degree ∆ within a constant factor.

This last statement is proved in Section 4.

2 Finding a large diamond projective grid

Randby [11] gave, for each integer r > 0, a full characterization of those projective graphs
that are minor–minimal with respect to having face–width r. He showed that all such
graphs can be obtained from the “r×r projective grid” by Y∆– and ∆Y –exchanges. Now
although it is not too difficult to show that the r × r projective grid has crossing number
quadratic in r for r ≥ 3, it is not that straightforward to show that performing Y∆ and
∆Y operations does not decrease the crossing number significantly.
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Thus our approach is to find, in projective graphs of given face–width, a related grid–
like structure that better suits our purposes. We remark that some other research papers
besides Randby [11], e.g. [3], implicitly consider existence of large grid–like subgraphs in
densely embedded graphs, but none of which we have found contains an explicit result
suited right to our needs. For that reason we think our new Theorem 2.1, with its short
and self-contained proof, can be of independent research interest.
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Figure 1: Projective diamond grids of sizes 10 (left) and 11 (right).

The diamond grid Dr of size r is a plane graph whose vertices are all integer pairs
(i, j) where |i| + |j| ≤ r, such that j is always odd, the parity of i is the opposite of the
parity of r, and an edge of Dr joins (i, j) to (i′, j ′) iff |i − i′| + |j − j ′| = 2.

The projective diamond grid Pr of size r is obtained from Dr by identifying the opposite
pairs of its “boundary” vertices, that is, (i, j) with (−i,−j) whenever |i| + |j| = r. On
the left (respectively right) hand side of Fig. 1 we illustrate the projective diamond grid
of size 10 (respectively, 11).

Theorem 2.1 Every graph that embeds in the projective plane with face-width r has a
minor isomorphic to Pr.

Proof. Let % denote a closed noncontractible curve intersecting a projective embedding
of G in exactly r vertices v1, v2, . . . , vr in this cyclic order. Cutting the projective plane
along %, we get a (planar) disk with boundary % holding two copies ui, u

′
i of each vertex

vi, in cyclic order u1, . . . , ur, u
′
1, . . . , u

′
r. Let G′ denote the plane graph derived in this way

from G. We claim that G′ contains a collection of r pairwise disjoint paths P1, . . . , Pr,
and a collection of 2br/2c pairwise disjoint paths Q1, . . . , Q2br/2c, such that:

• each Pi connects ui to u′
r+1−i,

• each Qi connects ubr/2c+1−i to udr/2e+i if i ≤ br/2c, and Qi connects u′
r+br/2c+1−i to

u′
i−br/2c if br/2c < i ≤ 2br/2c.

To prove this, first we note that in G′ there cannot be a vertex cut of size less than r
separating A = {u1, . . . , ur} from (disjoint) B = {u′

1, . . . , u
′
r}, since that would contradict

that the face–width of G is r. Thus, by Menger’s theorem, there exist r pairwise disjoint
paths P1, . . . , Pr in G′ from A to B. Moreover, planarity of G′ forces these paths to connect
u1 to u′

r, u2 to u′
r−1, and so on. For even r, we get r paths Q1, . . . , Qr by the same argument
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between C = {u1, . . . , ur/2, u
′
r/2+1

, . . . , u′
r} and D = {u′

1, . . . , u
′
r/2

, ur/2+1, . . . , ur}. For odd
r, we are seeking only r − 1 paths Q1, . . . , Qr−1 from C \ {u′

dr/2e} to D \ {udr/2e}. They
are found by an analogous argument in the subgraph G′ − {udr/2e, u

′
dr/2e}, noticing that

the face-width of G − {udr/2e} is r − 1.

We now claim that P1, . . . , Pr, and Q1, . . . , Q2br/2c can be chosen such that, for all i, j,
the intersection Pi ∩ Qj is connected (possibly empty).

Among all choices of the two collections of paths we select one for which |E(P +) \
E(Q+)| is minimized, where P + = P1 ∪ . . . ∪ Pr and Q+ = Q1 ∪ . . . ∪ Q2br/2c. Let Ri−1,i

denote the open region between Pi−1 and Pi. Seeking a contradiction, we take a pair of
indices i, j such that i is minimum one for which one of the following is true; (a) for some
x, y in the intersection of Qj with Pi the subpath of Qj between x, y passes through Ri−1,i,
(b) for some x, y ∈ V (Qj)∩ V (Pi) the subpath of Qj between x, y enters Ri,i+1, or (c) Qj

enters Ri,i+1 both before and after intersecting Pi.
If (a) happens, then Qj cannot intersect Pi−1 by minimality of i, and so Pi can be

re-routed along a section of Qj in Ri−1,i decreasing |E(P +) \ E(Q+)|, a contradiction. If
(b) happens, then no Qj′ may intersect the subpath of Pi between x, y unless (a) is true
for i, j ′, or i is not minimal. So Qj can be re-routed along the section of Pi between x and
y decreasing |E(P +) \ E(Q+)| again. Finally, if (c) happens, then clearly j ≤ br/2c − i
(or j > br/2c + i, symmetrically). Setting j ′ = br/2c + 1 − i (or j ′ = br/2c + i in the
symmetric case), we see that Qj′ sharing one end with Pi has to pass through Ri−1,i by
planarity, and so we are back in (a) with i, j ′.

Hence, particularly by (a),(b), Pi ∩Qj is connected for all pairs i, j. By contracting to
a vertex the intersection between Pi and Qj for each i and j where nonempty, we obtain
a minor in G′ which is a subdivision of a diamond grid of size r, which corresponds back
in G to a projective diamond grid minor of size r. 2

3 Crossing number of projective diamond grids

A set C of cycles in a graph is an I-collection if each two cycles in C have connected,
nonempty intersection, and no vertex is in more than two cycles of C. The following
statement is an easy exercise (see Fig. 2).

Proposition 3.1 The projective diamond grid Pr of size r contains an I-collection of
r − 1 cycles.

The first key observation is that each fixed orientable surface cannot host an arbitrarily
large embedded I–collection.

Proposition 3.2 For each nonnegative integer g there is a positive constant Mg such
that if an I–collection C is embedded in Σg then |C| ≤ Mg.

Proof. Let C be an I–collection embedded in Σg. First we note that the intersection
between any two cycles in C may be contracted to a single vertex, if necessary, and the
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Figure 2: Finding an I-collection of 9 cycles in P10.

result is still an I–collection of the same size. Thus we may assume that the intersection
between any two cycles in C is a single vertex.

Let C0 denote the subcollection of all contractible cycles of C. It is straightforward to
induce from C0 an embedding of the complete graph on |C0| vertices, and so |C0| is at most
the size of the largest complete graph that embeds in Σg, that is, |C0| ≤ 1

2
(7 +

√
1 + 48g).

It is an easy observation that no four pairwise homotopic noncontractible curves (in
any orientable surface) can pairwise intersect in exactly one point, unless some point
belongs to more than two curves. Since C is an I–collection, it follows that no four curves
in C \ C0 are pairwise homotopic. Thus, after eliminating at most two thirds of the cycles
in C \ C0, we are left with a collection C ′ of pairwise nonhomotopic, simple closed curves
that pairwise intersect in exactly one point. By [8], there is a constant Ng which depends
only on g such that any such C ′ has size at most Ng. Thus |C \ C0| ≤ 3Ng, and so
|C| ≤ 3Ng + 1

2
(7 +

√
1 + 48g). 2

Secondly, we show that the crossing number of sufficiently large I-collections grows
quadratically with their size, which finishes the main proof.

Theorem 3.3 Let G be a graph that contains an I–collection of size k > Mg, where
Mg is the constant in Proposition 3.2. Then the crossing number of G in Σg is at least
k(k − 1)/(Mg(Mg + 1)).

Proof. Let C = {C1, C2, . . . , Ck} be an I–collection in G, and let D be a drawing of G
in Σg. Let Mg be as in Proposition 3.2. Then in any collection C ′ ⊆ C of Mg +1 Ci’s there
are edges e, f in different Ci’s that cross in D. One such a crossing pair e, f gets counted
exactly

(

k−2

Mg−1

)

-times since we have a free choice of selecting the remaining Mg − 1 cycles

from C to form C ′ ⊇ {e, f} of size Mg + 1. Hence the counting argument yields that the

total number of crossings in D is at least
(

k
Mg+1

)

/
(

k−2

Mg−1

)

= k(k − 1)/(Mg(Mg + 1)). 2

Proof of Theorem 1.1. By Theorem 2.1, G contains a (projective diamond grid) Pr-
minor. It is moreover obvious that if a minor of G contains an I-collection, then an
I-collection of the same size is contained also in G itself. Hence it now follows from
Proposition 3.1 that G contains an I-collection of r−1 cycles, and from Theorem 3.3 that
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crg(G) ≥ (r − 1)(r − 2)/(Mg(Mg + 1)). Thus Theorem 1.1 follows if we set rg = Mg + 2,
and cg = 1/(Mg + 2)2 since Mg + 2 ≤ r. 2

It is easy to see that M0 = 4 (planar case) satisfies Proposition 3.1. This gives the
following special (planar) version of Theorem 1.1.

Theorem 3.4 If G embeds in the projective plane with face–width at least r ≥ 6, then
the crossing number crg(G) of G in the plane is at least 1

36
r2.

4 Estimating the crossing number of

bounded degree projective graphs

The basic idea behind our approximation algorithm is that the crossing number of bounded
degree projective graphs is bounded by above and by below by quantities that are within
a constant factor of each other. The required lower bound is given in Theorem 1.1.

To obtain the upper bound we perform surgery on the projective plane: cut along an
essential curve that intersects the embedded graph as little as possible, then rejoin the
pieces and bound the number of crossings thus obtained. This technique is presented in
its full generality (applies to all surfaces) by Böröczky, J. Pach, and G. Tóth in [2], in
which an even sharper bound of O(

∑

v deg2(v)) is presented. Using these techniques, we
now give a bound that explicitly involves the face–width of the embedding.

Proposition 4.1 Suppose that G is a graph with maximum degree ∆ that embeds in the
projective plane with face–width r. Then the crossing number of G in the plane (and thus
in any orientable surface) is at most r2∆2/8.

Proof. Consider `, the dual edge-width of G—i.e. the length ` of the shortest noncon-
tractible cycle C∗ in the topological dual of embedded G in the projective plane. Hence
C∗ intersects a set F of exactly ` edges of G, and if we now perform surgery on the
projective plane by cutting along C∗, we get an ordinary plane embedding of G − F in
which the ends of edges from F all lie on the outer face. Hence we can easily re-insert the
edges of F back by using at most

(

`
2

)

< `2/2 crossings.

It remains to argue that ` ≤ r∆/2. Indeed, consider a simple noncontractible curve
γ that intersects G in exactly r vertices u1, u2, . . . , ur. Now we may slightly perturb γ to
a curve γ′ that crosses at most deg(ui)/2 edges incident with each ui, and γ′ is disjoint
from V (G). The faces of G traversed by γ ′ then define in this order the vertex set of a
noncontractible dual cycle C∗, and so ` ≤ |V (C∗)| ≤ r∆/2. 2

Proof of Theorem 1.2. The idea of the previous statement readily translates into an
approximation algorithm, namely:

• We test whether the input graph G embeds in Σg using the O(n)-time algorithm by
Mohar [10] (if the input G is not given along with a projective embedding, we can
easily construct one, also using [10]).
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• We construct the topological dual G∗ of G in the projective plane.

• Then we compute a shortest noncontractible cycle C∗ in G∗. For that one can use an
O(n

√
n)-time algorithm by Cabello and Mohar [4]. As pointed to us by S. Cabello

[private communication], the same goal can be achieved in O(n log n) time using a
suitable preprocessing and then algorithm of Klein [9] (for planar distances).

• Let F be the set of edges of G intersected by the (dual) edges of C∗. Then G − F
is actually a plane embedding, and we easily add the edges of F back to G − F ,
making a plane drawing D with at most

(

|F |
2

)

pairwise crossings.

This whole algorithm can run in time O(n log n).
Assume now that G does not embed in Σg, while G embeds in the projective plane

with face–width r. Let rg be as in Theorem 1.1. If r < rg, then 1 ≤ crg(G) ≤ cr(D) ≤
(

|F |
2

)

< r2
g∆

2/8 as in Proposition 4.1, and hence the number of crossings in D is within a

constant factor r2
g∆

2/8 of crg(G).
If, on the other hand, r ≥ rg, then by Theorem 1.1 and Proposition 4.1 we get

cgr
2 ≤ crg(G) ≤ cr(D) ≤ r2∆2/8, and so in this case the number of crossings in D is

within a constant factor ∆2/(8cg) of crg(G). 2

Remark 4.2 In the planar case of Theorem 1.2, the described approximation algorithm
yields a drawing of G within a factor 4.5∆2 of cr0(G).
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