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Abstract

We study the Erdős distance problem over finite Euclidean and non-Euclidean
spaces. Our main tools are graphs associated to finite Euclidean and non-Euclidean
spaces that are considered in Bannai-Shimabukuro-Tanaka (2004, 2007). These
graphs are shown to be asymptotically Ramanujan graphs. The advantage of using
these graphs is twofold. First, we can derive new lower bounds on the Erdős distance
problems with explicit constants. Second, we can construct many explicit tough
Ramsey graphs R(3, k).

1 Introduction

Let
�

q denote the finite field with q elements where q � 1 is an odd prime power. Let
E ⊂ � d

q, d > 2. Then the analogue of the classical Erdős distance problem is to determine
the smallest possible cardinality of the set

∆(E) = {|x − y|2 = (x1 − y1)
2 + . . . + (xd − yd)

2 : x, y ∈ E},

viewed as a subset of
�

q. Suppose that −1 is a square in
�

q, then using spheres of radius
0, there exists a set of cardinality precisely qd/2 such that ∆(E) = {0}. Thus, we only
consider the set E ⊂ � d

q of cardinality Cq
q
2
+ε for some constant C. Bourgain, Katz and

Tao ([11]) showed, using intricate incidence geometry, that for every ε > 0, there exists

δ > 0, such that if E ∈ � 2
q and |E| 6 Cεq

2−ε, then |∆(E)| > Cδq
1
2
+δ for some constants

Cε, Cδ. The relationship between ε and δ in their argument is difficult to determine.
Going up to higher dimension using arguments of Bourgain, Katz and Tao is quite subtle.
Iosevich and Rudnev ([18]) establish the following results using Fourier analytic methods.

the electronic journal of combinatorics 15 (2008), #R5 1



Theorem 1 ([18]) Let E ⊂ � d
q such that |E| & Cqd/2 for C sufficient large. Then

|∆(E)| & min

{

q,
|E|
q

d−1
2

}

. (1)

By modifying the proof of Theorem 1 slightly, Iosevich and Rudnev ([18]) obtain the
following stronger conclusion.

Theorem 2 ([18]) Let E ⊂ � d
q such that |E| > Cq

d+1
2 for sufficient large constant C.

Then for every t ∈ �
q there exist x, y ∈ E such that |x − y|2 = t. In other words,

|∆(E)| = q.

It is, however, more natural to define the analogues of Euclidean graphs for each non-
degenerate quadratic from on V =

� d
q, d > 2. Let Q be a non-degenerate quadratic form

on V . For any E ⊂ V , we define the distance set of E with respect to Q:

∆Q(E) = {Q(x − y) : x, y ∈ E},

viewed as a subset of
�

q. Our first result is the following.

Theorem 3 Let Q be a non-degenerate quadratic from on
� d

q, d > 2. Let E ⊂ � d
q such

that |E| > 3q
d
2
+ε for some ε > 0, then

|∆Q(E)| > min

{ |E|
3q(d−1)/2

, q

}

(2)

for q � 1.

This result is not new. It follows from the same proof as the proofs of Theorem 1 and
Theorem 2 in [18]. It is also explicitly proved in [17]. We provide here a different proof
for this result.

An interesting question is to study the analogue of the Erdős distance problem in non-
Euclidean spaces. In order to make this paper concise, we will only consider the Erdős
distance problem in the finite non-Euclidean plane (or so-called the finite upper half
plane). In Section 2, we will see how to obtain various finite non-Euclidean spaces from
the action of classical Lie groups on the set of non-isotropic points, lines and hyperplanes.
Most of our results in this paper hold in this more general setting. We will address these
results in a subsequent paper.

The well-known finite upper half plane is constructed in a similar way using an ana-
logue of Poincaré’s non-Euclidean distance. We follow the construction in [28]. Let

�
q be

the finite field with q = pr elements, where p is an odd prime. Suppose σ is a generator
of the multiplicative group

� ∗
q of nonzero elements in

���
. The extension

�
q
∼= �

q(σ) is
analogous to � = � [i]. We define the finite Poincaré upper half-plane as

Hq = {z = x + y
√

σ : x, y ∈ � q and y 6= 0}. (3)
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Note that “half-plane” is something of a misnomer since y 6= 0 may not be a good finite
analogue of the condition y > 0 that defines the usual Poincaré upper half-plane in
C. In fact, Hq is more like a double covering of a finite upper half-plane. We use the
familiar notation from complex analysis for z = x + y

√
σ ∈ Hq: x = Re(z), y = Im(z),

z̄ = x − y
√

σ = zq, N(z) = Norm of z = zz̄ = z1+q. The Poincaré distance between
z, w ∈ Hq is

d(z, w) =
N(z − w)

Im(z)Im(w)
∈ � q. (4)

This distance is not a metric in the sense of analysis, but it is GL(2,
�

q)-invariant:
d(gz, gw) = d(z, w) for all g ∈ GL(2,

�
q) and all z, w ∈ Hq. Let E ⊂ Hq. We define the

distance set with respect to the Poincaré distance:

∆H(E) = {d(x, y) : x, y ∈ E},

viewed as a subset of
�

q. The following result is a non-Euclidean analogue of Theorem 3.

Theorem 4 Let E ⊂ Hq such that |E| > 3q
1
2
+ε for some ε > 0, then

|∆H(E)| > min

{ |E|
3q1/2

, q − 1

}

(5)

for q � 1.

We also have the Erdős problem for two sets. Let E, F ⊂ � d
q, d > 2. Given a non-

degenerate quadratic Q form on
� d

q . We define the set of distances between two sets E
and F :

∆Q(E, F ) = {Q(x, y) : x ∈ E, y ∈ F}.
We will prove the following analogues of Theorem 3 for the distance set ∆Q(E, F ).

Theorem 5 Let E, F ⊂ � d
q such that |E||F | > 9q(d−1)+ε for some ε > 0, then

∆Q(E, F ) > min

{

√

|E||F |
3q(d−1)/2

, q

}

for q � 1.

In finite upper half plane, we define the set of distances between two sets E, F ⊂ Hq:

∆H(E, F ) = {d(x, y) : x ∈ E, y ∈ F},

where d(x, y) is the finite Poincaré distance between x and y. Similarly, we have an
analogue of Theorem 4 for the distance set ∆H(E, F ).
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Theorem 6 Let E, F ⊂ Hq such that |E||F | > 9q1+2ε for some ε > 0, then

∆H(E, F ) > min

{

√

|E||F |
3q1/2

, q − 1

}

for q � 1.

Note that Theorem 5 is also not new. It follows instantly from incidence bounds in
Theorem 3.4 in [17] as going from a one set formulation in the Fourier proofs in [17] to a
two set formulation is just a matter of inserting a different letter in couple of places. The
proof we present in this paper however is new.

The rest of this paper is organized as follows. In Section 2 we construct our main tools
to study the Erdős problem over finite Euclidean and non-Euclidean spaces, the finite Eu-
clidean and non-Euclidean graphs. Our construction follows one of Bannai, Shimabukuro
and Tanaka in [8, 7]. In Section 3 we establish some useful facts about these finite graphs.
One important result is for infinitely many values of q, these graphs disprove a conjecture
of Chvatál and also provide a good lower bound for the Ramsey number R(3, k). We then
prove our main results, Theorems 3, 4, 5 and 6, in Section 4. In the last section, we will
discuss the similarities of our approach and those in [17] and [18].

We also call the reader’s attention to the fact that the application of the spectral
method from graph theory in sum-product estimates and Erdős distance problem was
independently used by Vu in [32].

2 Finite Euclidean and non-Euclidean Graphs

In this section, we summarise main results from Bannai-Shimabukuro-Tanaka [7, 8]. We
follow their constructions of finite Euclidean and non-Euclidean graphs.

Let Q be a non-degenerate quadratic form on V . We define the corresponding bilinear
from on V :

〈x, y〉Q = Q(x + y) − Q(x) − Q(y).

Let O(V, Q) be the group of all linear transformations on V that fix Q (which is called the
orthogonal group associated with the quadratic form Q). The non-degenerate quadratic
forms over

� n
q are classified as follows:

1. Suppose that n = 2m. If q odd then there are two inequivalent non-degenerate
quadratic forms Q+

2m and Q−
2m:

Q+
2m(x) = 2x1x2 + . . . + 2x2m−1x2m,

Q−
2m(x) = 2x1x2 + . . . + 2x2m−3x2m−2 + x2

2m−1 − αx2
2m,

where α is a non-square element in
�

q. If q even then there are also two inequivalent
non-degenerate quadratic forms Q+ and Q−:

Q+
2m(x) = x1x2 + . . . + x2m−1x2m,

Q−
2m(x) = x1x2 + . . . + x2m−3x2m−2 + x2

2m−1 + βx2
2m,
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where β is an element in
�

q such that the polynomial t2 + t + β is irreducible over
�

q.
We write O+

2m = O(V, Q+
2m) and O−

2m = O(V, Q−
2m).

2. Suppose that n = 2m + 1 is odd. If q is odd, then there are two inequivalent non-
degenerate quadratic forms Q2m+1 and Q′

2m+1:

Q2m+1(x) = 2x1x2 + . . . + 2x2m−1x2m + x2
2m+1,

Q′
2m+1(x) = 2x1x2 + . . . + 2x2m−1x2m + αx2

2m−1,

where α is a non-square element in
�

q. But the groups O(V, Q2m+1) and O(V, Q′
2m+1)

are isomorphic. If q is even then there exists exactly one inequivalent non-degenerate
quadratic form Q2m+1:

Q2m+1(x) = x1x2 + . . . + x2m−1x2m + x2
2m+1.

In this case, we write O2m+1 = O(V, Q2m+1).

2.1 Finite Euclidean Graphs

Let Q be a non-degenerate quadratic form on V . Then the finite Euclidean graph
Eq(n, Q, a) is defined as the graph with vertex set V and the edge set

E = {(x, y) ∈ V × V | x 6= y, Q(x − y) = a}. (6)

In [8], Bannai, Shimabukuro and Tanaka showed that the finite Euclidean graphs
Eq(n, Q, a) are not always Ramanujan. Fortunately, they are always asymptotically Ra-
manujan. The following theorem summaries (in a rough form) the results from Sections 2-6
in [8] and Section 3 in Kwok [22].

Theorem 7 Let ρ be a primitive element of
�

q.

a) The graphs Eq(2m, Q±
2m, ρi) are regular of valency k = q2m−1 ± qm−1 for 1 6 i 6 q− 1.

Let λ be any eigenvalue of the graph Eq(2m, Q±
2m, ρi) with λ 6= valency of the graph

then
|λ| 6 2q(2m−1)/2.

b) The graphs Eq(2m+1, Q2m+1, ρ
i) are regular of valency k = q2m±qm for 1 6 i 6 q−1.

Let λ be any eigenvalue of the graph Eq(2m + 1, Q2m+1, ρ
i) with λ 6= valency of the

graph then
|λ| 6 2qm.

2.2 Finite non-Euclidean Graphs

In order to keep this paper concise, we will restrict our discussion to the finite non-
Euclidean graphs obtained from the action of the simple orthogonal group on the set of
non-isotropic points. Similar results hold for graphs obtained from the action of various
Lie groups on the set of non-isotropic points, lines and hyperplanes. We will address these
results in a subsequent paper.
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2.2.1 Graphs obtained from the action of simple orthogonal group O2m+1(q)
(q odd) on the set of non-isotropic points

Let V =
� 2m+1

q be the (2m + 1)-dimensional vector space over the finite field
�

q (q is
an odd prime power). For each element x of V , we denote the 1-dimensional subspace
containing x by [x]. Let Θ, Ω be the set of all square type and the set of all non-square-type
non-isotropic 1-dimensional subspaces of V with respect to the quadratic form Q2m+1,
respectively. Then we have |Θ| = (q2m − qm)/2 and |Ω| = (q2m + qm)/2. The simple
orthogonal group O2m+1(q) acts transitively on Θ and Ω.

We define the graphs Hq(O2m+1, Θ, i) (for 1 6 i 6 (q + 1)/2) as follows (let Ei be the
edge set of Hq(O2m+1, Θ, i)):

([x], [y]) ∈ E1 ⇔
(

x
y

)

.S.

(

x
y

)t

=

(

ν 1
1 ν−1

)

,

([x], [y]) ∈ Ei ⇔
(

x
y

)

.S.

(

x
y

)t

=

(

ν 1
1 ν2i−3

)

, (2 6 i 6 (q − 1)/2)

([x], [y]) ∈ E(q+1)/2 ⇔
(

x
y

)

.S.

(

x
y

)t

=

(

ν 0
0 ν

)

,

where ν ∈ �
q is a primitive element of

�
q, At denotes the transpose of A and S is the

matrix of the associated bilinear form of Q2m+1. Note that for m = 1 then we have the
finite analogue Hq of the upper half plane.

We define the graph Hq(O2m+1, Ω, i) (for 1 6 i 6 (q + 1)/2) as follows (let Ei be the
edge set of Hq(O2m+1, Ω, i)):

([x], [y]) ∈ E1 ⇔ Q2m+1(x + y) = 0,
([x], [y]) ∈ Ei ⇔ Q2m+1(x + y) = 2 + 2ν−(i−1), (2 6 i 6 (q − 1)/2)
([x], [y]) ∈ E(q+1)/2 ⇔ Q2m+1(x + y) = 2,

where we assume Q2m+1(x) = 1 for all [x] ∈ Ω.
As in finite Euclidean case, the graphs obtained in this section are always asymptoti-

cally Ramanujan. The following theorem summaries the results from Sections 1 and 2 in
[7] and from Section 7 in [5].

Theorem 8 a) The graphs Hq(O2m+1, Θ, i) (1 6 i 6 (q − 1)/2) are regular of valency
q2m−1 ± qm−1. The graph Hq(O2m+1, Θ, (q + 1)/2) is regular of valency (q2m−1 ± qm−1)/2.
Let λ be any eigenvalue of the graph Hq(O2m+1, Θ, i) with λ 6= valency of the graph then

|λ| 6 2q(2m−1)/2.

b) The graphs Hq(O2m+1, Ω, i) (1 6 i 6 (q − 1)/2) are regular of valency q2m−1 ± qm−1).
The graph Hq(O2m+1, Ω, (q + 1)/2) is regular of valency (q2m−1 ± qm−1)/2. Let λ be any
eigenvalue of the graph Hq(O2m+1, Ω, i) with λ 6= valency of the graph then

|λ| 6 2q(2m−1)/2.
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2.2.2 Graphs obtained from the action of simple orthogonal group O±
2m(q) (q

odd) on the set of non-isotropic points

Let V =
� 2m

q be the 2m-dimensional vector space over the finite field
�

q (q is an odd prime
power). For each element x of V , we denote the 1-dimensional subspace containing x by
[x]. Let Ω1, Ω2 be the set of all square type and the set of all non-square-type non-isotropic
1-dimensional subspaces of V with respect to the quadratic form Q+

2m, respectively. Then
we have |Ω1| = |Ω2| = (q2m−1 − qm−1)/2. The orthogonal group O+

2m(q) with respect to
the quadratic from Q+

2m over
�

q acts on both Ω1 and Ω2 transitively. We define the graph
Hq(O

+
2m, Ω1, i) (for 1 6 i 6 (q +1)/2) as follows (let Ei be the edge set of Hq(O

+
2m, Ω1, i)):

([x], [y]) ∈ Ei ⇔ 〈x, y〉Q+
2m

= 2−1νi, (1 6 i 6 (q − 1)/2)

([x], [y]) ∈ E(q+1)/2 ⇔ 〈x, y〉Q+
2m

= 0,

where we assume Q+
2m(x) = 1 for all [x] ∈ Ω.

Let Θ1, Θ2 be the set of all square type and the set of all non-square-type non-isotropic
1-dimensional subspaces of V with respect to the quadratic form Q−

2m, respectively. Then
we have |Θ1| = |Θ2| = (q2m−1 + qm−1)/2. The orthogonal group O−

2m(q) with respect to
the quadratic from Q−

2m over
�

q acts on both Θ1 and Θ2 transitively. We define the graph
Hq(O

−
2m, Θ1, i) (for 1 6 i 6 (q +1)/2) as follows (let Ei be the edge set of Hq(O

−
2m, Ω1, i)):

([x], [y]) ∈ Ei ⇔ 〈x, y〉Q−

2m
= 2−1νi, (1 6 i 6 (q − 1)/2)

([x], [y]) ∈ E(q+1)/2 ⇔ 〈x, y〉Q−

2m
= 0,

where we assume Q−
2m(x) = 1 for all [x] ∈ Ω.

The graphs obtained in this section are always asymptotically Ramanujan. The fol-
lowing theorem summaries the results from Sections 4 and 5 in [7] and from Section 4 in
[5].

Theorem 9 a) The graphs Hq(O2m, Θ1, i) (1 6 i 6 (q − 1)/2) are regular of valency
q2m−2 ± qm−1. The graph Hq(O2m, Θ, (q + 1)/2) is regular of valency (q2m−2 ± qm−1)/2.
Let λ be any eigenvalue of the graph Hq(O2m, Θ, i) with λ 6= valency of the graph then

|λ| 6 2q(2m−2)/2.

b) The graphs Hq(O2m, Ω1, i) (1 6 i 6 (q − 1)/2) are regular of valency q2m−2 ± qm−1.
The graph Hq(O2m+1, Ω, (q + 1)/2) is regular of valency (q2m−2 ± qm−1)/2. Let λ be any
eigenvalue of the graph Hq(O2m, Ω1, i) with λ 6= valency of the graph then

|λ| 6 2q(2m−2)/2.

3 Explicit Tough Ramsey Graphs

We call a graph G = (V, E) (n, d, λ)-regular if G is a d-regular graph on n vertices with the
absolute value of each of its eigenvalues but the largest one is at most λ. It is well-known
that if λ � d then a (n, d, λ)-regular graph behaves similarly as a random graph Gn,d/n.
Presicely, we have the following result (see Corollary 9.2.5 and Corollary 9.2.6 in [3]).
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Theorem 10 ([3]) Let G be a (n, d, λ)-regular graph.
a) For every set of vertices B and C of G, we have

|e(B, C) − d

n
|B||C|| 6 λ

√

|B||C|, (7)

where e(B, C) is the number of edges in the induced subgraph of G on B (i.e. the number
of ordered pairs (u, v) where u ∈ B, v ∈ C and uv is an edge of G).

b) For every set of vertices B of G, we have

|e(B) − d

2n
|B|2| 6

1

2
λ|B|, (8)

where e(B) is number of edges in the induced subgraph of G on B.

Let B, C be one of the maximum independent pairs of G, i.e. the “bipartite” subgraph
induced on (B, C) are empty and |B||C| is maximum. Let α2(G) denote the size |B||C|
of this pair. Then from (7), we have

α2(G) 6
λ2n2

d2
. (9)

Let B be one of the maximum independent sets of G. Then from (8), we have

α(G) = |B| 6
nλ

d
, (10)

and

χ(G) >
|V (G)|
α(G)

>
d

λ
. (11)

The toughness t(G) of a graph G is the largest real t so that for every positive integer
x ≥ 2 one should delete at least tx vertices from G in order to get an induced subgraph
of it with at least x connected components. G is t-tough if t(G) ≥ t. This parameter
was introduced by Chvatál in [12]. Chvatál also conjectures the following: there exists
an absolute constant t0 such that every t0-tough graph is pancyclic. This conjecture was
disproved by Bauer, van den Heuvel and Schmeichel [9] who constructed, for every real t0, a
t0-tough triangle-free graph. They define a sequence of triangle-free graphs H1, H2, H3, . . .
with |V (Hj)| = 22j−1(j + 1)! and t(Hj) ≥ √

2j + 4/2. To bound the toughness of a
(n, d, λ)-regular graph, we have the following result which is due to Alon in [2].

Theorem 11 [2] Let G = (V, E) be an (n, d, λ)-graph. Then the toughness t = t(G) of
G satisfies

t >
1

3

(

d2

λd + λ2
− 1

)

. (12)
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Let G be any graph of the form Eq(2m, Q±
2m, a), Eq(2m + 1, Q2m+1, a), Hq(2m +

1, Θ, i), Hq(2m + 1, Ω, i), Hq(2m, Ω1, i) and Hq(2m, Θ1, i) for a 6= 0 ∈ �
q and 1 6 i 6

(q + 1)/2. Then from Theorems 7, 8 and 9, the graph G is (c1q
n + O(qn/2), c2q

n−1 +
O(q(n−1)/2), 2q(n−1)/2)-regular for some n > 2 and c1, c2 ∈ {1

2
, 1}. By (10), (11) and (12),

we can show that the finite Euclidean and non-Euclidean graphs have high chromatic
number, small independent number and high tough number.

Theorem 12 Let G be any graph of the form Eq(2m, Q±
2m, a), Eq(2m + 1, Q2m+1, a),

Hq(2m + 1, Θ, i), Hq(2m + 1, Ω, i), Hq(2m, Ω1, i) and Hq(2m, Θ1, i) for a 6= 0 ∈ �
q and

1 6 i 6 (q + 1)/2. Suppose that |V (G)| = cqn + O(q(n−1)/2).

1. The independent number of G is small: α(G) 6 (4 + o(1))|V (G)|(n+1)/2n.

2. The chromatic number of G is high: χ(G) > |V (G)|(n−1)/2n/(4 + o(1)).

3. The toughness of G is at least |V (G)|(n−1)/2n/(12 + o(1)).

In [31], the authors derived the following theorem using only elementary algebra. This
theorem can also be derived from character tables of the association schemes of affine
type ([22]) and of finite orthogonal groups acting on the nonisotropic points ([5]).

Theorem 13 Among all finite Euclidean and non-Euclidean graphs, the only triangle-free
graphs are

1. Eq(2, Q
−, a) where 3 is square in

�
q.

2. Eq(2, Q
+, a) where 3 is nonsquare in

�
q.

3. Hq(3, Q, a) for at least one element a ∈ � ∗
q.

Theorems 12 and 13 shows that the finite Euclidean Eq(2, Q
+, a), where q is a prime

of form q = 12k ± 5 and a 6= 0 ∈ � q, is an explicit triangle-free graph on nq = q2 vertices

whose chromatic number exceeds 0.5n
1/4
q . Therefore, this disproves the conjecture of

Chavatál. In addition, this graph is an explicit construction showing that R(3, k) ≥
Ω(k4/3).

Note that, in [24], the authors constructed explicitly for every d = p + 1 where p ≡ 1(
mod 4) is a prime, and for every n = q(q2 − 1)/2 where q ≡ 1( mod 4) is a prime and p
is a quadratic residue modulo q, (n, d, λ) graphs Gn with λ = 2

√
d − 1, where the grith of

Gn is at least 2logpq > 2
3
logd−1n. Using Theorem 11, Noga Alon [2] derived the existence

of t0-tough graphs without cycles of length up to c(t0) log n, for an arbitrary constant t0.
Moreover, the bounds obtained from Theorems 12 and 13 match with the bounds

obtained by code graphs in Theorem 3.1 in [2]. These graphs are Caley graphs and their
construction is based on some of the properties of certain Dual BCH error-correcting
codes. For a positive integer k, let Fk = GF (2k) denote the finite field with 2k elements.
The elements of Fk are represented by binary vectors of length k. If a and b are two such
vectors, let (a, b) denote their concatenation. Let Gk be the graph whose vertices are all
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n = 22k binary vectors of length 2k, where two vectors u and v are adjacent if and only
if there exists a non-zero z ∈ Fk such that u + v = (z, z3) mod 2 where z3 is computed
in the field Fk. Then Gk is a dk = 2k − 1-regular graph on nk = 22k. Moreover, Gk is
triangle-free with independence number at most 2n3/4. Noga Alon gives a better bound
R(m, 3) ≥ Ω(m3/2) i n [1] by considering a graph with vertex set of all n = 23k binary
vectors of length 3k (instead of all binary vectors of length 2k). Suppose that k is not
divisible by 3. Let W0 be the set of all nonzero elements α ∈ Fk such that the leftmost
bit in the binary representation of α7 is 0, and let W1 be the set of all nonzero elements
α ∈ Fk for which the leftmost bit of α7 is 1. Then |W0| = 2k−1 − 1 and |W1| = 2k−1. Let
Gn be the graph whose vertices are all n = 23k binary vectors of length 3k, where two
vectors u and v are adjacent if and only if there exist w0 ∈ W0 and w1 ∈ W1 such that
u + v = (w0, w

3
0, w

5
0) + (w1, w

3
1, w

5
1) where the powers are computed in the field Fk and

the addition is addition module 2. Then Gn is a dn = 2k−1(2k−1 − 1)-regular graph on
n = 23k vertices. Moreover, Gn is a triangle-free graph with independence number at most
(36 + o(1))n2/3. The problem of finding better bounds for the chromatic number of finite
Euclidean and non-Euclidean graphs on the plane and the upper half plane, respectively
touches on an important question in graph theory: what is the greatest possible chromatic
number for a triangle-free regular graph of order n? It is known that if G is a triangle-
free graph of order n then χ(G) 6 c

√

n/ log n (see Lemma 2 in [13]). When we drop
the regularity assumption then the upper bound is best possible as Kim [21] proved the
existence of a graph G with order n and χ(G) > c

√

n/ log n. The final remark at the end
of Section 5 gives us a plausible reason to conjecture that the anwer for the regular case
is also Θ(

√

n/ log n).

4 Erdős distance problem

4.1 Proof of Theorem 3

Let Q be any non-degenerate quadratic of
� n

q . Recall that the Euclidean graph Eq(d, Q, a)
was defined as the graph with vertex set V and edge set

E = {(x, y) ∈ V × V |x 6= y, Q(x − y) = a}.

Lemma 1 Let E ⊂ � d
q such that |E| > 3q

d+1
2 . Then ∆Q(E) =

�
q.

Proof By Theorem 7, each graph Eq(d, Q, a) is a (qd, qd−1 ± qb(d−1)/2c, 2q(d−1)/2)-regular
graph. By (10) , for any a 6= 0 ∈ � q, we have

α(Eq(d, Q, a)) 6
2q(3d−1)/2

qd−1 − q(d−1)/2
6 3q(d+1)/2. (13)

Thus, if |E| > 3q
d+1
2 then E is not an independent set of Eq(d, Q, a), or equivalently there

exist x, y ∈ E such that Q(x − y) = a for any a ∈ �
q. This concludes the proof of the

lemma. �
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Lemma 2 For any 0 < ε < 1/2. Let E ⊂ �
q such that |E| > 3q

d
2
+ε. Then

|∆Q(E)| > q
1
2
+ε, (14)

for any q > 61/(ε−1/2).

Proof By Theorem 7, each graph Eq(d, Q, a) is a (qd, qd−1 ± qb(d−1)/2c, 2q(d−1/)2)-regular
graph. By (10), the number of edges of Eq(d, Q, a) in the induced subgraph on E is at
most

eEq(d,Q,a)(E) 6
qd−1 + q(d−1)/2

2qd
|E|2 + q(d−1)/2|E|. (15)

Suppose that #∆Q(E) < q1/2+ε. From (15), we have
(|E|

2

)

=
∑

a∈∆Q(E)

eEq(d,Q,a)(E)

< q1/2+ε

{

qd−1 + q(d−1)/2

2qd
|E|2 + q(d−1)/2|E|

}

< |E|qε− 1
2

{(

1

2
+

1

2
q−(d−1)/2

)

|E| + q(d+1)/2

}

,

which implies that

q
1
2
−ε(|E| − 1) <

(

1 + q−(d−1)/2
)

|E| + 2q(d+1)/2

6 (1 + q−1/2 +
2

3
q

1
2
−ε)|E|.

Therefore, we have

q
1
2
−ε >

(

1

3
q

1
2
−ε − 1 − q

1
2

)

|E|

>
(

q
1
2
−ε − 3 − 3q−

1
2

)

q
d
2
+ε,

which is a contradiction if q > 61/(1/2−ε). The lemma follows. �

Theorem 3 follows immediately from Lemma 1 and Lemma 2.

4.2 Proof of Theorem 4

For a fixed a ∈ �
q, the finite non-Euclidean graph Vq(σ, a) has vertices as the points in

Hq and edges between vertices z, w if and only if d(z, w) = a. Except when a = 0 or
a = 4σ, Vq(σ, a) is a connected (q + 1)-regular graph. When a = 0, 4σ then Vq(σ, a) is
disconnected, with one or two nodes, respectively, per connected component. As a varies,
we have q − 2 (q + 1)-regular graphs Vq(σ, a). The question of whether these graphs are
always nonisomorphic or not is still open. See [28] for a survey of spectra of Laplacians
of this graph.
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Lemma 3 Let E ⊂ Hq such that |E| > 2q3/2. Then |∆H(E)| > q − 1.

Proof Each graph Vq(σ, a) (with a 6= 0, 4σ ∈ � q) is a (q2 − q, q + 1, 2q1/2)-regular graph.
By (10), for any a 6= 0, 4σ ∈ � q, we have

α(Vq(σ, a)) 6
2(q2 − q)q1/2

q + 1
6 2q3/2. (16)

Thus, #E > 2q3/2 then E is not an independent set of Vq(σ, a) or equivalently, there exist
x, y ∈ E such that d(x− y) = a for any a ∈ � q −{0, 4a}. This concludes the proof of the
lemma. �

Note that Vq(σ, 4σ) is just a disjoint union of (q2 − q)/2 edges. So we can have a set
E ∈ Hq with |E| = (q2 − q)/2 and ∆H(E) =

�
q − {4σ}.

Lemma 4 For any 0 < ε < 1/2. Let E ⊂ �
q such that |E| > 3q

d
2
+ε. Then

|∆H(E)| > q
1
2
+ε, (17)

for any q > 91/(ε−1/2).

Proof For any a 6= 0, 4σ ∈ � q, each graph Vq(σ, a) is a (q2−q, q+1, 2q1/2)-regular graph.
From Theorem 10, the number of edges of Vq(σ, a) in the induced subgraph on E is at
most

eVq(σ,a)(E) 6
q + 1

2(q2 − q)
|E|2 + q1/2|E|. (18)

Suppose that |∆H(E)| < q1/2+ε. From (18), we have
(|E|

2

)

=
∑

a∈∆H(E)

eVq(σ,a)(E)

< q1/2+ε

{

q + 1

2(q2 − q)
|E|2 + q1/2|E|

}

< |E|qε− 1
2

{(

1

2
+

1

q − 2

)

|E| + q3/2

}

,

which implies that

q
1
2
−ε(|E| − 1) <

(

1 +
2

q − 2

)

|E| + 2q3/2

6 (1 +
2

q − 2
+

2

3
q

1
2
−ε)|E|.

Therefore, we have

q
1
2
−ε >

(

1

3
q

1
2
−ε − 1 − 2

q − 2

)

|E|

>

(

q
1
2
−ε − 3 − 6

q − 2

)

q1+ε,
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which is a contradiction when q > 91/(1/2−ε). The lemma follows. �

Theorem 4 follows immediately from Lemma 3 and Lemma 4. Similar results hold
for others non-Euclidean spaces defined in Section 2. We will discuss these results in a
subsequent paper.

4.3 Set of distances between two sets

Now we will prove Theorem 5 and Theorem 6. For any a 6= 0 ∈ � q, by Theorem 10, the
number of edges of the graph Eq(d, Q, a) in the induced “bipartite” subgraph on (E, F )
(two vertex parts are not necessary disjoint) is at most:

eEq(d,Q,a) 6
qd−1 + q(d−1)/2

qd
|E||F | + 2q(d−1)/2

√

|E||F |. (19)

Thus, we have

|E||F | =
∑

a∈∆Q(E,F )

eEq(d,Q,a)

6 ∆Q(E, F )

(

qd−1 + q(d−1)/2

qd
|E||F |+ 2q(d−1)/2

√

|E||F |
)

,

which implies that

∆Q(E, F ) >
1

1
q

+ 1
q(d+1)/2 + 2q(d−1)/2√

|E||F |

. (20)

From the above inequality, we can easily derive the following analogue of Lemma 2 for
the distance set ∆Q(E, F ).

Lemma 5 For any 0 < ε < 1. If |E||F | > 9q(d−1)+ε then

∆Q(E, F ) >

√

|E||F |
3q(d−1)/2

> qε/2

for any q � 1.

By Theorem 7, each graph Eq(d, Q, a) is a (qd, qd−1±qb(d−1)/2c, 2q(d−1)/2)-regular graph.
By (9) , for any a 6= 0 ∈ � q, we have

α2(Eq(d, Q, a)) 6

(

2q(3d−1)/2

qd−1 − q(d−1)/2

)2

6 9qd+1. (21)

Thus, if |E||F | > 9qd+1 then E, F is not an independent pair of Eq(d, Q, a) for any nonzero
a. This implies that there exist x ∈ E and y ∈ F such that Q(x, y) = a for any a ∈ � q.
We have the following analogue of Lemma 1.
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Lemma 6 Let E, F ⊂ � d
q such that |E||F | > 9qd+1. Then ∆Q(E, F ) =

�
q.

Theorem 5 is immediate from Lemma 5 and Lemma 6. The proof of Theorem 6 is
similar and is left for the readers. Note that the analogue of Lemma 3 for the distance
set ∆H(E, F ) is interesting in its own right.

Lemma 7 Let E, F ⊂ Hq such that |E||F | > 9q3. Then |∆H(E, F )| ≥ q − 1.

5 Further remarks

The proofs in [17] and [18] show that the conclusion of Theorem 3 holds with the non-
degenerate quadratic form Q is replaced by any function F with the property that the
Fourier transform satisfies the decay estimates

∣

∣

∣
F̂t(m)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

q−d
∑

x∈ � d
q :F (x)=t

χ(−x.m)

∣

∣

∣

∣

∣

∣

6 Cq−(d+1)/2 (22)

and
∣

∣

∣
F̂t(0, . . . , 0)

∣

∣

∣
=

∣

∣

∣

∣

∣

∣

q−d
∑

x∈ � d
q :F (x)=t

χ(−x.(0, . . . , 0))

∣

∣

∣

∣

∣

∣

6 Cq−1, (23)

where χ(s) = e2πiTr(s)/q and m 6= (0, . . . , 0) ∈ � d
q (recall that for y ∈ �

q, where q = pr

with p prime, the trace of y is defined as Tr(y) = y + yp + . . . + ypr−1 ∈ �
q). The basic

object in these proofs is the incidence function

IB,C(j) = |B||C|v(j) = |(x, y) ∈ B × C : F (x − y) = j|
=

∑

x,y∈ � d
q

B(x)C(y)Fj(x − y),

where B, C, Fj denotes the characteristic function of the sets B, C and {x : F (x) = j},
respectively. Using the Fourier inversion, we have

IB,C(j) = q2d
∑

m∈ � d
q

B̂(m)Ĉ(m)F̂j(m). (24)

Now we define the F -distance graph GF (q, d, j) with the vertex set V =
� d

q and the
edge set

E = {(x, y) ∈ V × V |x 6= y, F (x − y) = j}.
Then the exponentials (or characters of the additive group

� d
q)

em(x) = exp

(

2πiTr(x.m)

p

)

, (25)
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for x, m ∈ � d
q , are eigenfunctions of the adjacency operator for the F -distance graph

GF (q, d, j) corresponding to the eigenvalue

λm =
∑

F (x)=j

em(x) = qdF̂j(−m). (26)

Thus, the decay estimates (22) and (23) are equivalent to

λm 6 Cq(d−1)/2, (27)

for m 6= (0, . . . , 0) ∈ � d
q , and

λ(0,...,0) 6 Cqd−1. (28)

Let A be the adjacency matrix of GF (q, d, j) with the orthonomal base v0, . . . , vqd−1,
corresponding to eigenvalues λ(0,...,0), . . . , λ(q−1,...,q−1), where v0 = 1̄/

√
n. For any two sets

B, C ⊂ � d
q, let vB and vC be the characteristic vectors of B and C. Let vB =

∑

i βivi and
vC =

∑

i γivi be their representations as linear combinations of v0, . . . , vqd−1. We have

IB,C(j) = eGF (q,d,j)(B, C) = vBAvC

= (
∑

i

βivi)A(
∑

j

γjvj)

= (
∑

i

βivi)(
∑

j

γjλjvj)

=
∑

i

λiβiγi.

From (24), (26) and the above expression, we can see the similarity between our
approach and those in [17] and [18] as follows. Given the decay estimates (22) and (23),
we can bound the incidence function as in [17] and [18]

IB,C(j) 6 |B||C|F̂j(0, . . . , 0) + q(d−1)/2
∑

m6=(0,...,0)

qd|B̂(m)||Ĉ(m)|

6 Cq−1|B||C| + Cq(d−1)/2qd





∑

m6=(0,...,0)

|B̂(m)|2




1/2



∑

m6=(0,...,0)

|Ĉ(m)|2




1/2

6 Cq−1|B||C| + Cqd−1

(

∑

x

|B(x)|2
)1/2(

∑

x

|C(x)|2
)1/2

6 Cq−1|B||C| + Cqd−1
√

|B|
√

|C|.

Given the bounds (27), (28) for eigenvalues of the F -distance graph GF (q, d, j), we
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obtain the same bound for the incidence function

IB,C(j) = λ(0,...,0)〈vB, 1̄/
√

qd〉〈vC , 1̄/
√

qd〉 +
∑

m6=(0,...,0)

λmβmγm

6 Cq−1|B||C| + Cq(d−1)/2
∑

m6=(0,...,0)

|βm||γm|

6 Cq−1|B||C| + Cq(d−1)/2‖β‖2‖γ‖2

= Cq−1|B||C| + Cq(d−1)/2
√

|B|
√

|C|.

Thus, our approach and the Fourier methods in [18] and [17] are almost identical.
Many results obtained from the Fourier method can be proved using our method and vice
versa. However, both methods have their own advantages. On one hand, many results
(obtained from the Fourier methods) in [16] are hard to derive from the graph theory
method. On another hand, the graph theory method sometimes gives us many simple
applications without invoking more advanced tools like the character sums or Fourier
transform (see [30]).

It is worth to notice that Theorem 4 and Theorem 6 also follow from the Fourier
methods. However, we will need to use Soto-Andrade sums bound instead of Kloosterman
sums bounds for non-Euclidean spaces. We will address these results in a consequent
paper.

Finally, the F -distance graph with the function F satisfying the decay estimates (22)
and (23) give us a possible approach to construct triangle-free graphs with very high
chromatic number. For example, if we can find a sum-free variety in

� d
q defined by a

polynomial F (x1, . . . , xd) ∈
�

q[X1, . . . , Xd] (i.e., F (X) = 0, F (Y ) = 0 then F (X +Y ) 6= 0
for every X, Y ∈ � d

q) then we can construct a triangle-free graph of order n = qd with the

chromatic number at least Cn(d−1)/2d. We see in Section 3 that the varieties of degree two
only give us triangle-free graphs over vector spaces of dimension two. We hope to address
this problem for higher dimensional vector spaces in a subsequent paper.

Acknowledgments
The author is very grateful to Dang Phuong Dung and Si Li for many useful discussions,
helpful comments and endless encouragement. He also would like to thank Professor Alex
Iosevich for constructive comments on early version of this manuscript and the referee for
helpful suggestions to improve the presentation of this paper.

References

[1] N. Alon, Explicit Ramsey graphs and orthonormal labellings, The Electronic Journal
of Combinatorics 1 (1994), R12, 8pp.

[2] N. Alon, Tough Ramsey graphs without short cycles, Journal of Algebraic Combina-
torics

[3] N. Alon, J.H. Spencer, The Probabilisitic Method, 2nd ed., Wiley-Interscience, 2000.

the electronic journal of combinatorics 15 (2008), #R5 16



[4] E. Bannai, W.M. Kwok, S.-Y. Song, Ennola type dualities in the character tables of
some association schemes, Mem. Fac. Sci. Kyushi Univ. Ser. A. 44 (1990), 129-143.

[5] E. Bannai, S. Hao, S.-Y. Song, Character tables of the association schemes of finite
orthogonal groups acting on the nonisotropic points, Journal of Combinatorial Theory
Series A 54 (1990), 164-170.

[6] E. Bannai, S. Hao, S.-Y. Song, H. Wei, Character tables of certain association schemes
coming from finite unitary and sympletic groups, Journal of Algebra 144 (1991), 189-
200.

[7] E. Bannai, O. Shimabukuro, H. Tanaka, Finite analogues of non-Euclidean spaces and
Ramanujan graphs, European Journal of Combinatorics 25 (2004), 243-259.

[8] E. Bannai, O. Shimabukuro, H. Tanaka, Finite Euclidean graphs and Ramanujan
graphs, Discrete Mathematics (to appear).

[9] D. Bauer, J. Vandenheuvel and E. Schmeichel, Toughness and Triangle-Free Graphs,
Journal of Combinatorial Theory, Series B 65 (2) (1995), 208-221.

[10] J. Bourgain, Hausdorff dimension and distance sets, Israel Journal of Mathematics
87 (1994), 1993-201.

[11] J. Bourgain, N. Katz, T. Tao, A sum-product estimate in finite fields, and applica-
tions, Geom. Funct. Anal. 14 (2004), 27-57.
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