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Abstract

Suppose k+1 runners having nonzero constant pairwise distinct speeds run laps
on a unit-length circular track starting at the same time and place. A runner is
said to be lonely if she is at distance at least 1/(k + 1) along the track to every
other runner. The lonely runner conjecture states that every runner gets lonely.
The conjecture has been proved up to six runners (k ≤ 5). A formulation of the
problem is related to the regular chromatic number of distance graphs. We use a
new tool developed in this context to solve the first open case of the conjecture with
seven runners.

1 Introduction

Consider k + 1 runners on a unit length circular track. All the runners start at the same
time and place and each runner has a constant speed. The speeds of the runners are
pairwise distinct. A runner is said to be lonely at some time if she is at distance at
least 1/(k + 1) along the track from every other runner. The Lonely Runner Conjecture
states that each runner gets lonely. The Lonely Runner Conjecture has been introduced
by Wills [12] and independently by Cusick [7], and it has been given this pitturesque
name by Goddyn [4]. For k = 3, there are four proofs in the context of diophantine
approximations: Betke and Wills [3] and Cusick [7, 8, 9]. The case k = 4 was first proved
by Cusick and Pomerance [10], with a proof requiring computer checking. Later, Bienia
et al. [4] gave a simpler proof for the case k = 4. The case k = 5 was proved by Bohman,
Holzman and Kleitman [5]. A simpler proof for this case was given later by Renault [11].

This problem appears in different contexts. Cusick [7] was motivated by an application
in view obstruction problems in n–dimensional geometry, and Wills [12] considered the

∗Research supported by the Spanish Ministry of Eduaction under grant MTM2005-08990-C02-01 and
by the Catalan Research Council under grant 2005SGR00256

the electronic journal of combinatorics 15 (2008), #R48 1



problem from the diophantine approximation point of view. Biennia et al. [4] observed
that the solution of the lonely runner problem implies a theorem on nowhere zero flows in
regular matroids. Zhu [13] used known results for the lonely runner problem to compute
the chromatic number of distance graphs. In [2] a similar approach was used to study the
chromatic number of circulant graphs.

A convenient and usual reformulation of the lonely runner conjecture can be obtained
by assuming that all speeds are integers, not all divisible by the same prime, (see e.g. [5])
and that the runner to be lonely has zero speed. Let ‖x‖ denote the distance of the real
number x to its nearest integer. In this formulation the Lonely Runner Conjecture states
that, for any set D of k positive integers, there is a real number t such that ‖td‖ ≥ 1/(k+1)
for each d ∈ D. We shall consider a discrete version of the lonely runner problem.

Let N be a positive integer. For an integer x ∈ Z we denote by |x|N the residue class
of x or −x in the interval [0, N/2]. For a set D ⊂ N of positive integers we define the
regular chromatic number χr(N, D) as

χr(N, D) = min{k : ∃λ ∈ ZN such that |λd|N ≥
N

k
for each d ∈ D},

if D contains no multiples of N and χr(N, D) = ∞ otherwise. We define the regular
chromatic number of D as

χr(D) = lim inf
N→∞

χr(N, D).

The reason for calling chromatic numbers the parameters defined above stems from
applications of the lonely runner problem to the study of the chromatic numbers of dis-
tance graphs and circulant graphs; see e.g [1, 2, 13]. In this terminology, the lonely runner
conjecture can be equivalently formulated as follows.

Conjecture 1 For every set D ⊂ Z of positive integers with gcd(D) = 1,

χr(D) ≤ |D| + 1.

In [1] the so–called Prime Filtering Lemma was introduced as a tool to obtain a
characterization of sets D with |D| = 4 for which equality holds in Conjecture 1. The
Prime Filtering Lemma provides a short proof of the conjecture for |D| = 4 (five runners)
which we include in Section 3 just to illustrate the technique. In Section 2 we formulate
a generalization of the lemma and we then use it in the rest of the paper to solve the first
open case of the conjecture when |D| = 6. As it will become clear in the coming sections,
the Prime Filtering Lemma essentially reduces the proof to a finite problem in Z7 which
can be seen as a generalization of the Lonely Runner Problem in which the runners may
have different starting points. Unfortunately the conjecture does not always hold in this
new context and we have to proceed with a more detailed case analysis.

2 Notation and Preliminary results

For a positive integer x and a prime p, the p–adic valuation of x is

νp(x) = max{k : x ≡ 0 (mod pk)}.
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We also denote by rp(x) = (xp−νp(x))p the congruence class modulo p of the least coefficient
in the p-ary expansion of x.

We shall consider the discrete version of the lonely runner problem mostly in the
integers modulo N with N a prime power. We denote by (x)N the residue class of x
modulo N in {0, 1, . . . , N −1} and we denote by |x|N the residue class of x or −x modulo
N in {0, 1, . . . , bN/2c}.

Let D be a set of positive integers, let m = max νp(D) and set N = pm+1. Note that,
for each x ∈ D, νp(x) = νp((x)N ) = νp(|x|N). By abuse of notation we still denote by D
the set {(d)N : d ∈ D} as a subset of ZN whenever the ambient group is clear from the
context. The p–levels of D are

Dp(i) = {d ∈ D : νp(d) = i}.

Let q = qp,m : Z → Zp be defined as

q(x) =

(

⌊ x

pm

⌋

)

p

,

that is, q(x) = k is equivalent to (x)N ∈ [k(N
p
), (k+1)N

p
). We call the interval [k(N

p
), (k+

1)N
p
) the k-th (N/p)–arc. Our goal is to find a multiplier λ for D′ = D \Dp(m) such that

q(λ · D′) ∩ {0, p − 1} = ∅, (1)

where λ · X = {λx; x ∈ X}. Indeed, if (1) holds, then |λd|N ≥ N/p for each d ∈ D and
χr(D) ≤ χr(N, D) ≤ p, giving Conjecture 1 whenever |D| ≥ p − 1.

We shall mostly use multipliers of the form 1 + pm−jk. Let

Λj,p = {1 + pm−jk, 0 ≤ k ≤ p − 1}, j = 0, 1, . . . , m − 1,

and
Λm,p = {1, 2, . . . , p − 1}.

Note that all elements in UZN , the multiplicative group of invertible elements in ZN ,
can be obtained as a product of elements in Λ0,p ∪ Λ1,p ∪ · · ·Λm,p. In what follows, by a
multiplier we shall always mean an invertible element in ZN where N is a prime power
for some specified prime p.

For each j and each λ ∈ Λj,p, we have

νp(λ · x) = νp(x) (2)

and, if λ = 1 + kpm−j, then

q(λ · x) =

{

q(x), if νp(x) > j,
q(x) + krp(x), if νp(x) = j.

(3)

In view of (3), when using a multiplier λ ∈ Λj,p, the values of q on the elements in the
p–levels Dp(i) of D with i > j remain unchanged. The following result is based in this
simple principle. It gives a sufficient condition for the existence of a multiplier λ such
that multiplication by λ sends every element d ∈ D outside a ‘forbidden’ set for d.
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Lemma 2 (Prime Filtering) Let p be a prime and let D be a set of positive integers.
Set m = max{νp(d) : d ∈ D} and N = pm+1. For each d ∈ D let Fd ⊂ Zp. Suppose that

∑

d∈Dp(j)

|Fd| ≤ p − 1 for each j = 0, 1, . . . , m − 1, and

∑

d∈Dp(m)

|Fd| ≤ p − 2,

Then there is a multiplier λ such that, for each d ∈ D,

q(λd) 6∈ Fd.

Proof. For each d ∈ D(m) we have q(Λm,p · d) = Λm,p. Hence there are at most |Fd|
elements λ in Λm,p such that q(λd) ∈ Fd. Since

∑

d∈Dp(m) |Fd| ≤ p − 2, there is λ ∈ Λm,p

such that q(λd) 6∈ Fd for each d ∈ Dp(m).
Denote by E(i) = ∪j≥iD(j). Let r be the smallest nonnegative integer i for which

there is some λi ∈
∏m

j=i Λj,p verifying q(λid) 6∈ Fd for every d ∈ E(i). We have seen that
r ≤ m.

Suppose that r > 0 and let λ ∈ Λr−1,p. It follows from (2) and (3) that, for each
d ∈ E(r), we have (λλrd)N = (λrd)N . Note also that, for each d ∈ D(r − 1), we
have q(λrd · Λr−1,p) = Zp. Hence there are at most |Fd| elements λ in Λr−1,p for which
q(λλrd) ∈ Fd. Since

∑

d∈Dp(r−1) |Fd| < p there is at least one λ ∈ Λr−1,p for which

λλrd 6∈ Fd for each d ∈ E(r − 1) contradicting the minimality of r. Thus r = 0 and we
are done. 2

We shall often use the following form of Lemma 2, in which all forbidden sets are the
0-th and (p − 1)–th (N/p)–arcs.

Corollary 3 With the notation of Lemma 2, suppose that |d|N ≥ N/p for each d ∈ Dp(i)
and each i ≥ i0 for some positive integer i0 ≤ m. If

|Dp(j)| ≤
(p − 1)

2
, j = 0, 1, . . . , i0 − 1,

then
χr(N, D) ≤ p.

Proof. Let Fd = {0, p − 1} for each d ∈ D \ Dp(m). We can apply Lemma 2 to each
element of D′ = D \ (∪i≥i0Dp(i)) since

∑

d∈Dp(j) |Fd| = 2|Dp(j)| ≤ (p− 1) for each j < i0.

Thus there is λ ∈
∏

j<i0
Λj,p such that q(λd) 6∈ {0, p − 1} for each d ∈ D′. With such λ

we also have |λd|N = |d|N ≥ N/p for each d ∈ D \D′. Hence the inequality |λd|N ≥ N/p
holds for each d ∈ D, which is equivalent to χr(N, D) ≤ p. 2
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3 The case with three and five runners

Let us show that the cases with three (|D| = 2) and five (|D| = 4) runners can be easily
handled. In other words, we prove in a simple way that χr(D) ≤ |D| + 1 for those sets
with |D| = 2 or |D| = 4.

For |D| = 2, either the two elements in D are relatively prime with 3 or they have
different 3-adic valuations. In both cases Corollary 3 with p = 3 applies and we get
χr(D) ≤ 3.

Suppose now that |D| = 4. Let m = max ν5(D) and N = 5m+1. Since we assume that
gcd(D) = 1, we always have D5(0) 6= ∅. By definition we have D5(m) 6= ∅ as well. If
|D5(i)| ≤ 2 for each i < m then we are done by Corollary 3. Therefore we only have to
consider the case |D5(0)| = 3 and |D5(m)| = 1.

Put A = D5(0) = {d1, d2, d3} and D5(m) = {d4}. We shall show that, up to multipli-
cation of elements in Λ0,5 ∪ Λm,5, we have q(A) ∩ {0, 4} = ∅. Since these multiplications
preserve the inequality |d4|N ≥ N/5 we will conclude that χr(D) ≤ 5.

Let d ∈ A. For each λk = 1 + k5m ∈ Λ0,5 we have

q(λkd) = q(d) + kr5(d), (4)

and for each j ∈ {1, 2, 3} ⊂ Λm,5,

q((j + 1)d) ⊂ q(jd) + q(d) + {0, 1} ⊂ (j + 1)q(d) + {0, 1, . . . , j}. (5)

Since we can replace each d ∈ A by −d we may assume that all elements in A belong to
two nonzero congruence classes modulo 5, say (A)5 ⊂ {1, 2}. Let As = {d ∈ A : (d)5 = s},
s ∈ {1, 2}, denote the most popular congruence class.

Let us denote by `(A) the cardinality of the smallest arithmetic progression of differ-
ence one in Z5 which contains q(A). Let us show that

`(jλk · As) ≤ |As| (6)

for some j ∈ Λm,5 and some λk ∈ Λ0,5.
Suppose that |As| = 3 and assume that (6) does not hold for j = 1. By (4) we may

assume, up to multiplication by some λk, that q(d1) = 0, q(d2) = 2 and q(d3) = 3.
By (5) we have q(2d1) ∈ {0, 1}, q(2d2) ∈ {0, 4} and q(2d3) ∈ {1, 2}. If (6) does not hold

for j = 2 either, then q(2d2) = 4 and q(2d3) = 2. Again by (5) we have q(3d1) ⊂ {0, 1, 2},
q(3d2) ⊂ {1, 2} and q(3d3) ⊂ {0, 1} and (6) holds for j = 3.

Hence (6) holds and, up to multiplication by some λk, we have q(A) ∩ {0, 4} = ∅ as
desired.

Suppose now that As = {d1, d2} and r5(d3) = ±2s and assume that (6) does not hold
for j = 1. Without loss of generality we may assume that q(d1) = 0 and q(d2) = 2. By (5)
we have q(2d1) ∈ {0, 1}, q(2d2) ∈ {0, 4}. If (6) does not hold for j = 2 then q(2d1) = 1
and q(2d2) = 4. Now, again by (5), q(3d1) ∈ {1, 2} and q(3d2) ∈ {1, 2} so that (6) holds
for j = 3.

Hence we have q(λk ·As)∩{0, 4} = ∅ at least for two values of k, and since r5(d3) 6= ±s
at least for one of them we have q(λkd3) 6= 0, 4 as well. This concludes the proof.
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4 Overview of the proof for seven runners

In what follows, m = max ν7(D) and N = 7m+1. We shall omit the subscript p = 7 and
write ν(x) = ν7(x), r(x) = r7(x) and Λj = Λj,7.

Since we assume that gcd(D) = 1, we always have D7(0) 6= ∅. By definition we have
D7(m) 6= ∅ as well.

If |D7(i)| ≤ 3 for each 0 ≤ i < m then we are done by Corollary 3. Therefore we
may suppose that |D7(i)| ≥ 4 for some i. On the other hand, if |D7(i0)| = 4 for some
i0 > 0 then, again by Corollary 3, the problem can be reduced to the set D′ = {d/pi0 :
d ∈ D \ D7(0)}. Indeed, if we can find a multiplier λ′ such that |λ′d′|N ′ ≥ N ′/p for each
d′ ∈ D′, where N ′ = N/pi0, then |λd|N ≥ N/p for each d ∈ D7(i), i ≥ i0 with (λ)N = (λ′)N

and Corollary 3 applies. Therefore we only have to consider the cases |D7(0)| = 4 and
|D7(0)| = 5. These two cases are dealt with by considering the congruence classes modulo
seven of the elements in A = D7(0). Since we can replace every element d ∈ A by −d,
we may assume that all elements in A belong to three nonzero congruence classes modulo
7, say (A)7 ⊂ {1, 2, 4}. Let As = {d ∈ A : (d)7 = s}, s ∈ {1, 2, 4}. Recall that, for
λk = 1 + k7m ∈ Λ0 we have

q(λk · As) = q(As) + ks (7)

The case |A| = 4 is simpler and is treated in Section 5. The case |A| = 5 is more
involved and it is described in Section 6. In both cases the general strategy consists of
compressing the sets As, s ∈ {1, 2, 4} and then using (7). For this we often apply the
Prime Filtering Lemma to subsets of A − A or 2A − 2A.

In what follows we shall denote by `(X), where X is a set of integers, the length of
the smallest arithmetic progression of difference one in Z7 which contains q(X).

5 The case |A| = 4

Let A = {d1, d2, d3, d4} ⊂ D7(0) and d5 ∈ D7(i0), 0 < i0 ≤ m. Recall that for any
d ∈ D7(m) and λ ∈ UZN we have |λd|N ≥ N/7. Set |d5|N = u7i0 and let u′ such that
uu′ ≡ 1 (mod 7m+1−i0). Let

Λ = {ju′(1 + 7m−i0) : 1 ≤ j ≤ 5}.

For each λ ∈ Λ0 and λ′ ∈ Λ we clearly have

|λλ′d5|N = j(7m + 7i0) ≥ N/7. (8)

We shall show that there are λ ∈ Λ0 and λ′ ∈ Λ such that q(λλ′ · A) ∩ {0, 6} = ∅, thus
concluding the case |A| = 4.

Let λk = 1 + k7m, 0 ≤ k ≤ 6, denote the elements in Λ0 and λ′
j = ju′(1 + 7m−i0),

1 ≤ j ≤ 5, the ones in Λ. For d ∈ A we have

q(λ′
j+1d) ∈ q(λ′

jd) + q(λ′
1d) + {0, 1} ⊂ (j + 1)q(λ′

1d) + {0, 1, . . . , j}, (9)

the electronic journal of combinatorics 15 (2008), #R48 6



and
q(λkd) = q(d) + kr(d). (10)

We consider three cases according to the cardinality |As| of the most popular congru-
ence class in A.

Case 1. |As| = 4.
If we show that `(λ′ · A) ≤ 5 for some λ′ ∈ Λ then, in view of (10), we have {0, 6} ∩

q(λkλ
′ · A) = ∅ for at least one value of k and we are done.

Suppose this is not the case. Without loss of generality we may then assume that
q(λ′

1 · A) = {0, 2, 4, 6}, say q(λ′
1di) = 2(i − 1), 1 ≤ i ≤ 4 . In view of (9), we have

q(λ′
3di) ∈ 6(i − 1) + {0, 1, 2}. Since {2, 3} ∩ q(λ′

3 · A) 6= ∅ we must have q(λ′
3d1) = 2.

Similarly, {3, 4} ∩ q(λ′
3 · A) 6= ∅ implies q(λ′

3d4) = 4. Now, again by (9),

q(λ′
4d1) ∈ {2, 3}, q(λ′

4d2) ∈ {1, 2, 3, 4}, q(λ′
4d3) ∈ {2, 3, 4, 5} and q(λ′

4d4) ∈ {3, 4},

which yields {0, 6} ∩ q(λ′
4 · A) = ∅, a contradiction.

Case 2. |As| = 3.
Let As = {d1, d2, d3}, so that either d4 ∈ A2s or d4 ∈ A4s.
Suppose that

`(λ′ · As) ≤ 4 (11)

for some λ′ ∈ Λ. Then, in view of (10), we have {0, 6}∩q(λkλ
′·As) = ∅ for k ∈ {k0, k0+s−1}

and some k0 (the values taken modulo seven). By (10) one of these two values sends λ′d4

outside of {0, 6} and we are done.
Suppose that (11) does not hold. Then we may assume that either q(λ′

1 ·As) = {0, 1, 4}
or q(λ′

1 ·As) = {0, 2, 4}, say q(λ′
1d1) = 0, q(λ′

1d2) = 1 or 2 and q(λ′
1d3) = 4. If q(λ′

1d2) = 1,
by (9),

q(λ′
2 · As) ⊂ {0, 2, 1}+ {0, 1} = {0, 1, 2, 3},

and (11) holds, a contradiction. If q(λ′
1d2) = 2, using (9) with λ′

3, we have

(q(λ′
3d1), q(λ

′
3d2), q(λ

′
3d3)) ⊂ {0, 1, 2} × {6, 0, 1} × {5, 6, 0}.

Since {2, 3, 4} ∩ q(λ′
3 · As) 6= ∅ we have q(λ′

3d1) = 2, and {3, 4, 5} ∩ q(λ′
3 · As) 6= ∅ implies

q(λ′
3d3) = 5. But then q(λ′

4d1) ⊂ 2 + {0, 1} and q(λ′
4d3) ⊂ 2 + {0, 1}, so that

q(λ′
4 · As) ⊂ (2 + {0, 1}) ∪ {1, 2, 3, 4},

and (11) holds, again a contradiction.
Case 3. |As| = 2.
We may assume that either |A2s| = 2 or |A2s| = |A4s| = 1. Let As = {d1, d2}.
Suppose that

`(λ′ · As) ≤ 2 (12)

for some λ′ ∈ Λ. Then we have {0, 6}∩q(λkλ
′ ·As) = ∅ for k ∈ {k0, k0 +s−1, k0 +2s−1, k0+

3s−1} and some k0 (the values taken modulo seven). It is a routine checking that for at

the electronic journal of combinatorics 15 (2008), #R48 7



least one of these four values of k we have {0, 6} ∩ q(λkλ
′ · (A \ As)) = ∅ as well and we

are done.
Suppose that (12) does not hold. We may assume that either (i) q(λ′

1 · As) = {0, 2}
or (ii) q(λ′

1 · As) = {0, 3}.
Assume that (i) holds. Then (q(λ′

3d1), q(λ
′
3d2)) ⊂ {0, 1, 2} × {6, 0, 1}. Since (12) does

not hold, (q(λ′
3d1), q(λ

′
3d2)) is one of the pairs (1, 6), (2, 0) or (2, 6). In the two former

ones we have q(λ′
4 ·As) ⊂ {1, 2} or q(λ′

4 ·As) ⊂ {2, 3} respectively, a contradiction; in the
last one, (q(λ′

4d1), q(λ
′
4d2)) ⊂ {2, 3} × {1, 2}, so that q(λ′

4d1) = 3 and q(λ′
4d2) = 1, which

in turn implies q(λ′
5 · As) ⊂ {3, 4}, again a contradiction.

Assume now that (ii) holds. Repeated use of (9) and the fact that (12) does not hold
gives

(q(λ′
2d1), q(λ

′
2d2)) ⊂ {0, 1} × {6, 0} implies q(λ′

2d1) = 1 and q(λ′
2d2) = 6

(q(λ′
3d1), q(λ

′
3d2)) ⊂ {1, 2} × {2, 3} implies q(λ′

3d1) = 1 and q(λ′
3d2) = 3

Hence,
q(λ′

5 · As) ⊂ q(λ′
2 · As) + q(λ′

3 · As) + {0, 1} = {2, 3},

giving (12). This completes the proof for the case |A| = 4.

6 The case |A| = 5 and m > 1

Recall that N = 7m+1 where we now assume that m = max(ν(D)) ≥ 2, and that all
elements in A belong to three nonzero congruence classes modulo 7, say (A)7 ⊂ {1, 2, 4}.
In particular, given any two elements in A we have either r(y) = r(x) or r(y) = 2r(x) or
r(x) = 2r(y). We find convenient to introduce the following notation:

e(x, y) =







2x − y, if r(y) = 2r(x)
2y − x, if r(x) = 2r(y)
x − y, if r(y) = r(x),

and ẽ(x, y) =







2q(x) − q(y), if r(y) = 2r(x)
2q(y) − q(x), if r(x) = 2r(y)
q(x) − q(y), if r(y) = r(x).

(13)
The following properties can be easily checked.

Lemma 4 Let x, y be integers with ν(x) = ν(y) = j < m.
(i) For each λ ∈ ∪i≤jΛi we have ẽ(x, y) = ẽ(λx, λy).
(ii) |ẽ(x, y)−q(e(x, y))|7 ≤ 1. Moreover, if r(x) = r(y) then ẽ(x, y)−q(e(x, y)) ∈ {0, 6}.

Proof. Let λ = (1 + k7m−i). If i < j then q(λx) = q(x) and q(λy) = q(y) so there
is nothing to prove. If i = j and r(y) = 2r(x) then q(λx) = q(x) + kr(x) and q(λy) =
q(y)+ kr(y) = q(y)+ 2kr(x) so that ẽ(λx, λy) = 2q(λx)− q(λy) = 2q(x)− q(y) = ẽ(x, y).
The case r(y) = r(x) can be similarly checked.

Part (ii) follows directly from the definition of q(x) =
(

b x
7m c

)

7
. 2
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Recall that, for a subset X ⊂ Z, `(X) stands for the length of the shorter arithmetic
progression of difference 1 in Z7 which contains q(X). Let A1 denote a class with larger
length and denote by s its congruence class modulo 7. Denote by A2 and A4 the subsets
of elements in A congruent with 2s and 4s modulo 7 respectively. As in the case |A| = 4,
the general strategy consists in ‘compressing’ the sets q(A1), q(A2), q(A4). We summarize
in lemmas 5 and 6 below some sufficient conditions in terms of the values of lengths of
these three sets which allows one to conclude that (1) holds.

Lemma 5 Assume that

`(A1) + `(A2) + `(A4) ≤ 5.

Then there is λ ∈ Λ0 such that

q(λ · A) ∩ {0, 6} = ∅,

unless (`(A1), `(A2), `(A4)) = (3, 1, 1) and ẽ(d, d′) ∈ {2, 4} for each d ∈ A2 and d′ ∈ A4.

Proof. The elements of Λ0 will be denoted by λk = 1+7mks−1. Observe that, for d ∈ Aj,
we have q(λkd) = q(d) + jk. By (7) we may assume that q(A1) ⊂ {1, 2, . . . , `(A1)}, so
that q(λk · A1) ∩ {0, 6} = ∅ for k = 0, 1, . . . , 5 − `(A1). We may assume that `(A1) +
`(A2) + `(A4) = 5.

If `(A1) = 5 we are done. If `(A1) = 4 then we clearly have q(λk · (A\A1))∩{0, 6} = ∅
for at least one of k = 0, 1.

Suppose that `(A1) = 3. If either `(A2) = 2 or `(A4) = 2 then for at least one of
the values of k = 0, 1, 2 we have q(λk · (A \ A1)) ∩ {0, 6} = ∅. Let us consider the case
`(A2) = `(A4) = 1. Let q(A2) = {i} and q(A4) = {j}. Suppose that q(λk ·A)∩ {0, 6} 6= ∅
for each k = 0, 1, 2. Since at most one element in {i, i+2, i+4} belongs to {0, 6}, two of the
elements in {j, j + 4, j + 1} must be in {0, 6}. The only possibility is {j, j + 1} = {0, 6}
and {i + 2} ∈ {0, 6}. This implies 2i − j ∈ {2, 4}. Hence ẽ(d, d′) ∈ {2, 4} for each
d ∈ A2, d

′ ∈ A4.
Suppose finally that `(A1) = 2. We may assume that `(A2) = 2 and `(A4) = 1. Let

q(A2) = {i, i + 1} and q(A4) = {j}. Two of the four sets {i, i + 1} + 2k, k = 0, 1, 2, 3,
intersect {0, 6} for two consecutive values of k in cyclic order. At most two of the sets
{j} + 4k , k = 0, 1, 2, 3, intersect {0, 6} for two non consecutive values of k. Hence there
is some value of k for which (q(A2) + 2k) ∪ (q(A4) + 4k) does not intersect {0, 6}. This
completes the proof. 2

Lemma 6 Suppose that q(A1) ⊂ {1, . . . , `(A1)} and let d ∈ A1 with q(d) = 1. There is
λ ∈ Λ0 such that

q(λ · A) ∩ {0, 6} = ∅,

if one of the following conditions hold:
(i) Either (`(A1), `(A2), `(A4)) = (5, 0, 1) and ẽ(d, d′) 6∈ {4, 6} for each d′ ∈ A4, or

(`(A1), `(A2), `(A4)) = (5, 1, 0) and ẽ(d, d′) 6∈ {2, 3} for each d′ ∈ A2.
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(ii) Either (`(A1), `(A2), `(A4)) = (4, 0, 2), or (`(A1), `(A2), `(A4)) = (4, 2, 0) and
ẽ(d, d′) 6= 4, where q(A2) = {i, i + 1} and d′ ∈ A2 ∩ q−1(i).

(iii) (`(A1), `(A2), `(A4)) = (3, 3, 0) (or (3, 0, 3).)

Proof. We may assume that the elements of A1 are congruent to 1 modulo 7, so that
q(λk · A1) ∩ {0, 6} = ∅ for k = 0, 1, . . . , 5 − `(A1).

(i) Suppose that `(A4) = 1. If q(A4) = i ∈ {0, 6} then ẽ(d, d′) = 2i − 1 ∈ {6, 4}.
Similarly, if `(A2) = 1, then i = q(A2) ∈ {0, 6} implies ẽ(d, d′) = 2 − i ∈ {2, 3}.

(ii) Suppose that `(A4) = 2, say q(A4) = {i, i + 1}. One of the two sets {i, i + 1}, {i +
4, i + 5} does not intersect {0, 6} so that the result holds for at least one λk, k = 0, 1. If
`(A2) = 2 then both q(A2) = {i, i + 1} and q(λ1 ·A2) = {i + 2, i + 3} intersect {0, 6} only
if i = 5 and ẽ(d, d′) = 2 − i = 4.

(iii) Let q(A2) = {i, i + 1, i + 2}. Now q(λk · A1) ∩ {0, 6} = ∅ for k = 0, 1, 2, and one
of the three sets {i, i + 1, i + 2}, {i + 2, i + 3, i + 4}, {i + 4, i + 5, i + 6} does not intersect
{0, 6}. The case (3, 0, 3) is obtained by renaming A1 as A2, A2 as A4 and A4 as A1. 2

As shown in the lemmas 5 and 6 above, compression alone is usually not enough to
conclude that (1) holds. The next lemmas provide additional tools to complete the proof.
Further results of the same nature will appear later on in dealing with specific cases.

Lemma 7 Let X ⊂ Z7 and let d, d′ be two integers with ν(d) = ν(d′) = 0 and r(d′) =
2r(d). There is λ ∈ Λh for some h < m such that

ẽ(λd, λd′) 6∈ X

whenever one of the two following conditions holds:
(i) ν(2d − d′) < m and `(X) ≤ 4, or
(ii) ν(2d − d′) = m and r(2d − d′) 6∈ X ∩ (X + 1).

Proof.
(i) Since `(X) ≤ 4 there is x ∈ Z7 \ (X + {0, 1, 2}). Choose λ ∈ Λh, where h =

ν(2d − d′) < m, such that q(λ(2d − d′)) = x − 1. Using Lemma 4 we have ẽ(λd, λd′) ∈
q(e(λd, λd′) + {−1, 0, 1} = x + {−2,−1, 0} 6∈ X.

(ii) Since ν(2d−d′) = m we have r(2d−d′) = q(2d−d′) = q(2d)− q(d′). Suppose that
q(2d − d′) 6∈ X. Choose λ ∈ Λ1 such that q(λ(7d)) = 0. Let us show that this λ verifies
the conditions of the lemma (recall that m > 1). Note that q(2λd) ∈ 2q(λd)) + {0, 1}
and q(2λd) = 2q(λd)) + 1 implies q(λ(7d)) = q(λ(2d + 2d + 2d + d)) ∈ q(2λd) + q(2λd) +
q(2λd) + q(λd) + {0, 1, 2, 3} = 7q(λd) + 3 + {0, 1, 2, 3}, contradicting q(λ(7d)) = 0. Hence
q(2λd) = 2q(λd)). Thus ẽ(λd, λd′) = 2q(λd)− q(λd′) = q(λ(2d− d′)) = q(2d− d′) 6∈ X as
claimed. A similar argument applies when q(2d − d′) 6∈ (X + 1) by choosing λ ∈ Λ1 such
that q(λ(7d)) = 6 so that q(λ(2d)) = 2q(λd)) + 1. 2

Note that the proof of Lemma 7 (ii) requires m > 1. We give a last lemma before
proceeding with the case analysis. First we note the following remark.

Remark 8 Let X ⊂ Z.
(i) If q(X − X) ⊂ {0, 6} then `(k · X) ≤ k + 1, 1 ≤ k ≤ 6.
(ii) If q(X − X) ⊂ {0, 1, 5, 6} then `(X) ≤ 3.
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Lemma 9 Let B = {b1, b2, b3} ⊂ Z with ν(B) = {0} and r(b1) = r(b2) = r(b3). Set
x = b1 − b3 and y = b2 − b3.

(i) If ν(x) 6= ν(y) then there is a multiplier λ such that `(λ · B) ≤ 2.
(ii) If ν(x) = ν(y) = h < m and r(y) = jr(x), j ∈ {2, 3} then there is a multiplier λ

such that q(λy) ∈ {0, 5, 6} and `(λ · B) ≤ j. Moreover, if j = 3, then λ ∈ Λh.

Proof. (i) Suppose ν(x) > ν(y). By Lemma 2 there is a multiplier λ such that q(λx) =
q(λy) = 6. Thus q(λx − λy) = q(λ(b1 − b2)) ∈ {0, 6} and q(λ · B − λ · B) ∈ {0, 6}. By
Remark 8 (i), we have `(λ · B) ≤ 2.

(ii) Suppose first that r(y) = 2r(x) and set e = e(x, y) = 2x− y. We have h′ = ν(e) >
h. Choose λ ∈ Λh′ such that either q(λe) = 0 (if ν(e) 6= m) or λe = N/7 (if ν(e) = m).
By Lemma 4 we have ẽ(λx, λy) ∈ {0, 1, 6}. Choose λ′ ∈ Λh such that q(λ′λx) = 0
(if ẽ(λx, λy) ∈ {0, 1}) or q(λ′λx) = 6 (if ẽ(λx, λy) = 6). Then q(λ′λy) ∈ {0, 6} and
q(λ′λ(y − x)) ∈ {0, 6}. Thus q(λ′λ · (B − B)) ⊂ {0, 6}. By Remark 8 (i), we have
`(λ′λ · B) ≤ 2.

Suppose now that r(y) = 3r(x). Choose λ ∈ Λh such that

q(λy) =







0 if 3q(y) + 5q(x) ∈ {0, 2}
6 if 3q(y) + 5q(x) ∈ {1, 4, 6}
5 if 3q(y) + 5q(x) ∈ {3, 5}

Thus q(λy) ∈ {0, 5, 6}, q(λx) ∈ {0, 1, 5, 6} and q(λy) − q(λx) ∈ {0, 1, 6}. By Lemma 4,
q(λ(y − x)) ∈ q(λy) − q(λx) + {0, 6} = {0, 1, 5, 6}. Hence, by Remark 8 (ii), we have
`(λ · B) ≤ 3. 2

6.1 Case 1: |A1| = 5.

In what follows we shall use some appropriate numbering {d1, d2, d3, d4, d5} of the elements
in A. We shall write eij = e(di, dj).

Lemma 10 Suppose that |A1| ≥ 4 and let E = (A1 −A1) \ {0}. There is a numbering of
the elements of A1 such that one of the following holds:

(i) ν(e21) > ν(e31), or
(ii) ν(e) = h for each e ∈ E and r(e31) = 2r(e21) and either

(ii.1) r(e41) = 3r(e21), or
(ii.2) r(e41) = 4r(e21).

Proof. If |ν(E)| > 1 then color the pair {di, dj} with ν(eij). Two intersecting pairs
must have different colors. We can rename d1 their common element and d2, d3 the other
two to get (i).

Suppose now that |ν(E)| = 1. Consider the set X = {r(eil), r(ejl), r(ekl)} where
i, j, k, l are pairwise distinct subscripts. If r(eil) = r(ejl) then ν(eij) = ν(eil − ejl) > ν(eil)
contradicting |ν(E)| = 1. By symmetry the elements in X are pairwise distinct and
two of them belong to one of the sets {1, 2, 4} or {3, 5, 6}. We may thus assume that

the electronic journal of combinatorics 15 (2008), #R48 11



(r(eil), r(ejl), r(ekl)) = (x, 2x, y). If y ∈ {3x, 4x} then (ii) holds with l = 1, i = 2, j = 3
and k = 4. If y ∈ {5x, 6x} then (r(elj), r(eij), r(ekj)) = (−2x,−x, y − 2x) and (ii) holds
with j = 1, i = 2, l = 3 and k = 4. 2

Let A1 = {d1, d2, d3, d4, d5} where we use the labeling provided by Lemma 10. We
shall show that, up to some multiplier, we have `(A1) ≤ 5. The result then follows by
Lemma 5.

Let B = {d1, d2, d3} and E = (A1 − A1) \ {0}. Suppose that ν(E) 6= {m}. Then, by
Lemma 10 and Lemma 9, we may assume `(B) ≤ 2. Thus, by (7) we may assume that
q(B) ⊂ {0, 6}.

If {q(d4), q(d5)} 6= {2, 4} then we have `(A1) ≤ 5 and we are done. Suppose that
{q(d4), q(d5)} = {2, 4}. Then q(3d4), q(3d5) ∈ {0, 1, 5, 6} and q(3 · B) ⊂ {0, 1, 2, 4, 5, 6}.
Furthermore, by Remark 8 (i), `(3 ·B) ≤ 4. Thus we have either q(3 ·A1) ⊂ {0, 1, 2, 5, 6}
or q(3 · A1) ⊂ {0, 1, 4, 5, 6}, so that `(3 · A1) ≤ 5.

Suppose now that ν(E) = {m}. Set E1 = {e51, e41, e31, e21} ⊂ {kN/7, 1 ≤ k ≤
6}. Denote by iN/7 and jN/7 the elements in the complement of E1. Multiplying by
(i−j)−1 ∈ UZ7 we may assume that the elements in E1 are consecutive, so that `(A1) ≤ 5.
This completes this case.

6.2 Case |A1| = 4.

Let A1 = {d1, d2, d3, d4} and r(d5) ∈ {2s, 4s}, where the elements in A1 are labeled with
the ordering of Lemma 10.

Let B = {d1, d2, d3} and E = (A1 − A1) \ {0}. Suppose that ν(E) 6= {m}. Then, by
Lemma 10 and Lemma 9 we may assume that `(B) ≤ 2 and, by (7) we may assume that
q(B) ⊂ {0, 6}. If q(d4) 6= 3 then `(A1) ≤ 4, and if q(d4) = 3 then q(2 · A1) ⊂ {0, 1, 5, 6}
and again `(A1) ≤ 4. The result follows by Lemma 5.

Suppose now that ν(E) = {m}. If (ii.1) holds then multiplying by (r(e21))
−1 (modulo

7) we may assume that e41 = 3N/7, e31 = 2N/7 and e21 = N/7 which yields `(A1) ≤ 4.
The result follows by Lemma 5. Assume that (ii.2) holds. Up to multiplication by some
λ ∈ Λm we may assume that q({e21, e31, e41}) ⊂ {1, 2, 4} so that `(A1) ≤ 5. By Lemma 7
we may also assume that ẽ(d1, d5) 6∈ {4, 6}. Thus Lemma 6 (i) applies if d5 ∈ A4. Finally,
if d5 ∈ A2, we may also assume that ẽ(d1, d5) 6∈ {2, 3} by using again Lemma 7 unless
e15 = 3N/7. In this case we have q({2e21, 2e31, 2e41}) ⊂ {1, 4, 2}, so that `(A1) ≤ 5, while
2e15 = 6N/7 and so ẽ(2d1, 2d5) 6∈ {2, 3}, and the result also follows from Lemma 6 (i).
This completes this case.

6.3 Case |A1| = 3, |A2| = 1 and |A4| = 1.

First we consider a convenient labeling of the elements in A1 to be used here and the two
following subsections.

Lemma 11 Let s ∈ Z
∗
7 be given. There is a labeling of the elements in A1 such that one

of the following holds:
(i) ν(e13) > ν(e23) = ν(e12),
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(ii) ν(e13) = ν(e23) = h and either
(ii.1) r(e13) = 2r(e23), or (ii.2) r(e13) = 3r(e23) = ±s,

Proof. Let E = (A1 − A1) \ {0}. If |ν(E)| > 1 then we clearly can label the elements
in D to get (i). Assume that |ν(E)| = 1. Suppose that |r(E)| < 6. Note that we can not
have r(eij) = r(eik) since otherwise ν(ekj) = ν(eij −eik) > ν(eij) contradicting |ν(E)| = 1.
Similarly, r(eij) 6= r(ekj). Thus we may assume that the repeated values of r on E are
r(eij) = r(ejk) and we can label i = 1, j = 2 and k = 3. Suppose now that |r(E)| = 6.
Thus we may assume that r(eik) = s. Observe that r(ejk) ∈ {3s, 5s}. Indeed, if r(ejk) =
2s then r(eji) = r(ejk) − r(eik) = s, if r(ejk) = 4s) then r(eij) = r(eik) + r(ekj) = 4s and
if r(ejk) = 6s then r(ekj) = s, contradicting in each case |r(E)| = 6. If r(ejk) = 3s then
r(eji) = −5s, r(eki) = −s and we can label i = 3, j = 2 and k = 1. In case r(ejk) = 5s
we can label i = 1, j = 2 and k = 3. 2

Let A1 = {d1, d2, d3}, where we use the labeling of Lemma 11, A2 = {d4} and A4 =
{d5}. We divide the proof according to the cases of Lemma 11.

(i) and (ii.1) with h < m. By Lemma 9 applied to A1 we may assume that `(A1) ≤ 2
and the result follows by Lemma 5.

(ii.2) with h < m. We consider two subcases:
(ii.2.a) ν(e45) 6= ν(e13). If ν(e45) > ν(e13), by Lemma 2 applied to e45 we may assume

that q(e45) ∈ {0, 6} and thus ẽ(d4, d5) ∈ {0, 1, 5, 6}. We can then apply Lemma 9 to
B = A1 so that we may assume that `(A1) ≤ 3, yielding the conditions of Lemma 5. A
similar argument works when ν(e45) < ν(e13) by applying Lemma 9 first and then Lemma
2.

(ii.2.b) h = ν(e45) = ν(e13). By Lemma 11 we may assume r(e45) = ±r(e13). Suppose
first that r(e45) = r(e13). Set f = e13−e45, so that ν(f) > h. By Lemma 2 we may assume
q(f) = 0 (or f = N/7 with the same consequences) so that ẽ(e13, e45) = q(e13) − q(e45) ∈
{0, 1}. Recall that this last value is invariant by multiplication of elements in Λj with
j ≤ h. Put ũ = 3q(e13) + 5q(e23). By Lemma 2, q(e45) can be set to the value shown in
the following table according to the values of ẽ = ẽ(e13, e45) and ũ:

ũ 0 1 2 3 4 5 6

q(e45) 0 6 0 3 6 0 6

ẽ = 0
q(e13)
q(e23)
q(e12)

0
0

{0, 6}

6
5

{0, 1}

0
6

{0, 1}

3
3

{0, 6}

6
0

{6, 5}

0
1

{6, 5}

6
6

{0, 6}

q(e45) 6 0 6 0 5 6 6 5

ẽ = 1
q(e13)
q(e23)
q(e12)

0
0

{0, 6}

1
1

{0, 6}

0
6

{0, 1}

1
0

{0, 1}

6
0
{6}

0
5
{1}

0
1

{5, 6}

6
6

{6, 6}

If ũ = 4 and ẽ = 1 we set q(e45) = 5 if q(e12) = q(e13) − q(e23), and q(e45) = 6
if q(e12) = q(e13) − q(e23) − 1. In all cases except ẽ = 0 and ũ = 3 we either have
`(A1) ≤ 3, `(A2) = `(A4) = 1 and ẽ(d4, d5) 6∈ {2, 4} or `(A1) = 2 and `(A2) = `(A4) = 1
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so that Lemma 5 applies. If ẽ = 0 and ũ = 3 we have q({2e45, 2e13, 2e23)} ⊂ {0, 6} and
q(2e12) ∈ {0, 1, 5, 6} reaching the same conditions.

A similar analysis applies if r(e45) = −r(e13) by exchanging f = e13 − e45 by f =
e13 + e45 and q(e45) by q(−e45).

(ii.1) and h = m. Up to some multiplier in Λm we may assume that e13 = 2N/7
and e23 = N/7, which leads to `(A1) = 3. By Lemma 7 we may also assume that
ẽ(d4, d5) 6∈ {2, 4} and we are in the conditions of Lemma 5.

(ii.2) and h = m. Up to some multiplier in Λm we may assume that e13 = 3N/7 and
e23 = N/7 which implies `(A1) = 4. We may also assume that q(A1) ⊂ {1, 2, 3, 4} and
q(d3) = 1. Let q(d4) = i and q(d5) = j. In this case (1) holds unless both {i, j} and
{i + 2, j + 4} intersect {0, 6}, namely when i ∈ {0, 6} and j ∈ {2, 3} or j ∈ {0, 6} and
i ∈ {4, 5}. Thus (ẽ34, ẽ45) is one of the four pairs {(2, 4), (2, 5), (3, 2), (3, 3)} in the first
case and one of the four pairs {(4, 3), (4, 4), (5, 1), (5, 2)} in the second one.

If ν(e34) < m then by Lemma 7 (i) applied to d3 and d4 we may assume that ẽ34 6∈
{2, 3, 4, 5} and we are done.

If ν(e34) = m and ν(e45) < m then by applying Lemma 7 (i) to d4 and d5 we may
assume that ẽ45 6∈ {2, 3, 4, 5} if ẽ34 ∈ {2, 3} and ẽ45 6∈ {1, 2, 3, 4} if ẽ34 ∈ {4, 5} thus
avoiding the two bad cases.

Suppose that ν(e34) = ν(e45) = m. Observe that one of the four pairs (q(e34) −
ε1, q(e45) − ε2), ε1, ε2 ∈ {0, 1} is not a bad pair. Observe also that ẽ(d3, d4) = 2(q(d3)) −
q(d4) ∈ q(2d3)−q(d4)+{0, 6} = q(e34)+{0, 6} and similarly ẽ(d4, d5) ∈ q(e45)+{0, 6}. We
have d4 = 2d3+tN/7, for some t < 7. By Lemma 2 we may assume that q(7d3) = 4ε1+2ε2

for each choice of ε1, ε2 ∈ {0, 1} (recall that ν(7d3) = 1 < m). By a routine checking we
then conclude that (ẽ(d3, d4), ẽ(d4, d5)) = (q(e34)− ε1, q(e45)− ε2). Thus each of the eight
bad pairs can be avoided. This completes the proof of this case.

6.4 Case |A1| = 3 and |A2| = 2.

By using the labeling of Lemma 11 we have A1 = {d1, d2, d3} and A2 = {d4, d5}. We first
prove the following Lemma.

Lemma 12 Assume that |A1| = 3 and |A2| = 2. Let d ∈ A1 such that q(A1) ⊂
{q(d), . . . , q(d) + `(A1) − 1} and d′ ∈ A2. If one of the following conditions hold then
there is a multiplier λ such that

q(A) ∩ {0, 6} = ∅.

(i) `(A1) ≤ 3.
(ii) `(A1) = 4 and ẽ(d, d′) ∈ {0, 1, 6}

Proof. (i) Since `(A1) ≤ 3 there are three good multipliers for A1 in Λ0. At most one
of them is bad for each of the two elements in A2.

(ii) We may assume q(A1) ⊂ {1, 2, 3, 4}. Let λk = 1 + 7mks−1 ∈ Λ0, so that λ0, λ1 are
good multipliers for A1. Since ẽ(d, d′) ∈ {0, 1, 6}, then q(λ0d

′) ∈ {1, 2, 3}, and q(λ1d
′) ∈

{3, 4, 5}. At most one of λ0, λ1 is bad for the second element in A2. 2
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We divide the proof according to the cases in Lemma 11.
(i) or (ii) with h < m. By Lemma 9 applied to B = A1 we may assume that `(A1) ≤ 3

and the result follows from Lemma 12 (i).
(ii.1) with h = m. Up to a multiplier in Λm we may assume that e13 = 2N/7 and

e23 = N/7 so that `(A1) = 3. The result follows from Lemma 12 (i).
(ii.2) with h = m. We can apply Lemma 2 to set e13 = 3N/7 and e23 = N/7. Thus

`(A1) = 4. If ν(e34) < m then by Lemma 7 (i) we can set ẽ34 6∈ {2, 3, 4, 5} and the
result follows from Lemma 12 (ii). We can do the same if ν(e35) < m. Suppose that
ν(e34) = ν(e35) = m. Then ν(e45) = m. Set s = (3r(e45))7. By renaming d4 and d5 if
necessary we may assume e45 = e23 = N/7 so that `(A1) = 4 and `(A2) = 2. Moreover,
by Lemma 7, we may also assume that ẽ35 6= 4. The result follows from Lemma 6 (ii).

6.5 Case |A1| = 3 and |A4| = 2.

By using the labeling of Lemma 11 we have A1 = {d1, d2, d3} and A2 = {d4, d5}. Suppose
that, up to a multiplier,

`(A1) ≤ 3 and `(A4) ≤ 3 or `(A1) ≤ 4 and `(A4) ≤ 2. (14)

Then either Lemma 5 or Lemma 6 (ii) or (iii) applies.
We divide the proof according to the cases of Lemma 11.
(i) or (ii.1) with h < m. By Lemma 9 we may assume that `(A1) ≤ 2. If `(A4) ≤ 3

we are in the conditions of Lemma 5. Otherwise we have q(e45) ∈ {2, 3, 4}. If |e45|N ≥
5N/14 then |2e45|N ≤ 2N/7 which yields `(2 · A1) ≤ 3, `(2 · A4) ≤ 3 and (14) holds. If
|e45|N ∈ [2N/7, 5N/14] then |3e45|N ≤ N/7 which yields `(3 · A1) ≤ 4, `(3 · A4) ≤ 2 and
(14) holds.

(ii.2) with h < m. If ν(e13) = ν(e45) we choose s = r(e45). By renaming d4 and d5

if necessary, we may assume r(e45) = r(e13). Let f = e45 − e13, so that ν(f) > ν(e13).
By Lemma 2 we may assume q(f) = 0 (if ν(f) 6= m) or f = N/7 (if ν(f) = m).
By Lemma 9 (ii) we may also assume that q(e13) ∈ {0, 5, 6} and `(A1) ≤ 3. Hence,
q(e45) = q(e13 + f) ∈ q(e13) + q(f) + {0, 1} which implies |q(e45)|7 ≤ 2 and `(A4) ≤ 3.
Therefore (14) holds.

Suppose now ν(e13) 6= ν(e45). If ν(e13) < ν(e45) we can apply Lemma 2 to e45 to set
q(e45) = 0 (if ν(e45) 6= m) or e45 = N/7 (if ν(e45) = m) and then Lemma 9 to A1 to set
`(A1) ≤ 3 and `(A4) ≤ 2 and (14) holds. A similar argument applies if ν(e13) > ν(e45) by
applying Lemma 9 first and then Lemma 2.

(ii.1) with h = m. We may assume that e13 = 2N/7 and e23 = N/7 so that
`(A1) = 3. By renaming d4 and d5 if necessary we may assume r(e45) ∈ {1, 2, 4}. We
consider two cases.

(a) Either ν(e45) < m or e45 ∈ {N/7, 2N/7}. In the first case, by Lemma 2, we may
assume q(e45) ∈ {0, 1, 5, 6}. Thus, in both cases we have `(A4) ≤ 3 yielding (14).

(b) ν(e45) = m and e45 6∈ {N/7, 2N/7}. We may then assume that e45 = 4N/7,
q(A1) = {1, 2, 3} and q(A4) = {i, i + 4}. There are three available multipliers in Λ0

for which q(λ · A1) ∩ {0, 6} = ∅. It can be easily checked that one of them verifies
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q(λ · A4) ∩ {0, 6} as well unless i ∈ {2, 6}, and so, ẽ(d3, d4) ∈ {4, 5}. By Lemma 7 we
may assume that ẽ(d3, d4) takes none of these two values unless e34 = 5N/7. If this is the
case, we have `(2 ·A1) = 5, `(2 ·A4) = 2, 2e34 = 3N/7 and, by Lemma 7(ii), we can avoid
ẽ(2d3, 2d4) = 2. By (7) we may assume q(2 ·A1) = {1, 3, 5} and, since ẽ(2d3, 2d4) = 3, we
have q(2 · A4) = {1, 2}.

(ii.2) with h = m. Choose s = r(e45). By exchanging d4 with d5 if necessary we
may assume that r(e13) = r(e45), and by Lemma 2 we may assume that e13 = N/7 and
e23 = 5N/7, so that `(A1) ≤ 4. If ν(e45) = m we have e45 = N/7 and `(A4) = 2. If
ν(e45) < m then, by Lemma 2 we may set q(e45) ∈ {0, 6} and `(A4) = 2 again. In both
cases Lemma 6 (ii) applies.

6.6 Case |A1| = 2 .

We may assume that A1 = {d1, d2}, A2 = {d3, d4} and A4 = {d5}.
Up to renaming the elements in A we may assume that r(e12), r(e34) ∈ {1, 2, 4}.

Suppose that
`(A1) ≤ 2 and `(A2) ≤ 2. (15)

Then the result follows from Lemma 5.
If ν(e12) 6= ν(e34) then, by Lemma 2 applied to e12 and e34 we may assume that

q(e12), q(e34) ∈ {0, 6}. Hence (15) holds.
Assume now that ν(e12) = ν(e34). Suppose first that r(e12) = r(e34). Let f = e12−e34.

Note that ν(e12) < ν(f). If ν(f) ≤ m, by Lemma 2 applied to f and e34 we may assume
that q(f) = 6 and q(e34) = 0. On the other hand, if ν(f) > m, so that q(f) = 0, we
can apply Lemma 2 to e34 to have q(e34) = 6. In both cases, Lemma 4 yields q(e12) =
q(f + e34) ∈ {0, 6} and (15) holds.

Suppose now that r(e12) 6= r(e34). Then either r(e12) = 2r(e34) or 2r(e12) = r(e34). If
ν(e12) = ν(e34) < m then, by Lemma 2, there is λ such that q(λe12), q(λe34) ∈ {0, 1, 5, 6}.
Since λe12 6= 5N/7 and λe34 6= 5N/7, (15) holds.

Assume ν(e12) = ν(e34) = m. We consider two cases:
(a) r(e12) = 2r(e34). Up to a multiplier in Λm we may assume that e12 = 2N/7 and

e34 = N/7. Let λk ∈ Λ0 be such that q(λkd2) = k, k = 1, 2, 3. Since e12 = 2N/7 we have
q(λk ·A1) = {k, k+2}. On the other hand, since q(d4) = 2q(d2)− ẽ(d2, d4) and e34 = N/7,
we have q(λk ·A2) = (2k− ẽ(d2, d4), (2k−1)− ẽ(d2, d4)). Finally, q(λkd5) = 4ẽ(d2, d5)+4k.
Thus, if

(ẽ(d2, d4), ẽ(d2, d5)) 6∈ {((4, 2), (4, 4), (5, 4), (6, 4), (6, 6)} (16)

then q(λk · A) ∩ {0, 6} = ∅ for some k. Now, if either ν(e24) < m, by using Lemma
7(i), or e24 ∈ {N/7, 2N/7, 3N/7} we can assume that ẽ(d2, d4) 6∈ {4, 5, 6} and so (16)
holds; if ν(e24) = m and ν(e25) < m we can avoid each of the pairs in (16) by setting
ẽ(d2, d5) 6∈ {2, 4} if e24 ∈ {4N/7, 5N/7} and ẽ(d2, d5) 6∈ {4, 6} if e24 ∈ {0, 6N/7}; finally,
if ν(e24) = ν(e25) = m, we observe that one of the four pairs (q(e24) − ε1, q(e25) − ε2),
ε1, ε2 ∈ {0, 1} avoids each of the bad pairs in (16). By repeating the argument in the final
paragraph of case 6.3 applied to 7d5, (we here can also assume that q(7d5) = 4ε2 + 2ε1)
we get (16).
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(b) r(e12) = 4r(e34). Up to a multiplier in Λm we may assume that e12 = N/7 and
e34 = 2N/7. Let λk ∈ Λ0 be such that q(λkd4) = k, k = 1, 2, 3, so that q(λk · A2) =
{k, k+2}. On the other hand, q(λkd2) = 4ẽ(d2, d4)+4k, so that q(λk ·A1) = {4ẽ(d2, d4)+
4k, 4ẽ(d2, d4)+4k+1}. Finally q(λkd5) = 2q(λkd4)− ẽ(d4, d5) = 2k− ẽ(d4, d5). By Lemma
7 we can assume that ẽ(d2, d4) 6∈ {2, 4}. It is then routine to check that, for every value
of ẽ(d2, d4) and ẽ(d4, d5) there is k ∈ {1, 2, 3} such that q(λk · A) ∩ {0, 6} = ∅.

This completes the proof of the case |A| = 5 and m > 1.

7 The case |A| = 5 and m = 1

In Section 6 we have used the hypothesis m > 1 in Lemma 7 and in particular situations
in cases 6.3 and 6.6. However, when m = 1 we are led to consider the problem with
N = 49 and d6 = 7k, 1 ≤ k ≤ 3, and it is unfortunately no longer true that all sets
admit a good multiplier. By computer search we found that there is always a multiplier
for which each of these sets can be included in the interval [7, 42] except in the three (up
to dilation) following ones:

{1, 3, 4, 5, 18} {1, 4, 6, 10, 11} and {1, 4, 6, 10, 22}.

We consider each of this sets in ZN ′ with N ′ = 2N = 98. There are at most 32 nonequiv-
alent subsets in Z98 which are congruent to one of the above exceptional sets, and each
of them has to be combined with the six possible values of d6, namely 7k, k = 1, 2, . . . , 6.
By checking all these possibilities, we found that every set D of integers which coincides
with one of the found exceptions when considered in Z49 and verifying gcd(D) = 1 admits
a multiplier in Z98. This computation concludes the proof1.
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