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Abstract

Let KN denote the complete graph on N vertices with vertex set V = V (KN )
and edge set E = E(KN ). For x, y ∈ V , let xy denote the edge between the two
vertices x and y. Let L be any finite set and M ⊆ L3. Let c : E → L. Let [n]
denote the integer set {1, 2, . . . , n}.

For x, y, z ∈ V , let c(xyz) denote the ordered triple (c(xy), c(yz), c(xz)). We say
that c is good with respect to M if the following conditions obtain:

(i) ∀x, y ∈ V and ∀(c(xy), j, k) ∈ M, ∃z ∈ V such that c(xyz) = (c(xy), j, k);

(ii) ∀x, y, z ∈ V , c(xyz) ∈ M; and

(iii) ∀x ∈ V ∀` ∈ L ∃ y ∈ V such that c(xy) = `.

We investigate particular subsets M ⊆ L3 and those edge colorings of KN which
are good with respect to these subsets M. We also remark on the connections of
these subsets and colorings to projective planes, Ramsey theory, and representations
of relation algebras. In particular, we prove a special case of the flexible atom
conjecture.

1 Motivation and background

Let KN denote the complete graph on N vertices with vertex set V = V (KN) and edge
set E = E(KN). For x, y ∈ V , let xy denote the edge between the two vertices x and
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y. Let L be any finite set and M ⊆ L3. Let c : E → L. Let [n] denote the integer set
{1, 2, . . . , n}.

For x, y, z ∈ V , let c(xyz) denote the ordered triple (c(xy), c(yz), c(xz)). We say that
c is good with respect to M if the following conditions obtain:

(i) ∀x, y ∈ V and ∀(c(xy), j, k) ∈ M, ∃z ∈ V such that c(xyz) = (c(xy), j, k);

(ii) ∀x, y, z ∈ V , c(xyz) ∈ M; and

(iii) ∀x ∈ V ∀` ∈ L ∃ y ∈ V such that c(xy) = `.

If K = KN has a coloring c which is good with respect to M, then we say that K
realizes M (or that M is realizable).

If we take Rα = {(x, y) : c(xy) = α}, and let | stand for ordinary composition of
binary relations, ie. Rα|Rβ := {(x, z) : ∃y (x, y) ∈ Rα, (y, z) ∈ Rβ}, then conditions (i)
and (ii) imply

(Rα|Rβ) ∩ Rγ 6= ∅ =⇒ Rγ ⊆ Rα|Rβ.

Conditions (i) - (iii) are given in [1] where the author calls a coloring on KN that realizes
some M a symmetric color scheme. It is proved in [2] that if M is a set of triples that is
closed under permutation such that there is at least one α ∈ L such that for all β, γ ∈ L,
(α, β, γ) ∈ M, then M is realized by a coloring on Kω, the complete graph on countably
many vertices. Any such color α is called a flexible color, since it can participate in any
triple.

Conditions (i) - (iii) may seem quite stringent, but in fact these conditions are sat-
isfied in many natural situations. Recall the notation for the Ramsey numbers; that is,
R(k1, k2, . . . , k`) is the minimum integer n such that in any `-coloring of the edges of
Kn there is a monochromatic complete graph on kj vertices in color j for some j. In
particular, the coloring of K5 which shows R(3, 3) ≥ 6 satisfies (i) - (iii), as does the
coloring of K8 which shows R(4, 3) ≥ 9, the colorings of K16 that show R(3, 3, 3) ≥ 17,
both “twisted” and “untwisted”, and the coloring of K29 given in [7] and [4] that shows
that R(4, 3, 3) ≥ 30. In fact, the coloring of K5 without monochromatic triangles is a re-
alization of M0 = {(r, b, b), (b, r, b), (b, b, r), (r, r, b), (r, b, r), (b, r, r)}. The coloring of K8

mentioned above is a realization of M = M0 ∪ {(r, r, r)}; the col orings of K16 are real-
izations of M = {r, b, g}3\{(r, r, r), (b, b, b), (g, g, g)}; the coloring of K29 is a realization
of M = {r, b, g}3\{(b, b, b), (g, g, g)}.

In [1], Comer introduces the number r(k) which is the largest N such that there is a
coloring on KN that realizes

M =
{
r1, ..., rk}

3\{(ri, ri, ri) : i ∈ [k]}.

Clearly, r(k) ≤ R(

k times
︷ ︸︸ ︷

3, 3, . . . , 3)−1; equality holds for k = 2 and k = 3. An interesting open
problem is whether equality holds for all values of k.
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Realizations of color schemes arise in connection with projective planes as well. Let
L = {r1, . . . , r`}, and let

M` = {(ri, rj, rk) : |{i, j, k}| ∈ {1, 3}} .

Lyndon proved in [5] that M` is realizable in some complete graph if and only if there
exists a projective plane of order `−1, for ` > 2. This result has been extremely important
in the theory of relation algebras.

In [3], Maddux, Jipsen and Tuza show that for M = L3, KN realizes M for arbitrarily
large finite N . In the case when M = L3, every color in L is a flexible color.

2 The Main Result

The principal result of this paper is that Mn is realizable in KN for some N < ω, where
L = {r, b1, ..., bn} and

Mn := {(r, r, r), (r, r, bi), (r, bi, r), (bi, r, r), (r, bi, bj), (bi, r, bj), (bi, bj, r) : i, j ∈ [n]}.

(Observe that Mn = {r, b1, . . . , bn}
3 \ {b1, . . . , bn}

3.) This is a special case of a problem
that has come to be known as the flexible atom conjecture. This problem originates in
relation algebra; an explanation of the conjecture in this context can be found in [6].

Theorem 1. ∀n ≥ 1 ∃r = r(n) such that ∀k > r, KN realizes Mn for N =

(
3k − 4

k

)

.

The proof will proceed as follows. First we will construct realizations of M1 in KN

for arbitrarily large N . These colorings of KN will exhibit quite a lot of redundancy; in
particular, for any given edge xy ∈ E and triple (c(xy), j, k) ∈ M1, there exist many
vertices z such that c(xyz) = (c(xy), j, k), while condition (i) only requires that there
be one such vertex. The graph KN , which is colored in colors r and b, can then be
recolored by assigning edges colored b to a color from {b1, ..., bn} uniformly at random.
The probability that this recoloring realizes Mn is shown to be nonzero for sufficiently
large N .

Note that r is a flexible color in Mn. In the case that a flexible color is present, it
is not hard to see that condition (iii) is automatically satisfied whenever (i) and (ii) are,
and so we make no further mention of it.

3 Proof of theorem 1

Let k ∈ N and let [3k − 4]k denote the collection of k-subsets of [3k − 4]. Let G be the
complete graph with vertex set V = [3k − 4]k.

Lemma 1. G realizes M1 for any k ≥ 3.
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Proof of lemma 1. Define an edge coloring c : E(G) → {r, b} by

c(xy) =

{

b, if 0 ≤ |x ∩ y| ≤ 1,

r, otherwise.

Let Er = {xy ∈ E(G) : c(xy) = r} and Eb = {xy ∈ E(G) : c(xy) = b}. The following
five claims establish that c satisfies condition (i) for M1.

Let xy ∈ Er. Since |x ∩ y| ≥ 2, |x ∪ y| ≤ 2k − 2.

Claim 1. ∃z ∈ V such that c(xyz) = (r, r, r).

Let (x ∪ y) denote [3k − 4] \ (x∪ y) and let ` be any subset of (x ∪ y) with k − |x∩ y|
elements. Set z = ` ∪ (x ∩ y). We have |x ∩ z| ≥ 2 and |y ∩ z| ≥ 2, so c(xyz) = (r, r, r)
and claim 1 is true.

Claim 2. ∃z ∈ V such that c(xyz) = (r, r, b).

Let a1 ∈ y \ x, a2 ∈ x∩ y, and ` be any (k − 2)-subset of (x ∪ y). Set z = `∪ {a1, a2}.
We have |x ∩ z| = 1 and |y ∩ z| = 2, so c(xyz) = (r, r, b) and claim 2 is true.

Claim 3. ∃z ∈ V such that c(xyz) = (r, b, b).

Let a1 ∈ x \ y, a2 ∈ y \ x. Let ` be as in the the proof of claim 2. Set z = `∪ {a1, a2}.
We have |x ∩ z| = |y ∩ z| = 1, so c(xyz) = (r, b, b) and claim 3 is true.

Now let xy ∈ Eb. Since |x ∩ y| ≤ 1, |x ∪ y| ≥ k − 3.

Claim 4. ∃z ∈ V such that c(xyz) = (b, r, r).

If k = 3, then |x ∩ y| = 1, so we can pick z to be the 3-subset consisting of x ∩ y, one
point from x \ y and one point in y \ x. For k ≥ 4, let `1 be any 2-subset of x \ y, `2 be
any 2-subset of y \ x, and `3 be any (k − 4)-subset of (x ∪ y). Set z = `1 ∪ `2 ∪ `3. We
have |x ∩ z| = 2 and |y ∩ z| = 2, so c(xyz) = (b, r, r) and claim 4 is true.

Claim 5. ∃z ∈ V such that c(xyz) = (b, b, r).

If k = 3, then |x ∩ y| = 1, so we can pick z to be the 3-subset consisting of y \ x
together with one point from x\y. For k ≥ 4, let `1 be any 3-subset of x\y and a ∈ y \x.
Let `3 be as in the proof of claim 4. Set z = `1 ∪ {a} ∪ `3. We have |x ∩ z| ≥ 2 and
|y ∩ z| = 1, so c(xyz) = (b, b, r) and claim 5 is true.

Observe that claims 1-5 imply that c satisfies condition (i) for M1. It remains to show
that c satisfies condition (ii) for M1, which we show in claim 6 below.

Claim 6. ∀x, y, z ∈ V , c(xyz) ∈ M1.

By way of contradiction, suppose ∃x, y, z ∈ V with c(xyz) = (b, b, b). Since |x∪y∪z| ≤
3k − 4, the pigeonhole principle implies that one of |x ∩ y|, |x ∩ z|, or |y ∩ z| is greater
than or equal to 2, a contradiction.

Observe that claims 1-6 imply that c is good with respect to M1, and thus G realizes
M1.
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Let n ≥ 2 and let Er and Eb be as in the proof of lemma 1. Let S be the set of all
n-ary sequences of length m = |Eb| taking digits from [n]. Choose a sequence s from S
at random. Enumerate the edges of Eb : e1, . . . , em. Let s(j) ∈ [n] denote the jth position
of the sequence s. Define a partition of Eb into n (possibly empty) parts Eb1 , . . . , Ebn

as
follows:

Ebi
= {ej : s(j) = i}, i ∈ [n]

Define a new edge coloring of G given by

c′(xy) =

{

bi if xy ∈ Ebi
,

r if xy ∈ Er.

It is not hard to see that the probability that a given edge has color i is 1/n; and
furthermore that, given two distinct edges, the assignment of their colors is independent.

We claim that for sufficiently large k, c′ is good with respect to Mn, and thus G
realizes Mn; for this reason, we assume that k ≥ 4. Since c satisfies condition (ii) for
M1, it is easy to see c′ satisfies condition (ii) for Mn. We show that the probability that
c′ does not satisfy condition (i) for Mn is less than 1.

Claim 7. The probability P1 that given xy ∈ Er, ∃i, j ∈ [n] such that ∀z ∈ V c′(xyz) 6=
(r, bi, bj) is bounded from above by n2(1 − 1/n2)(k−2)2 .

Proof of claim 7. Let Z := {z ∈ V : c(xyz) = (r, b, b)} . For fixed i, j ∈ [n] and z ∈ Z, the
probability

(xz ∈ Ebi
) ∧

(
yz ∈ Ebj

)

is 1/n2, so the probability
(xz /∈ Ebi

) ∨
(
yz /∈ Ebj

)

is 1 − 1/n2. Considering all z ∈ Z, we have that the probability

∧

z∈Z

[
(xz /∈ Ebi

) ∨
(
yz /∈ Ebj

)]

is (1 − 1/n2)
|Z|

. Summing over all n2 combinations of i and j, we arrive at

P1 = n2
(
1 − 1/n2

)|Z|
. (1)

For an upper bound on P1 we compute a lower bound on |Z|. Since we seek a lower
bound, we may assume |x ∩ y| = 2. Note that |(x ∪ y)| = k − 2. Let ax ∈ x \ y and
ay ∈ y \ x. If z = (x ∪ y) ∪ {ax, ay}, then z ∈ Z. Since there are (k − 2)2 distinct z of

this form, (k − 2)2 ≤ |Z|. This fact together with (1) gives P1 ≤ n2 (1 − 1/n2)
(k−2)2

, as
desired.

Claim 8. The probability P2 that given xy ∈ Er, ∃j ∈ [n] such that ∀z ∈ V c′(xyz) 6=

(r, r, bj) is bounded from above by n (1 − 1/n)(
k−2

2
).
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Proof of claim 8. Let Z := {z ∈ V : c(xyz) = (r, r, b)}. For fixed j ∈ [n] and z ∈ Z, the
probability

(xz ∈ Ebj
) ∧ (yz ∈ Er) = (xz ∈ Ebj

)

is 1/n, so the probability
(xz /∈ Ebj

)

is 1 − 1/n. Considering all z ∈ Z, we have that the probability
∧

z∈Z

(xz /∈ Ebj
)

is (1 − 1/n)|Z|. Summing over all j, we arrive at

P2 = n(1 − 1/n)|Z|. (2)

For an upper bound on P2, we compute a lower bound on |Z|. As in claim 7, we may
assume |x∩ y| = 2 so |(x ∪ y)| = k− 2. Let ` be any 2-subset of (x ∪ y). If z = (y \x)∪ `,

then z ∈ Z. Since there are

(
k − 2

2

)

distinct z of this form,

(
k − 2

2

)

≤ |Z|. This fact

together with (2) gives P2 ≤ n (1 − 1/n)(
k−2

2
), as desired.

Claim 9. The probability P3 that given i ∈ [n] and xy ∈ Ebi
, ∃j ∈ [n] such that ∀z ∈ V ,

c′(xyz) 6= (bi, r, bj) is bounded from above by n (1 − 1/n)(
k

4
).

Proof of claim 9. Fix i ∈ [n] and xy ∈ Ebi
. Let

Z := {z ∈ V : c(yz) = r and c(xz) = b}.

For j ∈ [n], the probability that xz ∈ Ebj
is 1/n, so the probability that xz /∈ Ebj

is
1 − 1/n. Continuing as in claim 8, we have

P3 = n(1 − 1/n)|Z|. (3)

Again, we seek a lower bound for |Z|, so we may assume |x ∩ y| = 0. Note that
|(x ∪ y)| = k − 4. Let ` be any 4-subset of y. If z = (x ∪ y) ∪ `, then z ∈ Z. Since

there are

(
k

4

)

distinct z of this form,

(
k

4

)

≤ |Z|. This fact together with (3) gives

P3 ≤ n(1 − 1/n)(
k

4
).

Observe that ∀`, P1 ≥ P`. Hence, we can use the upper bound in claim 7 for P1 as
an upper bound for the probability that condition (i) does not obtain for given xy ∈ E.

Since G has less than

(
3k − 4

k

)2

edges, an upper bound for the probability P that c′ fails

to satisfy condition (i) for Mn is

P ≤
∑

e∈E

P1 ≤

(
3k − 4

k

)2

P1 ≤

(
3k − 4

k

)2

n2

(

1 −
1

n2

)(k−2)2

. (4)
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Next, we show that the right hand side of the expression in (4) can be made less than
1 by choosing k large enough. Since 1 − x ≤ e−x for all x, we have

(
3k − 4

k

)2

n2

(

1 −
1

n2

)(k−2)2

≤

(
3k − 4

k

)2

n2
(

e−(k−2)2/n2

)

≤
(
23k−4

)2
n2

(

e−(k−2)2/n2

)

≤ 26kn2
(

e−(k−2)2/n2

)

. (5)

Note that the expression in (5) is less than 1 if and only if log
[

26kn2
(

e−(k−2)2/n2

)]

< 0,

which holds just in case

6k log 2 + 2 log n −
(k − 2)2

n2
< 0. (6)

To ensure that the inequality in (6) will hold, we first assume that k = cn2 for some
c ∈ R and realize the above as a quadratic polynomial in c. Since the coefficient of c2 is
negative, the function is concave down. By finding the zeros of this polynomial in terms
of n and then maximizing (over n) the greatest of them, we can find the c which will
guarantee the inequality in (6). For n ≥ 2, it is sufficient to take c ≥ 5.2.

For such k, we have that P < 1, so there exists an edge coloring c : E(G) →
{r, b1, . . . , bn} which is good with respect to Mn. Hence, G realizes Mn and the proof of
theorem 1 is complete.

Corollary 1. Any finite integral symmetric relation algebra with one flexible atom and
with all (mandatory) diversity cycles involving the flexible atom is representable on arbi-
trarily large finite sets.

It is possible to obtain Corollary 1 with “symmetric” deleted in the following way. We
alter the proof of Theorem 1 to construct n+1 binary relations instead of an edge-colored
graph in n + 1 colors. Referring to the graph colored in two colors constructed lemma 1,
let R = {(x, y) : c(xy) = r} and B = {(x, y) : c(xy) = b}. Partition B into n disjoint
subsets in the following way: Let 2` be the number of asymmetric diversity atoms, so
that b1, . . . , b2` are asymmetric and b2`+1, . . . , bn are all symmetric. Order the vertices
v1, . . . , vN . Let V< = {(vi, vj) : i < j}. Assign pairs from V< to sets B1, . . . , Bn uniformly
at random. Now we assign the remaining pairs (vj, vi) as follows. For i, j with i < j,

(i) if (vi, vj) ∈ Bm and m > 2`, then (vj, vi) ∈ Bm;

(ii) if (vi, vj) ∈ Bm and 1 ≤ m ≤ `, then (vj, vi) ∈ Bm+`;

(iii) if (vi, vj) ∈ Bm and ` < m ≤ 2`, then (vj, vi) ∈ Bm−`.

Thus we have Bm̆ = Bm+` for m ≤ `. Then by making superficial changes to the
remainder of the proof we establish the result for the nonsymmetric case. Thus we have
the following:
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Theorem 2. Any finite integral relation algebra with one flexible atom and with all
(mandatory) diversity cycles involving the flexible atom is representable on arbitrarily
large finite sets.
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