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Abstract

The packing density of a permutation pattern π is the limiting value, n → ∞, of

the maximum proportion of subsequences of σ ∈ Sn that are order-isomorphic to π.

We generalize methods for obtaining lower bounds for the packing density of any

pattern and demonstrate the methods’ usefulness when patterns are non-layered.

1 Introduction

The permutation 52134 contains five subsequences 523, 524, 513, 514, 534 that are
order-isomorphic (i.e. have the same relative order) to the permutation 312. In this
situation, we can call the permutation 312 a pattern. In 1992, Herb Wilf first introduced
the study of pattern containment during his address to the SIAM meeting on Discrete
Mathematics. Since then, there has been a great deal of published results on pattern
containment that deal with pattern avoidance, or the enumeration of permutations that
do not contain any occurrences of a particular pattern. However, there is significantly
less research on pattern containment involving permutations that contain the greatest
number of subsequences which are order-isomorphic to a given pattern, commonly known
as the packing density. Virtually all of this research has focused on a specific type of
pattern known as layered patterns. Then in 2002, Albert, Atkinson, Handley, Holton &
Stromquist (hereafter referred to as AAHHS) [1] determined a lower bound for the packing
density of the non-layered pattern 2413 by using the permutation σ = 35827146, which
contains a relatively large number of 2413-occurrences. In this paper, we will improve
this lower bound and introduce a generalized method involving weighted templates as a
way for computing lower bounds for δ(π), the packing density of a non-layered pattern π.
Furthermore, we will show, via Theorem 3.6, that in order to achieve a better estimate
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for δ(π), it is necessary for the weights of the template to be non-uniform rather than
uniform.

Let π ∈ Sm be a permutation pattern and σ ∈ Sn be a permutation. An occurrence of
π in σ (or a π-occurrence in σ), is a subsequence of σ that is order-isomorphic to π. It is
clear that m ≤ n in order for a π-occurrence in σ to exist and we will assume this to be
the case unless stated otherwise. We denote ν(π, σ) to be the number of π-occurrences
in σ. The packing density of π in σ, δ(π, σ), is the probability that a subsequence of σ is
order-isomorphic to π with

δ(π, σ) =
ν(π, σ)
(

n
m

) .

Since we are interested in finding the greatest number of π-occurrences among all permu-
tations in Sn, let

δn(π) = max
σ∈Sn

δ(π, σ).

Clearly, {δn(π)} is a bounded sequence. In an unpublished work, Fred Galvin proved
that this sequence is non-increasing and therefore approaches a limit. (Varying forms
of the proof appear in a variety of published works, e.g.[1, 4].) Thus we define the
packing density of π as

δ(π) = lim
n→∞

δn(π).

In [1], the lower bound for the packing density of the pattern 2413, δ(2413), was deter-
mined by starting with the permutation 35827146, which contains 17 occurrences of 2413-
pattern and restricting consideration to permutations of the form σ = σ3σ5σ8σ2σ7σ1σ4σ6

where n = |σ|, n/8 = |σi| for each i, σi < σj whenever i < j, |σk| = |σk+1| for each k, and
each subpermutation σk is recursively composed in this same fashion. That is, the elements
of each σk can be expressed in the form σk = (σk)3(σk)5(σk)8(σk)2(σk)7(σk)1(σk)4(σk)6

such that (σk)i < (σk)j whenever i < j , and |(σk)i| = |(σk+1)j| for each k. This recursive
composition continues until we are left with blocks of order 1.

Let pn be the probability that an occurrence of 2413 is obtained when a four-term
subsequence is chosen at random from σ. These occurrences arise in two ways. The first
way is when all four points are picked from the same σi. The probability of this occurring
is the product of the number of σi’s, the probability of picking all four points in the same
σi, and the probability pn/8 that the four points formed a 2413-pattern in σi, which equals

8
(1

8

)4

pn/8 =
1

512
pn/8.

The second way is when each point is selected from a distinct σi. The probability
of this occurring is the product of the number of occurrences of 2413 in 35827146, the
number of different orderings of four elements, and the probability of picking one point
from each σi, which equals

17 · 4!
(1

8

)4

=
52

512
.
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Therefore pn =
1

512
pn

8

+ 51/512. By taking the limit as n approaches infinity, we know

that pn approaches a limit p which in turn satisfies

p =
1

512
p +

51

512
, resulting with p =

51

511
.

It is worth noting that in both cases, we assume when four points are selected at
random, the points are distinct. While it is possible for a point to be repeated when
we are randomly picking four points, the result is a subsequence that does not form a
2413-pattern in σ. Furthermore, as n → ∞, the probability of repetition approaches 0.

Since pn ≤ δn(2413), it is clear that p ≤ δ(2413) and finally
51

511
≤ δ(2413).

2 Template method

The technique used by AAHHS can be formalized by calling the permutation 35827146
a template for 2413. In general, any permutation T = t1t2 . . . tn ∈ Sn (or Tn , for short),
can be a template for a pattern π ∈ Sm where the structure of T and the number of
occurrences of π in T (or π-occurrences in T) are used to determine a lower bound for
δ(π). Although it will be preferable for ν(π, σ) = max

σ∈Sn

ν(π, σ) , it is not necessary. Also,

without loss of generality, we will assume that m ≤ n and ν(π, T ) > 0.

Example 2.1. In [1], the template for π = 2413 was T8 = 35827146 with ν(π, T8) = 17.

Using the template, we can always find a lower bound for δ(π). This will be particularly
useful for cases when our pattern π is non-layered.

Theorem 2.2. Given any pattern π ∈ Sm and a template T ∈ Sn,

ν(π,T) · m!

nm − n
≤ δ(π).

Proof. Consider the permutations of the form σT = σt1σt2 . . . σtn ∈ Sk where σi ≤ σj

whenever i < j, |σi| = |σi+1| for each i, and each σi is recursively constructed in this same
manner. Now let us determine the probability pk (k = |σT |) of choosing m points from
σT that form a π-pattern. One way for this to occur is when all of the selected m points

of the π-pattern lie in a single σti . The probability of this happening is n
( 1

n

)m

pk/n
.

Another way is when each of the m points of the π-pattern lies in a distinct σti . The

probability of this is ν(π, T ) · m! ·
( 1

n

)m

. Hence

pk = n
( 1

n

)m

pk/n
+ ν(π, T ) · m! ·

( 1

n

)m

. (1)

It is worth noting that we are ignoring the possible case when an occurrence may
involve less than m but more than 1 subpermutation. However, the probability of this
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case (or cases depending on the structure of π) can be computed similarly and added to
equation (1) as necessary.

As k → ∞, pk approaches a limit p. In the limit,

p = n
( 1

n

)m

p + ν(π, T ) · m! ·
( 1

n

)m

which has a solution

p =
ν(π, T ) · m! ·

( 1

n

)m

1 − n
( 1

n

)m =
ν(π, T ) · m!

nm − n

It is true that pk ≤ δk(π). Therefore p =
ν(π, T ) · m!

nm − n
≤ δ(π) as desired.

Corollary 2.3. For any π ∈ Sm,

m!

mm − m
≤ δ(π).

Proof. Use π as its own template, i.e. π = T .

Example 2.4. Let π = T4 = 2413. Then a lower bound for δ(2413) is

4!

44 − 4
=

2

21
.

Example 2.5. Let π = 2413. Recall that for T = T8 = 35827146 with ν(π, T ) = 17,

the lower bound found for δ(2413) was
51

511
. Although this choice of T provided us with

a substantial number of 2413-occurrences, a lower bound can be determined using any
choice of T. Suppose we let T8 = 13862745. Then ν(π, T8) = 5 and we find a lower bound
for δ(2413) to be

p =
ν(π, T ) · m!

nm − n
=

5 · 4!

84 − 8
=

15

511
.

This certainly makes a case for using a template that has as large of a number of
π-occurrences as possible.

Example 2.6. Let π = 2413 and T = T12 = 468(12)3(11)2(10)1579. Then ν(π, T ) = 86.
Now using the template method, we can find another lower bound for the packing density
of 2413.

p =
ν(π, T ) · m!

nm − n
=

86 · 4!

124 − 12
=

172

1727
.

While this lower bound is better than the one resulting from T4 = 2413, the best lower
bound for δ(2413) thus far comes from T8 = 35827146.
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3 Weighted templates

In Theorem 2.2, the permutations of the form σT = σt1σt2 . . . σtn ∈ Sk are structured
such that |σi| = |σi+1| for each i. In a probabilistic sense, each σi has the same likelihood
of being chosen to be part of a π-occurrence. However in using a template to determine
a lower bound for δ(π), we find that we can achieve better lower bounds by allowing the
lengths of the σi’s to vary. In doing so, we permit the probabilities that the σi’s contain
a point in a π-occurrence to vary.

Definition 3.1. A weighted template, T = t1t2 . . . tn ∈ Sn, is a template together with a
sequence of rational weights {wi}, one for each ti, such that 0 ≤ wi ≤ 1 and

∑n
i=1 wi = 1.

From here, we can construct a weighted lower bound for δ(π), again restricting our
consideration to those permutations of the form σT = σt1σt2 . . . σtn ∈ Sk. However the
probability that σti will occur in a π-pattern will be equal to wi, the weight of ti. Now
let us determine the weighted probability pk of choosing m points from σT that form a
π-pattern.

1. All of the selected m points of the π-pattern lie in a single σti :

The points found in this type of π-occurrence all have the same weight, namely wi.
This yields

n
∑

i=1

[(wi)
mpkwi

].

2. Each of the m points of the π-pattern lies in a distinct σti :

In this case, each point in the π-occurrence has the weight of the σti in which it is
located. Thus for j = 1, 2, . . . , ν(π, T ), let Wj be the product of the weights of the
m distinct σti ’s that make up the jth π-occurrence. This yields

m! ·

ν(π,T )
∑

j=1

Wj

where

Wj =
m
∏

r=1

w(j,r) = w(j,r)w(j,r) · · ·w(j,r)

is determined by the weights of the m points of the jth π-occurrence. Hence our
probability equation is

pk =

n
∑

i=1

[(wi)
mpkwi

] + m! ·

ν(π,T )
∑

j=1

Wj

As k → ∞, pk approaches a limit p. Thus

p =

n
∑

i=1

[(wi)
mp] + m! ·

ν(π,T )
∑

j=1

Wj
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with solution

p =

m! ·

ν(π,T )
∑

j=1

Wj

1 −
n
∑

i=1

(wi)
m

.

Theorem 3.2. Given any pattern π ∈ Sm and a weighted template T ∈ Sn,

m! ·

ν(π,T )
∑

j=1

Wj

1 −

n
∑

i=1

(wi)
m

≤ δ(π).

Proof. This is proved in the same way as in Theorem 2.2.

Naturally, we are interested in our choices for wi. In [1], the weights were uniform;

i.e. wi =
1

8
for i = 1, 2, . . . , 8. More generally, it was shown from Theorem 2.2 that the

uniform weighting is determined by the order of the template T. Thus given any T ∈ Sn,

the uniform weighting would be wi =
1

n
for i = 1, 2, . . . , n. Examples 2.4, 2.5, and 2.6

illustrated this.
Another option for assigning weights is based on the multiplicity of each ti in the set of

π-occurrences. We have found multiplicity weighting to provide us with improved lower
bounds over those bounds from uniform weighting. We will prove this in Theorem 3.6,
but we will set the stage with a few crucial lemmas first.

Lemma 3.3. If α1, α2, . . . , αn is a sequence of non-negative real numbers, then

n ·

(

α1 + α2 + . . . + αn

n

)m

=
1

nm−1

(

n
∑

i=1

αi

)m

≤

n
∑

i=1

(αi)
m

Proof. Hölders inequality for sums [3] states that for a fixed real number p > 1 and
a = (a1, a2, . . .), b = (b1, b2, . . .) in the real space lp,

∞
∑

i=1

|aibi| ≤

(

∞
∑

i=1

|ai|
p

)1/p
(

∞
∑

i=1

|bi|
q

)1/q

where
1

p
+

1

q
= 1. Therefore our inequality is achieved by letting p = m, q =

m

m − 1
,

a = (α1, α2, . . . , αn, 0, . . .), and b = (1, 1, . . . , 1, 0, . . .)
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Lemma 3.4. Let n be a positive integer. If y1, y2, . . . , yn are positive real numbers and y

is the arithmetic mean of the yi’s, then

y(y1+...+yn) ≤ (y1)
y1 · · · (yn)

yn .

Proof. For non-negative numbers, a1, a2, . . . , an and b1, b2, . . . , bn , the Log-sum inequality
[2] states

(

n
∑

i=1

ai

)

· log













n
∑

i=1

ai

n
∑

i=1

bi













≤

n
∑

i=1

ailog
(ai

bi

)

Let ai = yi and bi = 1 for i = 1, 2, . . . , n to obtain

(

n
∑

i=1

yi

)

· log













n
∑

i=1

yi

n
∑

i=1

1













≤
n
∑

i=1

yilog(yi)

Hence,

log

[(

y1 + . . . + yn

n

)(y1+...+yn)]

≤ log
[

(y1)
y1 · · · (yn)yn

]

and therefore
(

y1 + . . . + yn

n

)(y1+...+yn)

≤ (y1)
y1 · · · (yn)

yn

We also need the following version of the arithmetic mean – geometric mean inequality.

Lemma 3.5. Let n be a positive integer. Suppose x1, . . . , xn and a are positive real

numbers such that an ≤ x1 · · ·xn. Then na ≤ x1 + . . . + xn.

Now, we are ready to prove the main theorem of this paper.

Theorem 3.6. Given any pattern π ∈ Sm and a weighted template T = t1t2 . . . tn ∈ Sn

with weights {wi} proportional to the multiplicities of the ti’s, then the uniformly weighted

lower bound

ν(π,T) · m! ·
( 1

n

)m

1 − n
( 1

n

)m ≤

m! ·

ν(π,T )
∑

j=1

Wj

1 −

n
∑

i=1

(wi)
m

.
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Proof. For each ti, let αi be the number of times ti appears among the ν(π, T ) π-

occurrences. For i = 1, 2, . . . , n, let wi =
αi

α1 + . . . + αn
. Using Lemma 3.3, we have

ν(π,T) · m! ·
( 1

n

)m

1 − n
( 1

n

)m =

m! ·

ν(π,T)
∑

j=1

( 1

n

)m

1 −
n
∑

i=1

(

α1+...+αn

n

α1 + . . . + αn

)m (2)

≤

m! ·

ν(π,T)
∑

j=1

( 1

n

)m

1 −
n
∑

i=1

(

αi

α1 + . . . + αn

)m . (3)

Now we focus on the numerator. Recall that the probability for the j th π-occurrence
is the product of the weights of the m distinct σti ’s that make up the jth π-occurrence,

Wj =

m
∏

r=1

w(j,r) = w(j,r)w(j,r) · · ·w(j,r). Thus when we use multiplicity based weights, the

sum of the probabilities for the ν(π, T ) π-occurrences is

ν(π,T )
∑

j=1

Wj =

ν(π,T )
∑

j=1

m
∏

r=1

w(r,j).

Let us consider the possible values this sum may take. When ν(π, T ) = 0, every αi

must equal 0 and therefore the sum is zero. For any ν(π, T ) ≥ 0, at least m of the αi’s
are greater than 0.

Suppose ν(π, T ) ≥ 1. We proceed by assuming that all of the wi’s are non-zero
knowing that the proof can be completed by omitting the weights that equal zero and
adjusting the subscripts accordingly.

Using Lemma 3.4 for the inequality in (3) and recalling that
∑n

i=1 wi = 1 , we find
that our weights satisfy

1

n
=

(

w1 + . . . + wn

n

)w1+...+wn

≤ (w1)
w1 · · · (wn)wn. (4)

Since the wi’s are proportional to the multiplicities of the elements of our template T, we
may write αi = wi · m · ν(π, T ) for each i. Thus raising both sides of (4) to the power
m · ν(π, T ) gives us

( 1

n

)m·ν(π,T )

≤ (w1)
α1 · · · (wn)αn .
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Now we are able to regroup the weights in the product (w1)
α1 · · · (wn)αn with respect to

the π-occurrences to get

(w1)
α1 · · · (wn)

αn =
m
∏

r=1

w(r,1) · · ·
m
∏

r=1

w(r,ν(π,T )) = W1 · · ·Wν(π,T ).

Thus we have
( 1

n

)m·ν(π,T )

≤ W1 · · ·Wν(π,T ).

This satisfies the hypothesis of Lemma 3.5 and yields

ν(π, T )
( 1

n

)m

≤ W1 + . . . + Wν(π,T ).

Therefore, we have proven the inequality

ν(π,T) · m! ·
( 1

n

)m

1 − n
( 1

n

)m ≤

m! ·

ν(π,T )
∑

j=1

Wj

1 −

n
∑

i=1

(wi)
m

.

Example 3.7. Let π = 2413 and T8 = 35827146. Recall that there are 17 occurrences
of π in T8. By examination, it is easy to see that 1, 3, 6, and 8 occur in nine of the π-

occurrences and 2, 4, 5, and 7 occur in eight of them. Thus wi =
9

68
for i = 1, 3, 6, 8 and

wi =
8

68
for i = 2, 4, 5, 7. Substituting these into p =

(

m! ·

ν(π,T )
∑

j=1

Wj

)

/

(

1 −
n
∑

i=1

(wi)
m

)

yields

p =
19954

197581
>

51

511
.

However, we can do better than weighting by multiplicity with optimized weights.
Using the general constraints of the weighted template, i.e. 0 ≤ wi ≤ 1 and

∑n
i=1 wi =

1, we can find wi’s that will maximize our weighted lower bound probability equation,

p =

(

m! ·

ν(π,T )
∑

j=1

Wj

)

/

(

1 −

n
∑

i=1

(wi)
m

)

. This can be done numerically by using the above

constraints and Maximize in the Optimization package of the software Maple.

Example 3.8. Let π = 2413 and T8 = 35827146. We discover that the optimized lower

bound for packing density of 2413 calculated with Maple is 0.102473281354887008 and
the weights are as follows:

w1 = 0.155447485901727828 w5 = 0.0945525140982564488
w2 = 0.0945525140982700074 w6 = 0.155447485901717336
w3 = 0.155447485901717366 w7 = 0.0945525140982719504
w4 = 0.0945525140982845098 w8 = 0.155447485901732546
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Using this same technique for determining optimal weights, we have found better
results for the lower bound of δ(2413) using T12 = 468(12)3(11)2(10)1579 and T16 =
579(11)(16)4(15)3(14)2(13)168(10)(12), 0.103816093087368305 and 0.104250980068974874
respectively.

Example 3.9. Recall in Example 2.5, we demonstrated that the choice of template has a
large impact on how good the lower bound is when using the uniformly weighted method.

When we let T8 = 13862745, we found the uniformly weighted lower bound to be
15

511
.

However if we use this same template to find optimal weights, we get an optimized lower
bound of 0.0949154510266377454 which is on par with the lower bounds calculated from
uniform weights of other templates.
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