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Abstract

The constant ¢, appears in the asymptotic formulas for a variety of rooted maps
on the orientable surface of genus g. Heretofore, studying this constant has been
difficult. A new recursion derived by Goulden and Jackson for rooted cubic maps
provides a much simpler recursion for ¢, that leads to estimates for its asymptotics.

1 Introduction

Let X, be the orientable surface of genus g. A map on ¥, is a graph G embedded on 3,
such that all components of ¥, — G are simply connected regions. These components are
called faces of the map. A map is rooted by distinguishing an edge, an end vertex of the
edge and a side of the edge.

With M,, , the number of rooted maps on ¥, with n edges, Bender and Canfield [1]

showed that
M,, ~ t;n°97 D212 a5 n — oo, (1)
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where the t, are positive constants which can be calculated recursively using a complicated
recursion involving, in addition to g, many other parameters. The first three values are

2,1 7

Gao [3] showed that many other interesting families of maps also satisfy asymptotic for-
mulas of the form

at,(Bn)>9=1/2n (2)

and presented a table of a, 3 and 7 for eleven families. Richmond and Wormald [5]
showed that many families of unrooted maps have asymptotics that differ from the rooted
asymptotics by a factor of four times the number of edges. See Goulden and Jackson [4]
for a discussion of connections with mathematical physics.

Although «,  and v in (2) seem relatively easy to compute, the common factor ¢,
has been difficult to study. A recursion for rooted “cubic” maps derived by Goulden and
Jackson [4] leads to a much simpler recursion for ¢, than that in [1]. We will use it to
derive the following recursion and asymptotic estimate for ¢,.

Theorem 1 Define u, by u; = 1/10 and

Uy = Ug—1 + Z A )R n h)uhug_h for g>2, (3)
where /5] 4/5)
Bl = mame,s BN = @

and [z] is the rising factorial x(x +1)---(x +k —1). Then

. [1/5]E£/]) (%)u
4081](%/) (14409)_g/ as g — oo, (4)

where ug ~ K = 0.1034 is a constant.

Y

e

2 Cubic Maps

A map is called cubic if all its vertices have degree 3. The dual of cubic maps are called
triangular maps whose faces all have degree 3. Let T}, ; be the number of triangular maps
on X, with n vertices and let (), ;, be the number of cubic maps on ¥, with 2n vertices.
It was shown in [2] that

~1)/2
Thy ~ 3(37><29)(g / t,n®9V2(12¢/3)" as n — oco. (5)
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Since a triangular map on X, with v vertices has exactly 2(v + 2¢g — 2) faces,
Chg = Tuogrog ~ 3x 697D/ pS=D/2(19\/3)"  as n — oo. (6)

Define
H,, = (3n+2)C,, for n>1, (7)

H—l,O = 1/2, H070 =2 and H—Lg = H07g =0 for g 7é 0.
Goulden and Jackson [4] derived the following recursion for (n, g) # (—1,0):

4(3 9 n—1 g
H,, = w (n(Sn —2)H, 941+ Z Z HipnHy—o- g—h)- (8)
7 n+1 ’ i—1h=0 7

This is significantly simpler than the recursion derived in [2]. We will use it to derive
information about ¢,.

3 Generating Functions

Define the generating functions

Ty(x) =D Tuga", Cylz) =) Coga", Hy(z) =) Hyga" and Fy(z)=a2"Hy(x).

n>0 n>0 n>0

It was shown in [2] that T,(x) is algebraic for each g > 0, and
L3 2 - 1
To(z) = §t (1—t)(1 —4t+2t°) with z = 51&(1 —t)(1 — 2t), (9)

where t = t(x) is a power series in x with non-negative coefficients.
It follows from (6) and (7) that

Cy(z) = 2T (x) for ¢g>0, (10)
Fy(z) = 32°Ci(x) +22°Cy(x) for g>1. (11)

We also have

F()(SL’) = H070.fl/’2 -+ Z(?)n + 2>Cn’0$n+2

n>1
= 22% + 323C) () + 22°Cy(z)
= 22% + 3Ty (z) — 4Tp(x)

L
= St-1), (12)

where we have used (9). Hence Cy(x) and F,(z) are both algebraic for all g > 0.
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In the following we assume g > 1. From the recursion (8), we have
n + 1

Hyyr" = S n(3n—2)Hy o, 12"
T% 3n+ 2 gt nz>:1 g
g9
+ 2 Z H_ly()Hn_Lgl’n + I‘2 Z Hh(ZL')Hg_h(ZE).
n>0 h=0

Using (7) with a bit manipulation, we can rewrite the above equation as

- Z n+1)Cpgz" = 32°F)  (x)+xF, j(x)+xH_ 14

n>0
+ a7 Fy(z) + 277 Z Fy(x

With 0, ; the Kronecker delta, this becomes

I3C;(ZL') +2°Cy(7) = 12$4F;_1($) + 4x3F'_ (z) + 2235,
g—1

+4SCFg(.T)+8F0(SC)F +42Fh g h( )

It follows from (11) that

(1 =12z — 24Fy(x)) Fy(z) = 362'F, y(x) + 122°F,_(z) + 62°0,,
g—1

+12> Fy(x)Fy_p(x) — 2°Cy(x). (13)

h=1
Substituting (12) and (9) into (13), we obtain

1
F,(z) = m(%x‘*ﬁ’;’_ (@) +122°F) () + 6270,
-1
12 F(a)Fy () — x2og(:g)). (14)
h=1

We now show that this equation can be used to calculate Cy(z) more easily than the
method in [2]. For this purpose we set s = 1 — 6t + 6¢% and show inductively that C,(x)
is a polynomial in s divided by s* for some integer a = a(g) > 0. (It can be shown that
a = 5g— 3 is the smallest such a, but we do not do so.) The method for calculating C,(z)
follows from the proof. Then we have

2 = ﬁ(s—lf@s—l—l) and Z—; - 8(184fx1). (15)
Thus
$£ B ds d  (s=1@2s+1) d
dx Yz ds 3s ds’
&2 (ds\ & d(ds/dx) d  48(2s+1) 4> 48(s+1) d
@‘(%)@ dv  ds 2 ds® s ds
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From the above and (11)

2?C, = 2 <3xd09 + (2s + 1>Cg> 7*(2s +1) d((s = 1)Cg>.

F N — _
)+ T e o s ds

With some algebra, (14) can be rewritten as
d((s—1)Cy)  4A(s—1)*(2s+1) d®Fy,4 N 4(s—1) dF,4

ds - 52 ds? s3 ds
5184 91
B F
e 1 & e

dx s

for g > 2. (16)

In what follows P(s) stands for a polynomial in s and a a positive integer, both

different at each occurrence. It was shown in [2] that
i) = Tiw) = .

By (11), (15) and the induction hypothesis, the right hand side of (16) has the form
P(s)/s*. Integrating, (s — 1)C, = P(s)/s* + K logs. Since we know Cy(x) is algebraic,
so is (s —1)C, and hence K = 0. Since s = 1 corresponds to x = 0, Cy is defined there.
It follows that P(s) in (s — 1)Cy = P(s)/s* is divisible by s — 1, completing the proof.

Using Maple, we obtained

1 (25 +1)(17s* +60s + 28)(1 — s)?

Gy = 26 34 s7 ’
B 1 (50525t — 747s% — 33960s% — 356205 — 9800)(2s + 1)?(s — 1)°
Cs = 29 38 512 )
B 1 Py(s)(2s+1)*(s—1)7
Ci = 914 311 517 )
B 1 Ps(s)(2s+ 1)1 —s)?
Cs = 917 314 522 )
where
Py(s) = —12458544 — 63378560s — 10368924052 — 42864016s>

+ 314778935 + 207502565° + 41763655,

Ps(s) = 7703740800 + 502940093605 + 117178660480s>
+ 1003860812725 — 16827627792s* — 67700509763 5°
— 214553895245°% + 471181302057 + 1394857272s°.

4 Generating Function Asymptotics

Suppose A(x) is an algebraic function and has the following asymptotic expansion around
its dominant singularity 1/7:

i J/2 +0 (( )(k+1)/2) :
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where a; are not all zero. Then we write

k
~ > ai(l- ra)/?.
=l

The following lemma is proved in [2].

Lemma 1 For g >0, T,(x) is algebraic,

To(x) =~ g - i 541\[(1— 12v/32)3/2,

- 59— 3
T,(x) ~ 3(37x2)" ””@P( : )(1—12\/555)—(59—3)/2 for g>1.

Let —_—
f, = 24—3/269/%(97) t,. (17)
Using Lemma 1, (10) and (11), we obtain
288
Cy(z) g 37 fo(1 = 12V/32)"G973/2 for ¢ >1,
Fy(r) =~ f,(1—12v32)"®9 D2 for ¢g>1.
As noted in [2], the function t(z) of (9) has the following asymptotic expansion around
. . 1 .
its dominant singularity x = ENeE
— 2
P 3TV V20 me
6 6
Using this and (12), we obtain
3—V3
Al ~ 150 12vE
1 V6
— o~ —(1-12V32)7V2
1 — 6t + 6¢2 5 (1= 12v32)

Comparing the coefficients of (1 — 12v/32)®9=1/2 on both sides of (14), we obtain

V6

o (59 — 4)(5g — 6) f,_ 1+6\/_thfg (18)

fg:

Letting

= f, (25\[> 1 /5]?[\1/65]g—1

and using (17), the recursion (18) becomes (3).
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5 Asymptotics of ¢,

It follows immediately from (3) that u, > u,_; for all g > 2. To show that u, approaches
a limit K as g — oo, it suffices to show that u, is bounded above. The value of K is then
calculated using (3).

We use induction to prove u, <1 for all g > 1. Since u; =
can assume g > 3 for the induction step. From now on g > 3.

1— and uQ—u1—|—480, we

Note that
Ri(g9,1)Ry(g,1) = 5(g—32)(g—2) > 5(g—3)g—32)
Ri(g,2)Ra(9,2) = Z(g-Hg—L)(5(9- g -2)
> Blg-2+Hg-L-H(5(g-Hg-)
> 209-3)(5(9—- 39— 2

Note that R;(g,h) = Ri(g,9 — h) and, for h < ¢/2, % > 1. Combining all these

observations and the induction hypothesis with (3) we have

UpUg—p
Uy = g 1+ZRl (9. 1) Rala, 1)
2uquy_q 972 1

< U S-S R )Y
< Ug—1+ 1/5 + 1/2

TS -Dg-2) " 5g-DHlg- D)
< Ug_1 + L - L .

g 5—9 5g—4

Hence .

1 1 1
< — < - < 1
s “ﬁ,;,(&ak—g 1) < et i

The asymptotic expression for ¢, in (4) is obtained by using

Iz +k) _ T
= g = s

and Stirling’s formula

ag
I(ag +b) ~ V2r(ag)’~Y/? (ﬂ) as g — 00,

e

for constants a > 0 and b.
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6 Open Questions
We list some open questions.

e From (18), we can show that f(z) = 5,51 f,27 satisfies the following differential
equation

V6

£(2) = T2VB(F(2))* + S22 (25221”’(2) +25:f'(2) — (2) “6) .

T2

The asymptotic expression of f, implies that f(z) cannot be algebraic. Can one
show that f(z) is not D-finite, that is, f(z) does not satisfy a linear differential
equation?

e There is a constant p, that plays a role for maps on non-orientable like ¢, plays
for maps on orientable surfaces [3]. Is there a recursion for maps on non-orientable
surfaces that can be used to derive a theorem akin to Theorem 1 for p,?

e Find simple recursions akin to (8) for other classes of rooted maps that lead to
simple recursive calculations of their generating functions as in (16).
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Corrigendum — submitted Jul 28, 2008

The last displayed equation in the paper contains two incorrect coefficients, namely the
first and last. The correct equation is

F2) = 6VB(f(2) + 20 <25sz "#)H2Bf () = ) g) |

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #R51 9



